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Abstract: The classic bootstrap uses valid resamples whenever the observations are inde-
pendent and identically distributed. Data from a spatial region usually have a correlated
structure. If the bootstrap is naively applied to spatially dependent data, these correlations
will be lost. This paper proposes a new parametric spatial bootstrap. The proposed method
is motivated by an analysis of brain images in Spence (2004). The new method combines
spatial modeling and the parametric bootstrap to produce valid resamples of spatially cor-
related normal data. The coverage of confidence intervals from the proposed method is
estimated and compared to an existing spatial bootstrap method proposed by Solow (1985).
The two procedures are simulated for several two-dimensional images. The new approach is
based on fitting a Gaussian semivariogram, uses the Cholesky decomposition and generates
standard normals. The method guarantees positive definiteness of covariance matrices and
has significantly better coverage than the existing spatial bootstrap approach.
Keywords: Cholesky; dependent data; Gaussian; normal; resampling; semivariogram
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1 Introduction

In spatial data any pair of observations may be correlated due to their positions in space.
Such examples can be found in many areas, including brain imaging, geology, and envi-
ronmental monitoring. In these cases data are collected from various spatial locations and
statistical models are often used to represent the dependence between measurements at dif-
ferent locations. The spatial domain may be one, two, or three dimensional. Spatial images
can be analyzed regardless of whether the spatial domain is a continuous region or a regular
grid. For ease of presentation, we only consider regular grids in this article.

If spatial data have very weak correlations, then a simple basic bootstrap method can
yield approximately valid resamples of the observed data. However, in strongly correlated
spatial data, naively ignoring the spatial correlation inherent in the data and directly resam-
pling the observations will inevitably destroy the correlation structure among the original
observations. In addition, a point estimator T̂ may not be difficult to derive for a param-
eter of interest from observed spatial data. However, a confidence interval usually involves
complicated calculations of the sampling distribution for T̂ , so fidelity to the correlation
structure is critically important.

To improve the bootstrap method for dependent data, several different block bootstrap
methods (Carlstein, 1986; Kunsch, 1989; Liu and Singh,1992; Politis and Romano, 1992,
1994) have been proposed to nonparametrically replicate the dependence structure of the
observations in the resamples. The block bootstrap preserves the dependence structure
within the blocks, but distorts the correlation between blocks. Hall et al.(1995) pointed out
that the bias and the variance of a block bootstrap estimator are heavily influenced by the
block length. Solow (1985) introduces and Cressie (1993, Section 7.3.2) briefly describes a
particular bootstrap procedure for spatially correlated data. Sjöstedt-de Luna and Young
(2003) calibrated kriging prediction intervals from bootstrap resamples. Their resamples
assume a Gaussian process with estimated covariance matrices. The present paper introduces
a modification of a spatial bootstrap (SB) method proposed in Solow (1985). We adapt the
parametric approach in Sjöstedt-de Luna and Young (2003) to obtain valid resamples from
a Gaussian process. The proposed method offers a correct way to obtain confidence limits
based on the statistic T̂ . The proposed parametric spatial bootstrap accounts for the spatial
correlation in the data by estimating this structure and then imposing it in the resamples.
Specifically, the new method is based upon the normality of semivariograms within deep
brain regions found in SPECT studies (Spence, 2004).

This paper is organized as follows. Section 2 reviews basic terms and issues in spatial
statistics. Section 3 introduces the parametric spatial bootstrap algorithm. Section 4 gives
the algorithms for the spatial processes used in our simulation study. Different spatial
data simulation techniques are discussed with respect to their computational efficiency. The
simulation results of the proposed method and an existing method are compared with respect
to the coverage of their confidence intervals on two-dimensional mean levels. Section 5
contains some conclusions and discussion of this parametric version of the spatial bootstrap.
Technical issues on semivariograms and computational speeds are relegated to the appendix.
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2 Spatial Statistics

2.1 Semivariogram

Suppose a location s = (s1, s2, ..., sn)′ is a vector in n-dimensional Euclidian space <n, and
Z(s) is a random magnitude at the location s. A random field is

{Z(s) : s ∈ D ⊂ <n},

where s varies over the index set D, which is a subset of <n . The random field Z(s) is
decomposed into a deterministic mean function µ(s) and a correlated error process δ(s) as

Z(s) = µ(s) + δ(s), s ∈ D,

(see Cressie, 1993, Section 2.4). The error process δ(·) is assumed to be a zero-mean intrin-
sically stationary spatial process

