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An optimum sequential search policy is developed for locating an
object in a discrete search space assuming a search instrument having
both false alarm and false dismissal errors.

The search policy obtained specifies that the experimenter always
takes his next observation at the potential location which has the
largest a posteriori probability of being the true 1ocatiqn as computed
from the prior probability distribution and previous experimental
evidence via Bayes Rule.

The results were derived under the following assumptions. A
single object is assumed to be located in 1 of N locations and to remain
stationary during the search process. The experimenter is presumed to
have an initial discrete a priori probability function describing the loca-
tion of the object. Also available is a single search instrument which
the experimenter can employ to examine each of the potential locations.
Only one location can be observed at any one time, however. The instru-

ment is assumed to perform a simple, fixed sample size, hypothesis test
iv



having known conditional error probabilities of both Type I and Type II.
The preliminary decision made by the instrument is thus a noisy decision
which is only statisticaily reiated to the presence or absence of the
object at the location in question.

The resulting search policy is based on an optimality criterion
which states that the experimenter desires to minimize the number of
unfavorable observational responses he receives while simultaneously
maximizing the probability that the first favorable observation occur
at the true object location. Conditions are derived whereby the
experimenter can select a set of instrument parameters which will assure
him of achieving any desired degree of certainty in his final decision.

Several properties are derived for the search policy specified
including the average duration of the search and the probability of

successful search termination.

A communication system search example is also considered.
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CHAPTER I
STATEMENT OF THE PROBLEM

1.1 Introduction

A sequential search process is a search process in which an
observer is called upon to select a sequence of options, or equivalently
to make a series of preliminary decisions in the process of using a
measuring instrument to locate something. For ease of discussion the
article being sought will be called an object and the person, machine
or combination of the two making the decisions will be called the
experimenter.

The total region which may potentially be occupied by the object
will be éa]]ed the search space. It will be assumed that only a portion
of the space may be searched at any one time. The instrument will be
employed by the experimenter to make observations, or equivalently take
samples, from the environment occupied by the object. The instrument is
assumed to have an output which is statistically related to the presence
or absence of the object at the location observed.

The objects being sought can be real objects such as balls in urns
or failed mechanical or electrical parts in a complex physical system,or
they can be propertfes of a more general nature. Examples of this second
type are the coordinate locations associated with a radar target such as
an incoming missile or the operating frequency and time origin of a com-
plex coded military communication signal. This last example will be

considered in some detail since it is of considerable practical interest.
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In each of these cases the objective of the experimenter is to
formulate a search policy which will locate the object in an efficient
manner. Determining the optimum search policy for some meaningful
criterion of optimality becomes a valuable end in itself. This disserta-
tion addresses itself to this problem. The search policy must specify
the search sequence followed by the experimenter as a function of the
previous observation history. The sets of information which ;onstitute
complete descriptions of what are meant by the terms search policy and
observation history are strongly dependent on the type of search being
conducted. The complexity of any particular search policy depends on the
type of search being performed. Only the specific search policy of
interest in this dissertation will be discussed in any detail in what
follows. However, most search policies must provide the answers to the
following basic questions:

i)  how does the experimenter select the location(s)
which will next be observed by the instrument?

ii) what portion of the previous search history must
be retained and what form should the stored in-
formation have to be most relevant to subsequent
decisions?

iii)  how does the experimenter decide when to stop
sampling and terminate the search procedure?

iv) what terminal decision concerning the object
location does the experimenter make?

There are many additional choices which could potentially be in-

cluded in this 1ist. Additional questions pertaining to how best to
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select the instrument characteristics for each observation, what consti-
tutes a Tocation, etc. could also be included. Rather than include such
general considerations, the specific search problem treated in this
dissertation will be introduced.

A conceptual framework which will aid in localizing the specific
problem within the broader framework of search problems is shown in
Figure 1-1. The figure is adapted from the article by Beiman and
Eisner (1).* The search process which will be considered in this work
is indicated by the heavy black line in Figure 1-1 and the problem

description will essentially trace this path from top to bottom.

1.2 The Search Problem Considered

The search space will be assumed discrete with N possib]e object
locations, each labeled with an appropriate integer, £=1,2,...,N. The
object can be located in one and only one of the locations. Also
considered is the case where no object is present. This may be
considered to be an (N+1)-location search space where ther(N+1)St location
canndt be observed. An initial probability distribution is assumed which
describes the experimenter's a priori knowledge of the object location.
The prior distribution will be denoted by the row vector
Pg=(p(1)5pg(2)5. .. 5py(N)).

The prior distribution will be assumed to be a true conditional
probability distribution known to the experimenter. No consideration is
given to the case where py is unknown or inaccurately known. It is con-
ditional in the sense that it describes the prior distribution given that

an object is present. For many cases of practical interest the discrete

*
References are consecutively numbered and found in the List
of References.
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character of the search space is a true description of the sjtuation, in
others it is an approximation made possible by the finite resolution of
the search instrument.

The search object is assumed to be stationary during the duration
of the search. This implies that the object remains at one location
during the search and eliminates consideration of evasion of the searcher
by the object. In many real situations a stationary target assumption is
valid; particularly if the search can be consummated in a time short com-
pared to the time required for the object to move to a new location.

The measurements which are made during the search sequence are
assumed to be noisy. Furthermore, the noise statistics are assumed
constant with respect to both the location being observed and the temporal
position of the latest observation in the search sequence. It is assumed
that only one location can be observed for any one experiment and that
the same- instrument is used for each. The experimenter is assumed to
have complete freedom in the choice of experiment location for each
experiment. He selects each experiment sequentially assuming the results
of all previous experiments are known. Determining a search algorithm
which optimally incorporates the past search history into the choice of
the next experiment location is the primary result which will be derived.
The search instrument is assumed to perform a simple hypothesis test at
each location and to employ a fixed sample size. The allocation of search
effort is thus variable in the sense that the locations may be observed
in any order and a different number of times during the search process.
However, the allocation is also quantized since each experiment allocates
a fixed unit of search effort. The experimenter's choice deals with the

order in which these search quanta are allocated to the N potential

locations.
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Each experiment has two potential outcomes denoted X3+ The first
is considered favorable to the presence of the object at the observed
location, is denoted "yes" or "Xi=1"’ the alternative is denoted "no"
or "Xi=0"° Because of the simple form of the experiments the experimenter
obtains either a "yes" or "no" response from each experiment. He is also
assumed to know the statistical validity of the information received;
the behavior of the observation instrument and the conditions of the
experiment are assumed to be well known so that statistical errors of
type I and type II are known. Their respective conditional probabilities
of occurrence are denoted g and o respectively and are constant with both
the location observed and temporal position in the observation sequence
as noted above. The two types of errors are illustrated schematically
in Figure 1-2.

Each experiment yields two types of information, the outcome of
the experiment, X and the location, e;=L; 2=1,2,...,N, where the obser-
vation was taken. This information, plus knowledge of the o and B error
probabilities comprise the result of an experiment.

Selection of the instrument parameters o,8 may or may not be at
the disposal of the experimenter. In either case they are assumed known
and constant in the following paragraphs.

The total accumulated experiment history bn at any point in the
search, n=1,2,..., is represented by knowledge of which locations have
been observed and the order of the observations, [ and the responses
X received at each, thus hn=(9n’5n)'

The search history, which represents all information collected

during the prior portions of the search, must be maintained and updated
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during the search process. The most information which is available and
hence all which could possibly be employed for the (n+1)St experiment
decision is the total prior history; bnt(gn’én)’ and the a priori
probability vector, Py Since hﬂ grows linearly with the length, n, of
the search histofy, storing hﬂ is clearly not desirable. Considering
that the posterior probability, given bﬂ, represents all that is known
about the object location after n observations, the posterior probability
vector En(elbﬂ), representing modifications of the prior distribution
made in response to the observations obtained is certainly a sufficient
set of information and clearly superior from the storage viewpoint.
Storage requirements are then determined by the size of the search space
N and the accuracy of the probability values which are stored. The next
chapter discusses a method of sequentially computing the N dimensional
vector representing the experimenter's current estimate of the true
probability distribution, O these results are based on hn and Py 3s
one would expect. It is furthermore shown that the probabilities P,
can be equivalently calculated by storing the N number pairs |
(sn(z),rn(z)), 2=1,2,...,N representing the number of yes and no responses
obtained at each location in the first n observations. The N number pairs
(sn(z),rn(z)) are thus sufficient statistics for the search problem by
the Bayesian definition of sufficiency given in Raiffa & Schlaifer (2).
Since the posterior distribution can be updated as the search pro-
gresses one would suspect that the experimenter would always select the
next experiment location to correspond to the current most probable

point, providing search costs and instrument parameters were neither

location nor time dependent.
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This expected result is shown to be true in Chapter III for the

criterion discussed below. The next chapter discusses methods of com-
puting the posterior probabi]ities;

The criterion selected in this dissertation for optimizing the
search policy is that of maximizing the probability of correctly detect-
ing the true object location with an associated side condition which
enables the experimenter to employ a simple stopping rule and yet be
predictably certain of a correct decision. The search is stopped when-
ever the first yes observational response is received. To assure the
experimenter that the above stopping rule will correctly locate the true
object Tocation with satisfactory veracity requires that a side condition
be placed on the instrument parameters (a,g8). It may be observed that
the results derived in Chapter III are valid irrespective of whether
the side condition is imposed or not. However, the choice of optimality
criterion is neither satisfying nor convincing unless one is using a
reliable instrument.

One notes the analogy between the search process described above
and the usual sequential hypothesis test, particularly in the special
case of two locations. Determining a search policy on the basis of the
previous search history is similar to determining a sequential hypothesis
test stopping/terminal decision rule on the basis of a statistic incor-
porating previous sample values. A search policy introduces the addi-
tional requirement for specifying the experiment location whenever an
additional sample is to be taken. One must decide both when to continue

sampling and where the sample can most advantégeous]y be selected.
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1.3 Related Search Problems Consjdered in the Literature

Search problems have previously been considered by a great number
of authors. A univeral supposition in each of these works has been the
assumption of a zero conditional probability of false alarm, o=0. The
instrument is assumed to never give a "yes" response at an erroneous
location. Under this assumption it is not possible to erroneously
locate the object unless the search resources (time, energy, money, etc.)
are somehow limited so that the search cannot always be completed. The
desire to maximize some measure of search success by the appropriate
allocation of resources has motivated research of this family of search
problems.

An early study of the optimal distribution of search effort was
made during World War II by the Antisubmarine Warfare Operations Research
Group (ASWORG) of the Navy Department. The available portions of this
work are documented in three articles by Koopman (3,4,5). The fundamental
problem considered by ASWORG was how best to simultaneously allocate a
given amount of search effort in the potential search region so as to
maximize the overall probability of locating the object. Koopman assumed
that the conditional probability of detecting the object at a location,
given that it was present, was a negative exponential function of the
search effort density expended at the location in question. De Guenin (6)
extended the result to a general nondecreasing detection probability
function (detection probability never decreases with increasing search
effort). Neither of these results provided information about how best to
allocate the search effort sequentially; it was assumed that the searcher

had an instrument which could simultaneously distribute varying amounts



11

of a fixed total search effort throughout the search region. Lyubatov (7)
considered the problem of how best to sequentially distribute search
effort, assuming a discrete search space; a nondecreasing detection proba-
bility function, and a search instrument which could only observe one
location at a time but for any arbitrary duration greater than zero (not
quantized). He obtained the optimum limiting strategy which maximized
the probability of locating the object'and exhibited a constructive method
of generating an approximation to it.

Chu (8) developed optimal minimum cost search strategies assuming
a discrete search space. He considered the additional complication intro-
duced by uncertain prior location probabilities and an uncertain condi-
tional detection probability, 8, for the search instrument. Optimal
adaptive search decision making policies were developed which had minimum
expected loss for the case of known search parameters, and minimum expected
mean loss when the parameters were not known. A Bayesian learning approach
was used to update the parameters through learning observations (results
of past searches). Ross‘(9) considered a related minimum cost pfob]em
with known parameters. In each of the above studies, a=0, was assumed.

Many other special search problems have also been considered, some
assumed a random time of object appearance, others considered an intelli-
gent and evasive object. A bibliography and brief abstract of these
results can be found in the survey paper by Dobbie (10), or the earlier
bibliography by Ens1ow (11).

The major difference between the problem considered in this disser-
tation and the majority of previous search problems is represented by the

non-zero probability of false alarm, a. Assuming a non-zero implies that
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the experimenter always remains uncertain about the true object location.
He must now not only consider how to allocate his resources during the
search process but also must decide when to terminate the search since a

yes observational response is no longer a guarantee that the object has

been found.



CHAPTER . I1
POSTERIOR PROBABILITY EXPRESSIONS

2.1 Introduction

This chapter is concerned with formulating the posterior probability
expressions representing the experimenter's current best informatfon
about the true location of the object being sought given the previous
experiment history. By employing Bayes theorem to incorporate observed
data into the prior probability model, historical evidence concerning
search problems of the type considered may be modified in response to
actual data to better represent the particular search procedure being
executed. |

Two different types of experiment information are available as
previously noted; experiment locations and observed outcomes. The
experiment locations are sequentially selected by the experimenter
based on the previous search history. Observed data consists of Bernoulli
events coming from one of two different distributions. By assumption,

a single sample distribution applies to all erroneous locations; this
distribution is also assumed different from the distribution associated
with the true object location.

In practice, the posterior probabilities would be computed sequent-
ially, each based on that portion of the experiment history previously
observed. At any arbitrary time during the search, the experimenter has
selected the experiment location for each of the previous observations

and hence influenced the corresponding samples observed. The posterior
13
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distribution thus depends on both the outcomes observed and the experi-
menters choice of experiment locations. Based on this previous history
the experimenter must decide where to take the next sample.

Because of the interaction between experiment locations and potential
outcomes one can see that the number of potential experiment histories
and hence the number of posterior probability vectors grows rapidly
with the nunber of locations and samples, n. This result is also dis-

cussed in this chapter.

2.2 Single Experiment Posterior Probability Results

It is necessary for subsequent use, to determine the form of the
posterior probabilities given an experiment history consisting of the
set of experiment locations eys €5 €35 ... and the corresponding
experimental observations Xp2 Xos e o Each experiment location ey
can be sequentially chosen by the experimenter to correspond to any one
of the N.potent1a1 object 1Qcations, e;=2 for some 2=1,2,...,N. The
observation X; corresponding to each experiment location e; is constrained
by the observation instrument to have values Xy = 0,1. The n step
experiment history bﬂ=(gﬂ,5n) = (e],ez,...en,x],xz,...,xn), the
instrument error parameters (a,8) and the prior probabilities QO=(po(1),
po(z), eee po(N)) represent all the information that is required to

compute the posterior probability vector p,- The elements of P, will
be denoted

pn(9=2|gn,5n) 2=1,2,...,N (2-1)
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where 0 denotes the true but unknown object location and the two n
dimensional row vectors e and X represent the prior search history.
Consider the case for a single experiment, e with outcome Xy Then
by Bayes Rule the posterior probability that the object is located at
location 2 given the seach history hq,p](9=zle],x]), may be expressed
in terms of the prior probabilities and the conditional detection pro-
babilities associated with the instrument. Consider the case for e]=k,

and x]=0, implying a "no" response was received while observing location

k. For this case,

p(x,=0]e,=k,0=2)p.(0=2)
p1(9=1|e1=k,x1=0)= 1 | 1 Po

p(x1=0|e1=k,9=k)p0(9=k)+p(xl=0|e1=k,9fk)P0(9fk) ,

2=1,2,...,N (2-2)
There are two specific expressions to consider, the posterior probabilities
associated with locations other than the one observed, £#k, and the pro-

bability associated with the experiment location, k. Hence,

1-a-8 ~ pO(k)

p1(9=£|e1=k,x1=0) = (2-3)

B
( l-aB) . g};a) pO(R') . 9=k
T-o-5 - Polt)

Similarly, for a “yes", x,=1, response at location k, the posterior
. 1

probabilities may be expressed
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/ o Po(l)
1-a-8 &4 p (k) > 2tk
l-a~8 0
p,(8=2le =k,x,=1) =j (2-4)
1-
o (T) po(l) , =k
\ 1'0,'8 . o
1-0-B * pO(z)

These results hold equally well for assessing the effect of any single
observation on a prior probability vector Bh1e The above expressions
can be applied iteratively for a sequence of observations of arbitrary
length; knowing P,.1» One can compute B, for each experiment history Qﬂ.

Note in the above results that the experiment location e]=k is the
only location whose relative probability value is changed by the obser-
vation. A1l other locations have posterior probabilities which are
simply séaled versions of the corresponding prior probabilities. For
example, given a negative response, x]=0, while observing location k,
the prior probability po(k) will be reduced by the factor g/(1-a)
relative to all po(z),lfk. Given the prior probabilities po(k). and
po(z), the respective posterior probabilities given a no response at
e;=ks namely p](kle]=k.x]=0), and p](2|e1=k,x]=0) will have changed
relative value by g/(1-a)»

pl(kl') - B\ . po(k)

(2-5)
pl(ll') 1-a po(l)

Note that 8/(1-a) < 1 for a,8<0.5 which is the only case of real interest.