There are a large number of conditionally negative definite semivariogram models in the
literature on spatial modeling; e.g., Journel and Huijbregts (1978) and Cressie (1993, Section
2.3.1). Two quite popular isotropic semivariogram models are considered in this paper. The
first is the Gaussian model

γG(d; θ) =

{
0 if d = 0
θ1 + θ2{1− exp(−(d/θ3)

2)} if d > 0,

where θ = (θ1, θ2, θ3), and θ1, θ2, θ3 ≥ 0. The shape of the Gaussian model is displayed
in Figure 1 using the nugget parameter θ1 = 0, the sill (because θ1 = 0) θ2 = 1 and the
range parameter θ3 = 3. The vertical dashed line shows the effective range,

√
3θ3, and the

horizontal dashed line at unit variance is the sill θ2, where γG approaches its limit. The zero
nugget is shown as the horizontal dotted line. It is clear from the plot that this semivariogram
strictly increases with distance and becomes flat when the distance d gets close to the range.

The other semivariogram model investigated here is the exponential semivariogram model

γE(d; θ) =

{
0 if d = 0
θ1 + θ2{1− exp(−d/θ3)} if d > 0,

where θ = (θ1, θ2, θ3), and θ1, θ2, θ3 ≥ 0.
Both parametric and nonparametric methods have been introduced for estimating the

semivariogram. The parametric approach is usually based on weighted-least-squares (WLS)
semivariogram fitting (Cressie, 1985). Appendix 1 gives detailed description of paramet-
ric estimation of the semivariogram. Nonparametric estimators of the semivariogram are
introduced by several authors (Shapiro and Botha, 1991; Hall et al., 1994; Cherry et al.,
1996; Genton and Gorsich, 2002). Even though the nonparametric approach does not re-
quire any parametric model assumption for the semivariogram, the resulting estimates are
not conditionally negative-definite in many cases in practice due to numerical instability.

Initially, it seemed that the nonparametric approach would be preferable in our applica-
tions. However, realistic spatial data were simulated and the classic semivariogram estimates
obtained. Shapiro-Botha semivariogram fits were obtained using R programs from Statlib
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Figure 1. Gaussian semivariogram model with zero nugget, unit sill, and a range of 3.

nonparametric estimation algorithms contributed by Steve Cherry and Jeff Banfield. The
corresponding covariance matrix estimates were calculated and then Cholesky decomposi-
tions were attempted on these covariance matrices. It turned out that none of the matrices
were positive-definite so that the algorithm failed to give the Cholesky matrices. Even though
the selection of a conditionally negative-definite parametric semivariogram family can be
subjective, once the parameters of the semivariogram model are obtained, the corresponding
fitted semivariogram model provides valid variance estimates. This property, coupled with
results (e.g., Stein 1988) that show the critical feature is not the model selected but good
estimation for small lags, led to the decision to use parametric semivariograms for further
study.

2.2 Estimation of the Covariance Matrix

There is a close relationship between the semivariogram γ(·) and the covariogram C(·). If
δ(·) is second-order stationary, then

γ(s1 − s2) = C(0)− C(s1 − s2). (1)

Furthermore if γ(·) and C(·) are functions only of Euclidean distance d, then the above
equation implies that δ(·) is intrinsically stationary with γ(d) = C(0)− C(d).

The method-of-moments covariogram estimator, Ĉ(·) in Appendix 1 yields an estimator
of the covariance matrix by evaluating it for each of the n×n elements. However, the resulting
covariance matrix is not necessarily positive definite. Therefore it cannot be directly used
for the parametric spatial bootstrap method described in Section 3.

The parametric semivariogram method gives a valid estimator γ(d; θ̂). Equation (1)
suggests a relationship between the estimator, Ĉ(d) and γ(d; θ̂), namely

Ĉ(d) ' Ĉ(0)− γ(d; θ̂),
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where Ĉ(0) = σ̂2
δ = sill. An estimate, Σ̂, of the n×n covariance matrix can then be obtained

from
Σ̂(i, j) = Ĉ(dij),

where dij = ‖si − sj‖ for i, j = 1, ..., n.

3 Parametric Spatial Bootstrap

The naive nonparametric bootstrap method fails to provide valid resamples whenever there is
correlation in either time series or spatial data. When this bootstrap is applied to correlated
data, it randomizes the residuals or the observations and destroys the correlation pattern
inherent in the joint distribution.