In contrast, any two locations different from the one which was observed
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do not change relative value (although the individual values obviously

change).

pl(‘] Ie]_:k;Xl:O) ) po(J)

(2-6)
pl(i|e1=k,x1=0) po(i)

A similar result holds true for yes observational responses but the

scale factor is different, e.g. (1-8)/a>1,

P, (kle =k,x;=1) e Po(k)
B

= (2-7)
p1(2|e1=k,x1=1)

Po(2)

The above results assume that the instrument error parameters a,B
are identica]lfor all locations and for every sample, n=1,2,... . For
location dependent error parameters o,B8 would be functions of e;s
a(ei),B(ei). The simple relative probability changes discussed above
still hold and the_ratio of any two posterior probabilities have the
same form with a(k), B(k) substituted appropriately. Subsequent cal-
culations become considerably more complicated, however. For this
reason (a,B8) are assumed to be independent of location. One notes that
this assumption is satisfied for many real problems and could be
approximated in others by varying the instrument to compensate for
location dependent changes in experimental conditions.

The single observation posterior probabilities for the experiment
location k are illustrated in Figure 2-1 for the special case o=0.1,

8=0.05. The strong dependence of Pp O Py is evident from the figure.

The knee or unity slope conditions of the two curves both occur on the
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line pn=1-pn_1. The unity slope (us) conditions occur for prior pro-

babilities Pp-1 given by

i
us|x=1 occurs @ p_, = I-6)
By -1
o}
and L (2-8)
2
1- ()
us [x=0 occurs @ p._, = z
1-(-1"_—a)

for yes and no observational responses respectively. Improving the
search instrument by reducing o and/or g can be seen to accentuate the
sharpness of the corner in both cases. In the limit as a and 8 go to

zero the two curves of Figure 2-1 become L shaped and appropriately

oriented.

(2-9)

As might be expected o and B are not always at the disposal of the
experimenter nor independent of one another. The search parameters o and
B are frequently constrained so that they cannot be independently adjusted;
for such cases decreasing o will cause B to increase and vice versa. In
such cases the experimenter may be able to exercise his limited control to
improve some overall measure of search success such as the total average
time required. A particular example of this type is considered in
Chapter IV. As will be noted from the example, minimizing the average
time consumed by the search can be a tiresome numerical problem and as

such doesn't necessarily yield a unique minimum.
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A useful observation may be made at this point about the effect of

a yes/no (or no/yes) experiment combination on the posterior probability
associated with the observed location. Sequentially applying the appro-
priate posterior probability expressions given above one can easily
arrive at the following equation for the posterior probability of location

2 given a prior probability po(z) and two co-located observations with

Xn

n

k, Xn' Pn—](k)): OF
o
0
]
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outcomes x]=1 and x2=0 (or x]=0, x2=1).

(£ (8) py(2)

1-a-8 /B-o
1+ 1-a (T) pO(Q')

p2(2|32=&,x1=1,x2=0) = (2-10)

The ratio of this probability to its prior value po(z) is of interest
because it illustrates the relative influence of sequential yes and no
responses for a given set of instrument parameters, a,B8.

Let the ratio under discussion be denoted R, where

R = pz('q'!g_Z:_g_’.’Xl:lsXZ:O) _ (1-1) (2-11)
PO(Q) po(z) + %‘(TZ‘)‘[l = po(g)]

One seesrthat R depends on the prior probability po(l) as well as o and
B unless a=B. For the special case a=8, R=1 results, implying that no
cumulative probability change resulted from the observation pair. For
a more general choice of a,8 < 0.5 one notes that a2B corresponding]y
implies o(1-a) 28(1-8). Observing that O<po(2) <1 the following con-
clusions may be drawn about R independent of the value of,po(l);

a<B =R>1, o> =R<1.

Thus, if the experimenter has a choice of instrument parameters he
may heuristically select a<B to lessen the effect of temporary setbacks
(xi=0) which may occur while observing the true location. Reducing «
also simultaneously reduces the number of false alarms and is beneficial
in this way also. No convincing argument may be given for either
alternative, however, unless o and B are both related to some common

measure of search effort which is to be minimized or maximized. This
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choice is not discussed at any length in this chapter. A particular

example is given in Chapter IV. One notes for future reference that
selecting a<g and assuming that the experimenter will always choose the

a posteriori most probable location for observation implies that multiple
"no" responses are required to cancel the effect of a single "yes."

The choice B<a implies the opposite result.

2.3 Multiple Experiment Posterior Probabilities

The iterative nature of the posterior probability relationships
can be used to advantage to sequentially calculate the vector of posterior
probabilities as one proceeds through a given search sequence. The
probability of the observed location e, is modified in response to the
experimental outcome Xq by employing the appropriate expression given
above, all other locations are simply multiplicatively scaled in value
so that they all sum to unity. Knowing By and the nth experiment

location and outcome(en,x ), and o and 8, one can determine Py Each

n
computation of the next probability vector will require computations in-
cluding a single addition and division, about N multiplications and N
storage accesses. For real time problems these operations mdst be com-
pleted during an observation time.

If the experimenter was to exhaustively compute all possible pro-
bability vectors resulting in a problem having N potential object
locations ¢ =1,2,...,N and considering n=J previous experimental obser-

vations, €12€5s .23 5s the total number, T(N,J), of different posterior

probability vectors EJ(ngdsﬁJ) which could be computed is given by the

following expression
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2N +J -1
T(N,J) = J > (2-12)

This expression is illustrated in Figure 2-2 as a function of the number
of experimental observations, J. Several different values of N are
illustrated. The top of the figure represents a rough bound on the rapid
access storage size available with large present day computers such as
the IBM 360-65. One notes that the size of the probability vector

array resulting for the case N=5, J=10 is typical of the problem para-
meters for which the probability array can be exhaustively computed.

The number T(N,J) also represents the largest array required if
one is to use the backward computation method for finding an optimal
truncated strategy with the truncation point (J+1) as discussed in
references (12,13). Such a method is feasible for numerical problems of
modest size such as the case N=5, J=10 illustrated in Figure 2-2.

One can use the iterative nature of the posterior probability array
which evolves during a search process to determine analytical probability
results assuming n experiments (n=1,2,...) have been completed. Three
results of this type which will later prove of interest are given below.
The first shows the form of the posterior probabilities given that a
sequence of n consecutive "no" responses, X =0 have'been obtained at
the n experiment locations &,- The second result reports the form of
the posterior probabilities given n consecutive "yes" responses, 5n$ln°

The third result assumes a more general and unspecified sequence of ex-

perimental outcomes, X
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Assume first that n consecutive "no" responses, X =0, have been
observed. For this case the posterior probabilities associated with

locations 2=1,2,...,N may be shown to be of the general form

m (2)+1
(£ " pp(n)

s 2=1,...,N

(e;
[1_(,_ Z( i po(ei)] (2-13)

The coefficients (B/(l-a))mi(ei) in the denominator are related to the

9 zle 43X -gﬂ) 1_a_

number of times a particular location has been observed during the first
i observations. THe experiment locations ess i=1,2,...,n are subscripted
to indicate temporal position in the sequence (not observation location)
and each e; will be equal to some location 2=1,2,...,N. The counting
indices m;(2),-1 < m;(2) < i-1, for ¢=1,2,...,N, and i=1,2,...n are
employed to keep track of the number of times each location £ has been
observed up to and including the current observation, e;- After i total
observations, any particular location % can have been observed (mi(2)+1)
times where mi(l) =-1,0,1,...,(i-1). Thus, mi(ei) is one less than the
accumulated total of the number of times location e.=4 has been observed
during the first i observations. Any location & which hasn't previously
been observed must not be included in the denominator summation (which
represents the previous search history) so that m.(£)=-1 never appears in
the denominator by definition. Note that g: .(2)+1)=i; which expresses

=1
the obvious fact that each of the i observations was taken at some

location ..
The coefficient (B/(l-djm1(£)+1 in the numerator has a counting
index which is one greater than the largest coefficient m,(e;) corres-

ponding to location g which appears in the denominator series if
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location 2 has previously been observed. If location & has not been pre-
viously observed, then mn(z)Q-l. The numerator exponent (mn(£)+1) thus
represents the total number of times that location & has been observed

in the first n experiments.