For realizations of the spatial model in Section 2.1, the estimates for the deterministic
components µ̂ are obtained using various methods (e.g., Cressie 1993, Section 3.1). Next
the estimated spatial error process can be calculated as

δ̂ = {δ̂(s1), ..., δ̂(sn)}
= {Z(s1)− µ̂(s1), ..., Z(sn)− µ̂(sn))

= Z − µ̂.

Appendix 1 discusses practical aspects of estimating the semivariograms and associated
covariance matrix. The resulting positive definite covariance matrix is then decomposed
using the Cholesky decomposition

Σ̂ = L̂L̂T ,

where L̂ is a lower triangular n× n matrix.
Solow (1985) uses the Cholesky decomposition matrix inverse, L̂−1, to decorrelate the

spatial error sequence
(ε̂1, ε̂2, ..., ε̂n) ≡ ε̂ ≡ L̂−1δ̂

and then centers the ε̂ to obtain

ε̃i = ε̂i − 1

n

n∑
j=1

ε̂j

for i = 1, ..., n. The decorrelated and centered residuals ε̃1, ε̃2, ..., ε̃n are then bootstrapped
to provide the resampled residuals ε∗SB = (ε∗1, ..., ε

∗
n). The SB resample is obtained by

transforming to recorrelate the bootstrapped residuals

Z∗ = µ̂ + L̂ε∗SB.

In this paper Solow’s method is modified for better coverage of the confidence intervals, as
discussed in the simulations in Section 4. The new parametric bootstrap method generates
spatially correlated residuals similar to the ones used in Sjöstedt-de Luna and Young (2003)
to calibrate a kriging prediction interval. More importantly, the parametric spatial bootstrap
(PSB) algorithm introduced in this paper is motivated by the Gaussian semivariograms fit
in deep brain regions found in certain SPECT studies (Spence, 2004). The procedure follows

6



the same steps as SB up to the Cholesky decomposition of M̂ . At this point the parametric
bootstrap residuals ε∗PSB are generated from a N(0, 1); i.e.,

ε∗PSB = (ε∗1, ε
∗
2, ..., ε

∗
n), where ε∗j ∼ N(0, 1) for j = 1, ..., n.

Next, the spatial resamples are Z∗ = µ̂ + L̂ε∗PSB. Finally, we calculate the statistic of
interest, T̂ ∗, from Z∗. The above procedures are repeated B times to estimate the sampling
distribution of T̂ .

PSB does not obtain the residuals ε∗ by decorrelating the spatial error process as in
the SB algorithm. Instead, the residuals are independently generated from a standard nor-
mal distribution. This faithfully mimics the spatial model introduced in Section 4.1. The
theoretical foundation is in Sjöstedt-de Luna and Young (2003).

4 SIMULATIONS

4.1 Simulation algorithm

Cressie (1993, Section 3.6) summarizes several spatial data simulation procedures, which are
based on the Cholesky decomposition (Cressie and Laslett, 1987) or eigenvalue decomposi-
tion. The Cholesky decomposition procedure in Section 3 allows the covariance matrix Σ to
be factored into the product of two matrices

Σ = LLT .

The eigenvalue decomposition calculates the square root of Σ based on

Σ = Q diag{λ1, ..., λn}QT ,

where λ1, ..., λn are the eigenvalues of Σ and the matrix Q consists of the corresponding
eigenvectors of Σ. A matrix Σ1/2 is obtained by

Σ1/2 = Q diag{λ1/2
1 , ..., λ1/2

n }QT .

The Cholesky decomposition is preferred not only because it is widely available from most
computer packages with matrix operations, but also because it is more computationally effi-
cient than the eigenvalue decomposition. We report a detailed comparison in the Appendix
justifying our use of the Cholesky decomposition.

The algorithm for simulating spatial data in this study is:

1. Choose a constant mean, µ, for the entire random field (µ=1, 2 or 4).

2. Choose one of the two covariance matrices, ΣP and ΣG (see Section 4.2).

3. Obtain the Cholesky matrix LP such that ΣP = LP LT
P and similarly for LG.

4. Generate independent random variables ε from the standard normal distribution,

ε = (ε1, ε2, ..., εn), where εj ∼ N(0, 1) for j = 1, ..., n.

5. Simulate the spatial data Z using the relationship

Z = µ + LP ε.
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4.2 Data simulation

Two-dimensional spatial data Z are considered here. For simplicity Z has a constant mean
µ over the entire field. Thus the spatial errors δ̂ are reasonably estimated by subtracting
the sample mean from the realization of the random field,

δ̂ = (δ̂(s1), ..., δ̂(sn)) = Z − 1

n

n∑
j=1

Z(sj).