One may note that the n terms in the denominator sum may be
reordered in a way which reflects point location correspondence instead
of their temporal position in the observation sequence. Assume locations

2=1,2,...,N have each been observed rn(l), r (2),...,rn(N) times respec-

N
tively in the first n observations where (> ri=n). Then
i=1
N r (.i)']. .
ié s (m(e;) " B \J .
(£ Vpgle) = Y (1) pp(1)
i=1 i=1 j=0

n
——~
—
[
[*2 N |
]
w
S
M=
e
p—
]
—
—
1 |
Q
~
-
3
~
| |
K=}
o
—
-
S

(2-14)
i=1
Incorporating this result in the above expression, one finds
r ()
) T )
pn(e-zlgn,gn—gﬂ)— v : s 2=1,...,N (2-15)
B rn(1)
> " gyl
1-a 0

which is an alternative way of expressing pn(9=2|--). Note that

rn(z)=mn(z)+1, £=1,2,...,N.
A similar result obtains for the posterior probability given n
consecutive "yes" observational responses, n=1,2,... . The general form

in this case is given below,



ey
r P
p(8=2le %=1 ) = (=) ; 3 -~ 5 221,2,. ..M
o 1- i1
[1—a-s+z(‘a‘) 1 po(ei} (2-16)
i=1

The interpretation of yi(ei) is similar to the previous interpretation
of the mi(ei); the index yi(ei), yi(e1)=-1,0,...$-L is employed to keep
track of the number of yes responses obtained at location e;=2 in the
first i observations. The value yi(z)=f1 does not appear in the denomi-
nator by definition. The notation once again emphasizes the sequential
nature of the responses. The terms may likewise be reordered to empha-
size the Tocation dependence of the observations. Assuming Tocations
2=1,2,...,N are observed sn(l), sn(2), cees sn(N) times respectively

in the first n observations, the posterior probabilities may be expressed

s 2=1,2,...,N (2-17)

The above results have assumed consecutive sequences of "no" or

yes" responses. The general experiment situation could have responses

of both types occurring in any sequence of n experiments taken at

experiment Tocations €15 €9y «.us €. The resulting posterior probabili-

ties,given the general experiment history ﬂn=(§ﬂ,§n),can be written in
the following two ways: the first form is descriptive of the temporal

dependence of the observations,and the second form descriptive of the

location dependence,



m(2)+l .y (2)+1
(6=1]e.»x.) perill R
Ppto= gy Xy )= n
PRE m:(e:) 1 o y.(es)
1- LB Sl T B T LT )
i=1
2=1,2,...,N
ral2) 1 g.5,(2)
(£ " TEHT gy
P, (6=tle %) = . s 2=1,2,...,N
B rn(1) 1- Sn(1)
2 T ERT )

(2-18)

The exponents mi(éi)’ yi(e.), r(2), sn(z) have the same interpretation

1 n

as for the previous results. The sum over g of the terms [sn(z)+rn(2)]

must add to n since every observation was taken at some location I

2=1,2,...,N and resulted in either Xi=0 or Xi=1'

N
[sn(z) + rn(z)} =n

2=1

(2-20)

One sees that knowledge of «,B8, sn(z), rn(z), and po(z) for 2=1,2,...,N

permits the calculation of the posterior probability vector En(9=2[--)

given n ovservations. Calculation of all previous sets of posterior

probabilities for observations e., 1=1,2,...,n requires knowledge of the

j

total previous experiment history (gn,zﬂ), including temporal order

however. The total number of possible histories hﬂ has previously been

noted to increase rapidly with the number of potential object locations

N and the total number of observations, n=j.



28

2.4 Proof of the Posterior Probability Expression for a General
Experiment History

The various general forms for the posterior probability vectors
have previously been stated and discussed but not proven. A proof of
the most general of these results will now be given. The case con-
sidered assumes a general experiment history hn’

THEOREM: The lth term (2=1,2,...,N) of the N element posterior
probability vector, Eﬂ(9|bn), given the general experiment history
hn=(gn,5n) and the discrete prior distribution By» is expressed by
equation (2-18) which was previously given.

PROOF: The proof will be by mathematical induction. The case
for a single experiment (n=1) and either observation x1=0 or x1=1 have
both been derived in detail at the beginning of this chapter. Both
results may be observed to conform to the general result given in
equation (2-18). Hence the contention is true for n=1.

Assume the result has been derived and shown to be of the desired
form for an arbitrary n-observation experiment history, bn=(§n’5n)’
Consider the possible elements, gn+1(9=k]-), of the (n+1)St probability
vector after the (n+1)St observation is taken at an arbitrary experiment
location, en+1=¢; 2=1,2,...,N. Two observational outcomes are possible.

Consider first the "no" result Xn+1=0' As has previously been noted

(see equation (2-1))

pn+1(e=k|§n ,en+1=9, ,i(_n ,Xn+1=0) =

(2-21)
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But pn(ki') and pn(£|-) have been assumed to be of the stated form.

Substituting into the above expression and clearing fractions results

in the following expression.

pn+1(9=kIgﬂ,en+1=2,§ﬂ,xn+1=0) )

s(k-2) m_(k)+1 y (k)+1
) & ERTT ppk)

[o]

Q.

1-a po(e-i T-a ‘1-a a PO(‘L)

B
1- 1-a-B§é(a;l)xi(lfa)mi(ei)(l-B)yi(ei) )_l-a-B( Ba)mn(2)+1(l:§)yn(gyl
i=1

(2-22)

Note that the denominator could be combined into a single sum of the

desired ifrm since €172 and Xn+1=0 imply that mn+1(z)=mn(2)+1 and
[(a-l)/a] "+1=L Furthermore, for the particular term @8=2 the Kronecker
delta has value unity so that the numerator becomes

m (2)+2 (2)+1
(=) " (l;—s)y" po(2) (2-23)

Since the (n+1)St observation at location en1=Y resulted in a no response,
Xn41=0» We observe that mn+1(2)+1=mn(2)+2 and yn+1(2)+1=yn(2)+1. Thus,

for 6=¢, the numerator also has the desired form. For 6=k#g, §(k-2)=0

so that the numerator of each of these (N-1) terms is unaffected by the
additional observation at location g, i.e. mn+1(k)+1=mn(k)+1. Incor-
porating these results into the above equation, one finds that
Pn+1(6=k|-*) has the stated form.

Consider now the case for the alternative, "yes," observational

response, X

(2-4))9

n+1"1e In this case, as has previously been shown (equation
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pn+1(9=k‘§_n’en+1=2’, —1) =

“n’ n+1
(2-24)

Again substituting p (k|-) and p (¢|) as above, one finds

Pre1(8=klensen, =X X0 4=1) =
s(k-2) (k)+1 y. (k)+1
1 B By N
=8 (j~—) (—5-) PO(R)
(e. . 1
1- . o-1 1 m i(eg) 1 g yiley) 1-g-, g \M(2)*1 1_g ¥p(Lk
Z( ) (EBTT gyl )+ (£8)" "py (2)
1 (2-25)
Noting that [- (li%iﬁ)(ﬁil) ] = l:%:ﬁ and observing several other results

paralleling those discussed in the previous case, one observes that the
response Xn+1=1 also results in posterior probabilities pn+1(9=k|-) of
the stated form.

Thus, assuming the general form for pn(9=kl--) one can show it
true for pn+1(9=j|"). Since the result is also true for n=1, then by
mathematical induction the result is true for all n=1,2,..., QED.

The special cases where a particular experiment outcome history
is assumed, X =6, for example, can be gotten as special cases of the
above general expression. Alternatively, the above proof could be
applied in a very similar manner.

This completes the discussion of the general and specific forms

taken by the posterior probabilities given a specific search history.
These results will be used in subsequent chapters.



CHAPTER III
DERIVATION OF THE OPTIMUM SEARCH POLICY

3.1  Introduction. and Statement of the Optimality Criterion

This section describes the major results which have been derived
in this dissertation. An optimum search policy is derived for locating
the true object under the optimality criterion and problem assumptions
previously discussed. The criterion employed is that of minimizing the
probability of obtaining n consecutive "no" responses for all n=1,2,...
while simultaneously maximizing the probability that the first "yes"
response will occur at the true object location. The stopping rule
employed is as follows; the object is declared to be found when the
first favorable response is received. Instrument parameter conditions
which assure the experimenter that the object can be correctly located
with any desired probability of success are also determined.

Expressions are derived for determining the average search duration.
Several example cases are evaluated for a uniform prior distribution. A
computational method is discussed for approximating the average search
duration to any desired accuracy for an arbitrary prior distribution.

The optimum search procedure which results from an optimization
employing the above criterion is as follows:

Always observe the experiment location corresponding

to the current most probable location*as determined by
the posterior probability expressions of Chapter II and
stop searching‘whenever a favorable response is received.

*
Ties are broken by employing a separate random device as
discussed in Section 3.2. 2
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This result is very similar to results obtained in several pre-
vious studies discussed in Chapter I where the special assumption of a
zero false alarm probability, a=0, was made. This chapter thus gener-
alizes these results to a#0 for the particular problem considered.