Two stationary covariance structures are studied here. The first, ΣP , has the simple
power form in which each location is correlated with all other locations according to

C(d) = σ2ρd,

where d is the Euclidean distance between the locations and σ2 is the variance of the spatial
process. This power semivariogram is included in the simulation to investigate how the
semivariogram models, Gaussian and exponential, perform when the model is incorrect.

Without loss of generality, σ2 = 1 in these simulations. The power covariance matrix
may be written as ΣP (i, j) = ρdij , where dij = ‖si − sj‖ for i, j = 1, ..., n. For ρ = 0.7 the
covariance matrix is illustrated in a grayscale map, motivated by Stein (1988), in Figure
2(a) for an 8 × 8 spatial image by ordering the pixels from top to bottom and from left to
right, and calculating the correlation between each pair of pixels. The bands in the 64× 64
correlation image in Figure 2(a) indicate that the correlation is strong among local pixels
and weaker with increased distance between pixels. The correlation pattern in this map
has box-like shapes, because the ordered pixels from a two-dimensional image do not have
strictly decreasing correlation with location in the correlation matrix. For example, the 1st
and the 9th ordered pixels from an 8× 8 two-dimensional image do not have the correlation
associated with pixels eight units apart. To the contrary, they are neighbors in the image and
have the strongest correlation of only one unit apart. The theoretical power semivariogram
is given by γ(d) = 1− ρd.

The second covariance structure for data simulation is based on the Gaussian semivari-
ogram model whose covariance matrix is

ΣG(i, j) = C(0)− γG(dij; θ)

= σ2 − (θ1 + θ2{1− exp(−(dij/θ3)
2)}),

where dij = ‖si − sj‖ for i, j = 1, ..., n. In the simulation study the nugget parameter
is set to θ1 = 0 for continuity of the Gaussian semivariogram at the origin, the sill θ2 =
1, and the range parameter θ3 = 3, which means that the locations about 5 units apart
are approximately uncorrelated. This range has been shown to be relevant within deep
brain regions in SPECT studies (Spence, 2004). The covariance matrix for this Gaussian
semivariogram is shown in a grayscale map in Figure 2(b) for an 8 × 8 spatial image. The
correlation here decreases with distance somewhat slower than the one in Figure 2(a) for
the power covariance matrix. Figures 3(a) and 3(b) illustrate simulated 2D spatial processes
and their perspective plots for both the power semivariogram with ρ = 0.7 and the Gaussian
semivariogram. The top two panels are the maps of 16×16 2D images. From the perspective
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Figure 2. Correlation maps for Power and Gaussian covariance structures. The grayscale
bar on the right is the magnitude of the correlations for each pair of pixels. (a) A Power
covariance matrix : C(d) = ρd with ρ = 0.7; (b) A Gaussian covariance matrix.

plots, it can be seen that the spatial process in Figure 3(c) has much more abrupt changes
than the smoother Gaussian process in Figure 3(d).

For each simulated two-dimensional data set the PSB and SB methods are repeated 499
times to obtain approximate 90% confidence limits for the mean µ. Sometimes a simulated
data set may not yield a convergent semivariogram model fit within 30 iterations. When
this occurs the simulation is considered invalid. This occurred about one out of ten times
for the Gaussian semivariogram fit to Gaussian processes in this study. One thousand valid
simulations are produced and the coverage of the 1000 resulting confidence intervals are
obtained for each bootstrap method.

Both Gaussian and exponential semivariogram models are fit using WLS estimators. The
experimental design accounts for three different constant means, µ = 1, 2, 4, and two image
sizes, 8 × 8 and 16 × 16. All computations are performed in the R language. Figures are
produced using R scripts available from the authors.