The basis for selecting the search optimization criterion given
above is based partly on the author's heuristic feeling that such a
search criterion is reasonable for many searches and partly because such
a choice significantly simplifies the form and réduces the number of past
histories which must be considered. The criterion may be argued as
follows: If the instrument has good statistical validity in the sense
that o and g are small* then a good search procedure should quickly dis-
card potential locations which initially appear highly probable but are
not the true location so as to arrive at the true but unknown object
location in a minimum number of trials. Since the probability of falsely
accepting an erroneous location is o, one obviously requires a to be
small if errors are to be minimized. Once the search procedure arrives
(specifies that an observation be taken) at the true location, a favorable
response will be observed with probability (1-g8). The probability of
observing a "yes" response at any of the other (N-1) locations is a so
that whenever the ratio (1-8)/(N-1)a is large compared to unity the above
criterion is a heuristically reasonable choice.

One should note that the results which will be obtained are exact
for any a,B<% so long as one accepts the above criterion. The choice of

criterion is not convincing, however, unless (1-8)/(N-1)a is Targe.

*The gualifiers "good" and "small" will be discussed in subsequent
paragraphs after the principal results are derived.
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If (1-8)/(N-1)a is not large the criterion will still have the
advertised properties but the probability of stopping the search at the
true object Tocation may not be satisfactorily large. An inequality
is given relating the instrument parameters (a,8) to the probability
of correctly terminating the search. The exact meaning of the qualifier
large will be examined after the derivation.

Selection of the instrument parameters (a,8) may not be totally
at the disposal of the experimenter so that the ratio given above need
not be large in all cases. However, assuming a fixed instrument the
above criterion is still useful, providing that the experimenter employs
the above instrument to localize probable object locations and then
switches to a second verification instrument (or second parameter set
(a,B) verification mode) to assure oneself that the declared location is
truely valid at some acceptable probability level. The above dual mode
search technique is typical of the assumptions employed for results pre-
viously derived for the communications search problem which will sub-
sequently be considered. See for example the article by Bohacek (14).

The problem considered assumes that there are N potential object
locations. Only one location may be observed for any one experiment.
The experimenter is assumed to have complete freedom in the choice of
which location is to be observed for each of the experiments. Each ex-
periment performed is assumed to be a simple hypothesis test having
identical, known characteristics which are independent of both the loca-
tion observed and the temporal position of the observation in the sequence
of observations.

Each experiment yields two types of information, the outcome of

the experiment and the 1ocatioh where the observation was taken. This
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information, plus knowledge of the o and 8 error probabilities comprise
the result of an experiment.

The total accumulated experiment history, hﬂ, at any point, n, in
the search is represented by knowledge of which locations have been
observed, the order of the observations, and the responses received at
each. As has been shown in Chapter II; the above information may be
employed in combination with the a priori probabilities to compute the
a posteriori conditional probabilities associated with each of the N
locations after an arbitrary number of search steps. The a posteriori
probabilities associated with locations 2, 2=1,2,...,N after n obser-
vations are written

Pa(2le,sx,)

where the prior experiment history is denoted bn=(e

—n’zn) and

e, = (el, €5 wuns en) s Xp = (Xl’ Xos oo xn).

Each experiment location corresponds to one of the potential object

locations,

e. = 2 for some &

j 1,2,...,N.

The analytical advantage of the assumed criterion is great since

the observation history can now be specified to be of the form

X (0,0,0,...0,1) at the point when the search is terminated and

5j (0,0,0,...0) at any previous time, j <n. Determining the optimum
search procedure consists of determining the optimum experiment sequence
gn=(e1,...,en) for all n.

A prior distribution po(z), 2=1,2,...,N is assumed known and of a

general discrete form. It will also be assumed that the prior distribution
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has been initially ordered in terms of nonincreasing probability values,

po(l).ipo(Z) > ... 3_p0(N).

3.2 Proof of the Optimum Search Policy

The optimum search policy for the criterion outlined above con-
sists of always selecting the next experiment location such that it
corresponds to the potential object location which is currently most
probable as based on tﬁe prior distribution and previously obtained data.*
The posterior probability associated with each location may be computed
sequentially from the posterior probability expressions of Chapter II.

The search is terminated whenever a "yes" observation is obtained. The
search policy so defined is heuristica]]y very satisfying since it
corresponds both to intuition and previous results derived for related
problems for which, o=0.

This section presents a proof of the above result. The proof is
not very compact since a good deal of explanatory material is interspersed
in the presentation.

THEOREM: Assuming a given prior distribution, Py> and known
instrument parameters (a,B) the éxperiment sequence e, n=1,2,..., which
minimizes the probability of obtaining n consecutive unfavorable responses
and simultaneously maximizes the probability that the first favorable
response is obtained at the true object location is the set €ss i=1,2,...,N
such that each of the experiment locations e, which are sequentially
selected correspond to the a posteriori most probable location given the
previous search history h, ;=(e._;.x;_;), that is

81- = {2|P(2|§1_1,2§1_1) = g‘g)]f Np(‘]|91-1’£1-1)}’ i=1,...,n (3-1)

*
Ties are discussed below.
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In case of ties, one of the locations is randomly selected by employing
any stochastic device which assigns equal probability to each of the
tied locations.

The proof will consist of two parts. The first proof determines
the experiment sequence which minimizes the probability of obtaining n
consecutive "no" responses. The second portion of the proof consists
of showing that this result also simultaneously maximizes the probability
that the first yes response will be obtained at the correct location.

LEMMA: The choice of experiment locations [ n=1,2,..., which
minimizes the probability of obtaining n consecutive "no" responses is
that given in the above theorem for all n.

PROOF: Denote the conditional probability of obtaining n con-
secutive no responses given the experiment history, e, as p X = l

This probability may be written in an expanded form as the pro-

duct of n previous conditional probabilities (see for example Parzen(15)),
(xp=¢, len)=p(x =0le e, 17 POk q=0ley o8y 50Xy o7t p) -

0|e2,e1,x =0)p(x O|e ). (3-2)

The true object location will be denoted 6 where 8=2 for some 2=1,2,...,N.

The proof will proceed by mathematical induction. Consider n=1. Then

P1(x=0]e;=2)=[p(x;=0]e;=2,6=2)p(0=2]e,=2)+p(x,=0]e =2,072 {072 |e, _i)] |
3-3

One notes that p(x O|e =2,0=2)=g and that p(x Ole =2,0#2)=(1-a), where
these conditional probab111t1es depend only on the instrument parameters
and ~xperimental conditions. Similarly, since the true object location

does not depend on the choice of experiment 1ocat10n[%f9=2|e1=2)=p0(2)

and pd@#2|e1=2)=1-p0(2). Hence
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p,(x;=0le =e) = [Bpg(2) + (1-a)(1-py(2))]

- (1-0-8) [525 - py0)] (3-4)

The experiment location, e1=2, which minimizes this expression may be
noted, by inspection, to be the location corresponding to po(l) the
a'priori most probable location.

Consider the case for n=2. While this case is unnecessary to

the proof it does yield additional insight into the form of the general

result. It is included for this reason. From above
P,y (x,=0]e,) = p(x,=0]e;,e,,x,=0) py(x,=0]e, ). (3-5)

(Note that the general expression for the rightmost term has been
determined above.) Consider the term p(x 0|e1,e2,x =0) which may

alternatively be expressed
(x2=0|e1=2,e2 O) =p(x »,=0le;=2,e,=k, ,x1=0,8= k)p1 B=k|e;=2, X1 =0) +

=0) (3-6)

(x2=0|e1=2,e2=k,x1=0,G#k)pl(G#k|e1=2,x1

Once again this may be written in the alternative form

_ _ _ Ny _ 1-a _ _ ey
(xp0 ey, =2,x,70) = (1-a-g)| 7% py(0Kle,=2,x,0)]  (3-7)

where p1(9=k\e1=2,x1=0) represents the posterior probability associated
with location k, k=1,2,...,N. given that a no response, x1=0, was observed
at experiment location €74 The posterior probability expressions for a

single observation have been developed in Chapter II and shown to be
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s(k-2)

(1=5) po(K)
(6=kley=1x,70) = 11152 I
o ™ ")

(3-8)

where §(k-%) denotes the Kronecker delta function. Substituting (3-8)
in the above expression (3-7) results in the following equation,

- s(k-2) )
il ) (3-9)

- - B
(x,=0le,=k,e1=2,%,=0) = (1-m)<1‘°"8 Polt) - 1
[Tl_a%e' - po(")]

Q

Note that the denominator of this result is within a constant of being

equal to the term p1 0|e Thus, from equation (3-5) the proba-

bility of obtaining two consecutive no responses may be written

(k- z)
p2(§2=$2‘e1=23e2=k) = 1 0'3) 1 a)( 1-0-8 [p0(1)+'1_ k) >
' (3-10)
"~ Note the summation form representing the experiment dependence. Mini-

mizing the result is accomplished by selecting experiment locations 2

and k which will maximize the pair of terms in the inner bracket.

i 8 s(k-2)
min [pxp=gp| )] maX[Po (15 po(K)] (3-11)
e1=JL ey =9
e2=k 92=k
2’k=1’2""’N R,k=1,2,..,,N

One notes that both terms in the sum refer to prior probability values
and that po(l) 3'p0(1) ¥i#l so that 2=1 is one of the two selections.

One would then select k=2 if p0(2)> Lfga)po(l). Otherwise k=1 would be
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observed a second time since (T§50p0(1)3_p0(2y Any alternative choices

can be observed to be no better at best since py(3) < py(2).

8 §(k-2)
Since [(T:a) po(k)] is within a scale factor of equalling

the corresponding posterior probabilities pl(k|e1=2,x1=0) for k=1,2,...N
given the first experiment one notes that selecting observation locations
which each correspond to the current most probable point will simul-
taneously minimize the probabilities of obtaining both one and two
consecutive no responses.

Note too that the resulting probability of obtaining two consecu-
tive no responses, p2(§2=ge|..), is independent of the order in which the
two experiments locations & and k were selected. Simultaneous minimiza-
tion of both p1(§1?31|..) and p2(52=92|..) is not independent of order,
however, except for the special case 2=k.

The proof proceeds now by mathematical induction. Assume that
the probability of obtaining (n-1) consecutive no responses has been
determined to be of the following form and further shown to be minimized

by always observing the experiment location corresponding to the current

most probable location.

n-1
pn_l(zn_fgzn_llgn_1)=(1-a-s)~(1-a)"'2{1};‘f8 - ZKipO(ei)] (3-12)
i=1

In this expression the constants Ki are all of the form
Ki=(8/ﬂ-a»mi(ei), mi(e1)=0,1,2,...,i—1. The sum contains (n-1) terms

representing the experiment location history through Each term

En-1°
employs a prior probability po(ei) corresponding to the particular

th

location which was observed in the i~ experiment e;=2, for some

2=1,2,...,N. Since e, is a temporal indicator, e, and ej,jfl, may or
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may not refer to the same location 2. The constants Ki account for
multiple observations of the same location & and were discussed in
Chapter II. The first observation of each location 2=1,2,...,N will
employ m(2)=0, the second m(g)=1, etc.

Before proceeding with the proof, several observations will be

made aboutnEQe nature of p__,(x. 1=¢. e, ;). The terms in the partial

sum, Sn'1=i§£ Kipo(ei), may be observed to be simply related to the
corresponding posterior distributions for experiments €585+ 5€ 1.
Recall from Chapter II that the posterior probability associated with
each of the N locations after j unsuccessful experiments 5j=9j’ j=1,2,..

may be expressed

m.(2)+1
1-o T—BE ’ pO(Z)
PJ(Q—SLIQ\],LJ-QJ) = (1‘01'8) 3 £=1,2,...,N
[1};?3 - Z Kipo(ei)] (3-13)
i=1

where (mj(z)+1) is equal to the total number of previous observations of
location & in the first j trials and is independent of when they occurred.
Observe that the largest exponent in Sn-l which refers to location & is
one less than (mj(£)+1). Note that the posterior probabilities are all
equally influenced by the previous experiment history via the denominator.
Hence the relative values of the probabilities at any stage j after j
unfavorable responses are independent of the scale factor and depend on

only the associated prior probabilities and the number of observations

at each location,

p(O=slessx=e;) o [mile)-mi(k)]pg(n) 14
p(8=ke;>x5=9:) (1 oK) -14)
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The sequence of observations which maximize the partial sum Sj
and hence minimize the probability of obtaining j consecutive no responses
(and also coincidentally maximize the denominator of pj(9=ml..) above)
may thus be easily predicted. Consider the N infinite geometric
sequences s shown below, each of which may be generated from the cor-
responding prior probability po(l) 3_p0(2) > ... Z.PO(N)-

= B 8 2 B8 k
s, = (pg(1), (£pg(1), (7 po(1)s s (15 pp(1), -0

(pg(2)s .. , (15 py(2)s .o} (3-15)

sy = (pN)s ... s (12 M)y o)

The partial sum, Sj = iil Kipo(ei) may be noted to be the sum of
any j terms selected without replacement from the above N sequences under
the condition that each new selection is the leftmost term remaining in
the row (experiment location) selected. Maximizing the partial sum Sj
is thus equivalent to selecting the j largest terms in the above array.

A single nonincreasing infinite sequenée can be constructed from
the above N sequences by first selecting (without replacement) the
largest value from the above array (po(l) by the previous order assump-
tions), then the next largest, etc. Ties are broken by randomly
selecting from the subset of points having equal value. Any random

device which assigns equal probability to each of the tied points may be

used. Once selected, the term is removed from consideration.
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Having constructed such an ordered sequence one notes that a re-
lated sequence of experiment locations may be derived from it. As an

example, consider the experiment sequence e implied by the sequence P

shown below,

P

(g(1)s Pg(2), Py(3)s (E)pg(1), pg(8), oon )
(3-16)

e {e1=1, e2=2, e5=3, e,=1, e5=4, cee }

The order in which experiments should be performed to minimize the
sequence pj(5j=gd|gj) is thus specified by the associated sequence P,
and is entirely predictable for the criterion under discussion.

Continuing now with the proof of the Lemma, recall that both the
forh of pn—1(5n=9n-1|§n-1) and the terms in the partial sum S _, have
been assumed to be specified as elaborated above. Furthermore it is
assumed that these choices minimize p__;(x _;=¢, ,le, ;).

The remainder of the proof requires a demonstration that the pro-
bability of obtaining n consecutive unfavorable responses has this same
form and further that the sum S includes all terms in S, plus an addi-
tional term which is proportional to the maximum a posteriori probability
Pn(6=2lensx,=e,) |

We note that the probability of obtaining n consecutive no

responses, p_(x =¢ |e ), may be written in the equivalent form,
n*=n *n'=n

P(Xp7eqlen) = pOx=0ley poepsx 178y )Py (X 178y gl 1) (3-17)

The first term in the above product may be written
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—0|e _1°8 X 170 1) p( Xq 0|e -1°%p7% 8=2,X 1=$ﬂ_1)'
pn_1(9=2|gﬂ 2Xn_1"0n- 1) + p( Xn 0| _1°82 072, X0-1"8n- 1)
1(672ley 1o, =0, 1) (3-18)

But this may be observed to be of the same general form as the result of

equation (3-7), namely

p(xn=0Ign-l’en=2’5n-1=$n—l)=(1—a'8)[T%égﬁ"pn-1(9=2‘gn-l’én-1=¢n-1)}
(3-19)
Then, from the equation (2-13) of Chapter II the a posteriori probability
associated with points &, 2=1,2,...,N given the experiment history

h,_1=(e,_15¢,.1) may be written in the following form,

m,_4(2)+1
N ple)
pn_1(9=2|e -1%0-1"%p- 1)- 1 e g —3 s 2=1,2,...,N
1-a
[1—::-8' Kipo(ei)] (3-20)
i=1

Recall that the numerator term (Bll-a)mn'1(2)+1p0(2) refers to the |
lTocation & where the nth experiment e, will be performed. The exponent
m._1(2), 0 <m _4(2) <n-1, has a value one less than the total number
of observations taken at location &£ in the first n-1 experiments,

gn_1=(e1,e2,...,en_1). If Tocation 2 has not previously ?Eizlobserved
m
then mn_1(2)=-1 as previously noted, implying (g/1-o) n-1 =1.
Combining the last two major equations given above one arrives at
the following expression which denotes the probability of obtaining a no

response on observation n given the specified history,
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(2)+1
[1«;— ZKPO‘E)HB)nl Pl )]
_i=1

[M- z KiPo(ey )}

P(x,=0le,_;:€,=2:%, 128, 1)=(1-a)

(3-21)

Finally, this result multiplied by p _,(x ;=6 _;le, ;) as indicated in

(3-17) yields the desired expression,

mn-1(2)+1
Py (X =t |e,)=(1-a-8)(1-a)" [1 - z KiPgley) - (1) " po(z)J

(3-22)

m._q(2)+1
By interpreting (g/1-a) Po(2) as the general term K.Po(ep)
since mn_1(2)+1=mn(m), one notes that the probability of obtaining n

consecutive no responses has the desired form as indicated in equation

(3-12),

P, (%70, 1€, )=(1-a-g) (1-a) " [1 Z K;pg(e; )} (3-23)
Furthermore, oné sees that Sn=Sn_1+(8/1—a)mn_1(2)+1p0(2). S, can be
maximized by selecting an experiment location e =L which will maximize
the final term. The best one can do to maximize S, is to select the
next term appearing in the ordered sequence P since all larger terms have
already been selected. Other rearrangements or alternative choices for
the elements of Sn may do equally weli but none can result in a larger
value for Sn.