4.3 Simulation results

Table 1 gives simulation results at the nominal confidence level of 90% (SE≈ 0.9%) for
µ = 1, 2 and 4, respectively. The SB method in the two colums on the right has coverage
of about 80%, which is far below the nominal level (> 10 SE ) while the coverage for PSB
is much better. The reason for the undercoverage using SB is that the estimated covari-
ance matrix does not decorrelate the spatial error process. For example consider a 16 × 16
realization generated using the Gaussian semivariogram. This corresponds to the smallest
coverage (73.4%) in Table 1(b). The Gaussian semivariogram model was fit to the semi-
variogram values and then the covariance matrix was calculated. The spatial error process
was decorrelated using the estimated inverse covariance matrix. Figure 4 shows one such
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Figure 3. The simulated 2D spatial processes and their corresponding perspective plots.
The constant mean for both processes is 4 and the image size is 16× 16. Panels (a) and (c)
give a power process image in a grayscale map and in a 3D setting, respectively; Panels (b)
and (d) show a Gaussian process in a grayscale map and in a 3D setting, respectively.
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Figure 4. The “decorrelated” error. A 16×16 spatial image is generated using the Gaussian
semivariogram 1− exp(−(d/3)2) with a mean 4. The image shows the result of the decorre-
lated error process used in the SB procedure. Clear patterns of spatial correlation remain.

Table 1: Estimated confidence interval coverages in % using parametric spatial bootstrap
and spatial bootstrap. The Power and Gaussian columns under bootstrap types indicate
the semivariogram models generated. The rows labeled Gaussian and Exponential for each
image size indicate the semivariogram type fit to the data. Simulations are from the Power
semivariogram model with ρ = 0.7 and a Gaussian model with θ1 = 0, θ2 = 1 and θ3 = 3.
The nominal confidence levels are 90% with standard errors of 0.9%.

(a) True mean µ = 1
Parametric spatial bootstrap Spatial bootstrap
Power Gaussian Power Gaussian

Image size Semivariogram
8× 8 Gaussian 91.4 90.2 82.1 74.5

Exponential 92.2 94.8 84.5 79.0
16× 16 Gaussian 91.2 93.6 79.7 75.1

Exponential 94.6 95.8 77.2 79.2
(b) True mean µ = 2

8× 8 Gaussian 91.2 90.8 82.0 73.4
Exponential 89.0 89.0 84.5 75.7

16× 16 Gaussian 93.4 94.2 74.5 74.2
Exponential 92.5 96.0 73.6 73.6

(c) True mean µ = 4
8× 8 Gaussian 90.4 90.6 83.0 76.0

Exponential 91.4 92.4 82.3 78.2
16× 16 Gaussian 93.0 94.1 77.5 74.0

Exponential 91.2 95.1 76.8 76.4

11



approximately decorrelated error process for a typical realization. It is clear that correlation
remains. It follows that the resamples obtained by bootstrapping these “decorrelated” error
processes lead to the undercoverage of the resulting confidence intervals. On the other hand
the coverage of the PSB intervals are not significantly less than the nominal confidence in
all of the cases in Table 1.

5 Conclusions and Discussion

The PSB performed better than the spatial bootstrap under all conditions simulated. For
smaller images the PSB using both the Gaussian and exponential semivariograms provide
excellent coverage for the means, even when the fitted semivariogram is not the same form as
the theoretical one used to generate the data. Figure 4(a) shows the model fits when the true
semivariogram is of the power form. Figure 4(b) shows the semivariogram fits of the empirical
semivariogram estimates as well as the true underlying Gaussian semivariogram curve for
an 8 × 8 spatial image. Note that the Gaussian fit approximates the empirical values well
but the exponential fit is poor for small distances. Neither semivariogram fit approximates
the empirical semivariogram very well. Figure 4(a) and Figure 4(b) also illustrate some
departures of the empirical semivariogram estimates from the true underlying models. More
severe departures occur in the simulated 16×16 images. This appears to be the main reason
that for 16 × 16 images the PSB tends to have some overcoverage, as much as 5 SE above
the nominal level in Table 1.
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(b) Gaussian Semivariogram

Figure 5. Semivariogram estimates for an 8 × 8 spatial image. The solid lines are the
true semivariograms. The dashed line shows the results of exponential model fitting and the
dotted one is the result of Gaussian model fitting. (a) A Power semivariogram 1− 0.7d; (b)
A Gaussian semivariogram 1− exp(−(d/3)2).

The table also reveals that the Gaussian model fits tend to be closer to 90% coverage
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than the exponential model for smaller image size, while for larger images these two model
fits have similar overcoverage amounts. A one-factor, three-level ANOVA on the effect of
the true means has a p-value of .56 for effect of different mean levels, which indicates that
different levels of constant mean have little effect on the confidence interval coverages for
PSB using both semivariogram models.