Thus, by finite induction the above expression represents the

probability of obtaining n consecutive no responses for all n=1,2,... .
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Furthermore, the specified choice of experiment locations minimizes
the above probability for every n. This completes the proof of the
Lemma.

Since the search process ends with the first yes response for the
assumed criterion, one is obviously interested in following an experiment
sequence which will maximize the probability that the first yes will
occur at the true object location. The following paragraphs are devoted
to demonstrating that the experiment sequence derived above as an
optimum for minimizing the number of sequential no responses has simul-
taneously served this desiderata for all n.

LEMMA: The probability that the first yes observational response
will occur at the true object location is maximized by selecting the
experiment sequence [ n=1,2,... which always observes the location
which is a posteriori most probable prior to the observation in question.*

PROOF: The probability that the first yes response occurs at

experiment n and that e, is the true object location will be denoted,

pn(gn_1=gn_l,xn=1,e=zlgn_l,en=z). (3-24)
This result may be written in an alternative form in terms of previously
derived results,

Pr(Xn-170n-12 %y~ 1072 lep= (e, 150))=p(x=110=00e, joe=hox, =0y q)-

Pn-1(8=2len_yoe0=axy 1=, )Py (X0 1700 1180-128072)

(3-25)
Eliminating independent conditioning statements this may be written in

terms of known expressions,

*
See previous comments about methods for breaking ties.
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Pr(Xn- 178X =102l ep=(ey _150))=(1-8)p,_(B=2le, ;.x, 120y q)
Pn-1(Xq-1720-1180-1) (3-26)

= )m"'1(2)+1 (5)
T-o Pl
=(1-8) (722%5) —=¢ O (1-0-8)(1-0)" 2{1 = }5 K;Pole ]

{1«1- 2 Kipg(e

Simplifying, the desired result is given by

m _.(2)+1
p (X, 176n_1o%, =102 le =(e, 1,2))=(1-8) (1) (N T ()

n=1,2,...
or ) m (2)
= (1e)(1-a)" T ()" Tpg(a)  neli2,. (3-27)
o
This expression represents the probability that the first yes will be
obtained on the nth experiment, e =%, and that it will occur at the
correct location. This result assumes a value of mn_1(2)+1 equal to the
total number of times location % has been observed during the fifst (n-1)
experiments. Since e =4, (mn_1(2)+1)=mn(2). The above result is con-
ditionally maximized, given €1 and Xna1"8n-1° by observing the location
e =L corresponding to the largest posterior probability.
The probability that the first yes response will occur at the true
location, independent of when it occurs, may be obtained by summing the

above equation over all n. Let P_ denote the probability that the first

yes occurs at the correct location, then

> . .(e.) > .
p(16) S (1-0) ") pte)=(18) D (1-0) " He;pgle;)  (3-28)
i=1 i=1
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It is apparent that the above sum is maximized by always selecting the
experiment location corresponding to the largest remaining relative pro-
bability, Kipo(ei). Except for the addition of the geometric weighting
function (1-&)1—1 the terms in this sum are identical to those in S.

The effect of o and 8 on P_ may be noted in the above expression.
The multiplicative factor (1-8) influences the total sum no matter what
the value of « or the form of the prior distribution. Similarly, «
influences the result but more strongly for a uniform prior distribution
than other alternatives due to the geometric weighting (1-a)1_1. Note
that the sum may be easily approximated by a finite sum for any numerical
problem since all terms are known. Furthermore the error can be bounded

above since all terms ijo(ej) f_KnpO(en) for j> n if the optimum search

policy is observed. Thus

P, =P, + (1-8) z (1-0)""1 K;pye;)
i=n+l

_gy{1=0)" i
Pa< P, <P+ (1-g) - Knpo(en) - (3-29)
Pn< Pw< Pn + €

where € represents the error bound and can be made as small as is
desired by increasing n.

The partial sum for i=1 to i=n, say Pn’ represents the probability
that the first yes occurs in the first n observations and that it occurs
at the correct location. Pn thus represents the probability that the
search will terminate correctly at the true object location in n or

fewer observations. A plot of Pn vs. n would thus represent a cumulative

probability of correct search termination.
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3.3 Properties of the Optimum Search Policy, Computational Approxi-
mations, and Instrument Parameter Conditions

As an example of the computations required to approximate P_
consider the problem illustrated in Table 3-1. The example assumes
a=0.05, 8=0.1, N=10 and a nonuniform prior distribution as shown. For
the problem parameters given the sum of the first twenty terms is a

good approximation to the probability of correctly terminating the search,

P_s namely
P, < Pyy + (1-) (1;“)20 Koo Poles0)
P_ < .83646 + .01072

or .83646 < P_ < .84718

Thus, the sum of the first twenty terms gives an estimate of successful
search termination which is in error by slightly more than one percent.

A closed form expression for P_ may be determined in the special
case of a uniform prior distribution if the optimum sedrch policy is
followed. In this special case search orders which observe each location
i times before any other location is observed (i+1) times, i=1,2,...,

are equivalent.

Assume a search routine where each location is observed in numeri-
cal order 1,2,...,N until all have been examined and then the routine
begins anew in the same order as initially. The search continues until
the first yes occurs.

For the above search procedure and a uniform prior distribution
a closed form expression may be derived for the probability of correctly
terminating thé search process. The result, denoted Pg, is derived in

Appendix A and may be shown to be,
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PU - 1"8 [ 1 - (1-0!.) } (3_30)
= Neo 1y o g1-a)d

This result can usually be made as close to unity as one desires

if @ is selected to be small enough. For Ne<<1 and 8 not unity

One observes from this approximate result that a condition may be
developed specifying what is meant by a "large" value of the quantity
(N-1)a/(1-8). If the experimenter can specify a satisfactory value of
Pi, the above expression may be employed to find instrument parameters
(a,8) which will be acceptable. Any nonuniform prior distribution will
result in a larger probability of successful search termination. This
result is discussed below. Equation (3-30) could also be used for this
purpose but with greater difficulty. Note that the controlling instru-
ment parameter is o, the false alarm probability since the last term is
relatively insensitive to g over a wide range of g for small values of
Na. The product (N-1)a may be interpreted as the average number of false
alarms which occur in a complete search of N cells.

Assuming the same parameters as for the previous example, N=10,
2=0.05, and 8=0.1 but a uniform prior distribution the probability of
successful search termination is less than it was for the nonuniform
case, namely P:=0.77086 as compared with P20=O.83646.

Figure 3-1 illustrates P: vs. o for the case N=100 and assuming
both a=28 and 0=0.58. The relative insensitivity of P: to variations

in 8 is also indicated in Figure 3-1, at least over a range of four in 8.
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Any known nonuniform prior distribution will result in .a probabil-
ity of successful search termination which is always greater than that
determined for the uniform distribution provided the optimum search pro-
cedure is followed and the search parameters a,8, and N are identical.
This result is a natural consequence of the geometric weighting of terms
in P_. The first few terms Kipo(ei) i=1,2,3 are most influential if the
optimum search procedure is followed. Increasing the value of the first
few terms at the expense of later ones increases the value of P_.

One may also be interested in assuring that the posterior proba-
bility associated with the location which has been observed always
exceeds a specified probability standard PS whenever the first yes
occurs, where 0< PS< 1. This may be assured by appropriate selection of
a,B for any PS and N (providing of course that a,8 are at the experi-
menter's disposal). Given any search history of consecutive no responses,
bﬂ_1=(gﬂ_1,gn_1), the worst case a posteriori distribution for exceeding
PS would be uniform; in this case pn—1(1)=pn-1(2)='"=pn-1(N)= %n

A yes observation at experiment location en=2 would enhance the

observed location in the following manner as previously determined (see

equation (2-4)),

(d=8y 1
_ _a a ' N
Py(2) = 1005 . T (3-33)
l-0-8 N
The condition pn(z) > P, implies the following inequality relating
asB,N, and PS-
- (1-pP.)
%‘_B@ <=5 (3-34)
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This inequality implies a condition very similar to that previously
noted for assuring successful search termination. One again notes that
the critical parameter for satisfying this inequality is the probability
of false alarm, a. |

If the experimenter requires that a single yes be sufficient to
cause a worst case initial probability of 1/N to exceed Ps’ then for
given N, suitable instrument parameter combinations (a,8) may be chosen
to satisfy the above inequality. For example, with N=100 and Ps=.99
the ratio (a/1-8) must be less than 1.02x10'4. With the special condi-

5 and o 5_10'4. For these same

tion 28=a this implies that g8 < 5x10°
choices of a,8 and N the probability of correctly terminating the search
fora uniform prior is Pg=.995 although this result is not plotted in

Figure 3-1 because of scale limitations.