One of the main advantages of the PSB method over block bootstrap methods used in
spatially correlated data is that it does not require one to determine block sizes and partition
spatial data into blocks. The new method also guarantees positive definite covariance matri-
ces and offers better coverage than the spatial bootstrap method proposed in Solow (1985).
The tradeoff is that the proposed PSB method requires estimation of the correlation struc-
ture of a Gaussian process. Furthermore, if care is not taken to select a semivariogram model
that reasonably approximates the empirical semivariogram, the parameter estimates might
not converge. Extensions are being investigated to improve the stability of the proposed
method for all forms of spatial data.

APPENDIX 1: Estimation of the semivariogram

For a constant mean µ(s) = µ, the method-of-moments estimator for the variogram was
introduced in Matheron (1962). It is referred to as the classical variogram estimator by
Cressie (1993, Section 2.4) and is given by

2γ̂(d) =
1

|N(d)|
∑

N(d)

(Z(si)− Z(sj))
2,

where N(d) = {(si, sj) : ‖si − sj‖ = d for i, j = 1, ..., n} including all distinct pairs of
locations, si, sj ∈ D ⊂ <n, which are d units apart and |N(d)| is the number of these pairs.
The semivariogram estimator is γ̂(d).

Several parametric methods for fitting a semivariogram model are summarized in Cressie
(1993, Section 2.4.3). After the classic semivariogram estimator γ̂(·) is obtained as a vector

γ̂ = (γ̂(d1), γ̂(d2), · · · , γ̂(dT ))′

at T lags, the ordinary least squares (OLS) method obtains the value θ that minimizes

(γ̂ − γ(θ))′(γ̂ − γ(θ)).

If the correlation among estimator values γ̂(d) at different lags is taken into account, the
generalized least squares (GLS) criterion minimizes (γ̂ − γ(θ))′V −1

G (θ)(γ̂ − γ(θ)), where
VG(θ) = var(γ). However, calculation of all elements in VG(θ) is not a trivial task. Thus,
a simpler approach, weighted least square (WLS), is widely adopted and only requires the
estimation and inversion of a T × T diagonal matrix VW (θ), where

VW (θ) = diag{var(γ(d1)), var(γ(d2)), ..., var(γ(dT ))}.
Although GLS can be superior, Cressie (1984) and Grondona and Cressie (1995) show that
there is negligible loss in efficiency using WLS instead of GLS. Thus, WLS is a more ap-
propriate estimator due to its efficiency and ease of calculation. The weights in WLS are
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given by the reciprocals of the variances of the semivariogram estimator γ. The diagonal
terms of VW can be approximated by var(γ̂(di)) ' 2(γ̂(di; θ))

2/|N(di)|. Thus, WLS obtains
the estimate of θ such that

θ̂ = argmin
θ

{
n∑

i=1

w(di){γ̂(di)− γ(di; θ)}2

}
,

where
w(di) = 1/var(γ̂(di)) = |N(di)|/2(γ̂(di; θ))

2 for i = 1, ..., n.

The above equations illustrate that WLS gives more weight to squared deviations that have
more pairs of observations or which are at smaller lags di. In particular, the latter condition
means that the deviations are weighted more if their lags are closer to the origins, improving
the fit of the semivariogram near the origin. Stein (1988) argues the critical importance of
estimating semivariogram models well at small lags.

An initial value of the vector θ(0) can be obtained from the sample semivariogram values

γ̂(di) using OLS to obtain the initial estimate θ̂
(0)

. Then θ̂
(0)

is substituted into the matrix

VW to calculate VW (θ̂
(0)

), which is used in the w(di) to produce θ̂
(1)

and the resulting VW (θ̂
(1)

)
from WLS. The above procedures are iterated until the parameter estimates converge within
a specified tolerance. The final estimate of the parameters θ̂ are then substituted in the
semivariogram model γ(d; θ) yielding a valid semivariogram estimator, γ(d; θ̂), for all further
analyses.

APPENDIX 2: Computation speeds of two decomposi-

tions

Table 2 gives a comparison of the two decompositions on different sizes of Gaussian covari-
ance matrices. The calculations are performed using the R package under the Microsoft
Windows XP operation system on a laptop computer with Pentium M 1.6GHz processor
and 512MB SDRAM memory. The Cholesky decomposition runs about 10 times faster than
the eigenvalue decomposition on the higher dimensions. The covariance matrices for spatial
data usually have large dimensions. If the size of a two dimensional image is n × n, the
corresponding covariance matrix will be of size n2 × n2. As n gets large, the covariance
matrix quickly grows in size. A computationally efficient algorithm is desired to handle such
a large number of matrix operations, and hence we use the Cholesky decomposition in this
paper.
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