3.4 Probability of Termination in n Experiments

Another property of interest for the optimum search algorithm
described above is the probability that the first yes is obtained at
stage n after (n-1) consecutive no responses. This result will indicate
the probability of terminating the search at stage n irrespective of
whether the nth experiment is performed at the correct location. This
may be alternatively described as the probability of terminating the
search at stage n irrespective of whether the termination is correct or
incorrect.

Denote the probability of obtaining the first yes observational
response on experiment n and at location e, =% in the following manner

where gn=(gn_1,z).
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Pr(Xn1780-1>%=Llen)=P(xp=1leux, y=en 1)pp 4 (X 170, 1 len 4)
=[p(xn=1‘En-1’en=2’9=“’l‘n-1=i‘ln-1)pn-l(":’“lﬁn-rin-fin-l)
IR TCNCE R RN LR I ERPR e
Pr-1(¥n-17¢n-1180-1) (3-35)
Substituting in terms of previously derived expréssions, this becomes

o + (1-0-8)py(2)] , n=1

[a + (l-a-B)pn_1(9=2|§_n_1,§n_1=jln_1)}(l-a-B)(l-a)n-z .

1-a _ )
{-1-_(,—_8-- . Kipo(ei)] s N=2,3,... (3-36)

Employing equation (2-13) and clearing fractions this expression may be

written in the form,

"~ Mp-1(2)+1
= a(1-0)"?(1-a-8) { z ] (1-0)" 1 (1-0-8) (£ pg(llz) |
= n=1,2,3,...  (3-37)

m._q(2)+1
where [s/(l-a)] =Knp0(en) by the previous definition. The above

expression, and the equivalent results shown below, represent the proba-
bility of terminating the search at experiment step n, with no conditioning

as to the accuracy of the termination decision.

Py (%1780 2%y =11 (8, _152))=0(1-0) "2 (1- a-s>[l L ZK Pole; )]

(1-0-8)p X0 1 .Qn 1,X 1 0= zle (en 1’2,)) n=1,2,... (3'38)
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QEB{“(I'B)( )" 2(1 ~a-p ‘ZK Po (e )>

(ln 1—¢ 1’x 1’g=1|(2n-1,2))} ; n=1,2,... (3'39)

- - _ 1
(-)-(-n-l_in-l’xn-l’ lgn)_

The last equation shows the relationship between correct search termina-
tion at stage n and incorrect termination at this same stage since the
term p(x _158n-12%" 1 8= mle = _1,£)) represents the probability of
correct termination. The result also coincidentally illustrates the

fact that the optimum search policy minimizes the probability of erroneous
termination for every n. This may be noted from the inclusion of the
partial sum S, in the first term inside the brackets. Since the

optimum search policy maximizes Sn-l’ it will also minimize this first

term for every n.

The probability that the search will terminate on or before

stage n is the partial sum of the first n such terms, say Pn',

P '= 1‘““*)2( 1-8)(1-a)J"1 [1 " z KiPo(e; )}

Px; 1785 15%571,0=2] (e 1,2))> (3-40)

The form of Pn‘ may be simplified by interchanging the order of the
double summation term, performing the inner sum using the book by
Jolley (16) and combining several other terms in an appropriate manner.

The result is derived in Appendix A and shown below.

Py = 1=(1-a)" + (1-a=8) (1-)"1 > Kipy(e;) (3-41)
i=1
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The above expression can be easily evaluated for any number of search
steps, n.

Employing the example previously illustrated in Table 3-1, the
probability of terminating the search in n=20 or fewer experiments may
be easily calculated. The result, P20'=O.99603, is somewhat greater
than the equivalent probability of correct search termination,
P20=0.83646, as it must be.

The probability that the search process will ultimately terminate
is unity as one would expect. This may be most conveniently noted by
observing that the probability of obtaining n consecutive no responses
(equation (3-23)) is the product of a monotonically decreasing function
which is going to zero multiplied by (1—a)n which also goes to zero
with increasing n (for nonzero o). Hence the probability of obtaining
n consecutive no responses approaches zero as n increases without limit.

For the special case of a uniform prior distribution the expréssion
for Pn' may be simplified. Writing the sample size as n=rN+s, where
r=0,1,2,... and 0 < s < N-1, the probability of search termination on or
before experiment n, denoted Pn', may be expressed in the following
forms (see Appendix A for the proof),

e 1 ) () o - 3 Ut (3-42)

or equivalently

u' - -0

Because of the order of the search procedure and for large n,r is approxi-
mately equal to the number of observations of the true location and n-r

the number of observations of other locations.
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3.5 Average Search Duration for the Optimum Search Policy -

Having derived the probability of terminating the search procedure
in exactly n experiments one can use this result to find the average
length of the search, L. The average search duration is obtained by

performing the following summation,

L= ES 3 p(xg=laxs =05 qles) (3-43)
j=1 :

Substituting from equation (3-36), interchanging the order of the double
sum term, and performing various algebraic simplifications, one arrives
at the following expression for the average search duration. The proof

is also given in Appendix A.

L= 1{1-(ee)- D (1) T2 Kypglep)] (3-44)
i=1

In the special case of a uniform prior distribution the following

equation results.

U1 1 [ 1-(1-)"
L” = =|1-(1-a-B) (3-45)
= cxl: ) Na [I-B(l-a)N-l]}

For the example of Table 3-1 which has previously been considered the
average duration of the search is L=4.161 experiments. This result
assumes a summation truncated after 20 terms and hence will be slightly
larger than the true value.

If one employed a perfect instrument and observed the locations
in order of decreasing pridr probability values the average search dura-
tion would be 3.8 experiments. In the second case the search duration is

related to the average object location within the specified search order.
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A perfect instrument correctly locates the object every time the oppor-
tunity arises but several experiments are required, on the average, to
arrive at the true object location. The numerical difference between the
average search durations for the cases may be considered a "search excess"
caused by the imperfect instrument. The probability of successfully

consummating the search is also different for the two cases as has pre-

viously been noted.

3.6 A Hypothesis Test for the Case of No Object

In some instances the experimenter may be uncertain as to whether
there is an object located within the N location search space when the
search is undertaken. This case was briefly discussed in Chapter I.
When no object is present, the nature of the search policy discussed
above assures the experimenter of erroneously locating an object if he
does not truncate the search procedure after a finite number of steps.
The above results may be employed to determine an experiment truncation
point, n, at which the experimenter is willing to claim that no object
is present and yet be réasonab]y certain of finding it if it is there.

If no object is present the search policy employed has no effect
on the probability of erroneously locating an object, denoted Pi, since
all locations appear identical. The probability, Pﬁ, may be simply ex-
pressed in terms of the instrument false alarm probability, a, and the

number of experiments, n, viz.,

el (1-a)" (3-46)

The experimenter would obviously like to make this probability small if

P

there is a reasonable chance of no object being present. This implies

choosing n to be small.
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However, from equation (3-28) representing the probability of
successful search termination, Pn, one sees that Pa increases with n.
The experimenter must thus weigh the two alternatives and select a value
of n accordingly. For the example of Table 3-1 with an instrument
parameter 0=0.05 and selecting ten experiments, n=10, the two proba-
bilities of interest have values PEO=0.40126 and P,,=0.69843. The
importance of employing an instrument which has a small false alarm pro-
bability, a, is apparent from the example. If the experimenter was
forced to employ the stated value of a the number of experiments performed
may well be reduced below 10 to further reduce the probability of falsely
claiming an object to be present. The probability of successful search

termination assuming the presence of an object will unfortunately also

be reduced.

For the case in which the experimenter has some option about the
instrument parameter set (a,8) which is employed, the value of a may
be selected to achieve a satisfactory probability of erroneously
locating an object in n experiments, PE. Figure 3-2 illustrates the
improvement in Pﬁ caused by reducing a for several values of n. For
the range of values P§< 0.1, Pi = na is an excellent approximation as
may be noted. Small values of P& thus imply small values of no. By
using «=0.005 instead of «=0.05 in the above example the probability of
erroneously locating an object in n=10 experiments is reduced to a more
respectable value, PEO=0.05. The same change is also beneficial in

increasing Pn so long as the probability of false dismissal remains the

same, B=0.1. For the example distribution of Table 3-1, P10=0.8506
for «=0.005.
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It is not usually possible to treat the instrument parameters o
and B as independent quantities as has been done above. In many
instances a and 8 are directly related so that decreasing a simul-
taneously increases B. In such cases o and 8 can only be decreased by
increasing the number of observation samples (sample size) employed by
the instrument for each preliminary hypothesis test. A particular

example of such practical considerations is illustrated in the next

chapter.



CHAPTER IV
A COMMUNICATIONS SEARCH EXAMPLE

The results given in Chapter III can be applied to search problems
of many different types as was indicated in Chapter I. As an illustra-
tion of such an application the author has selected a communication
system search problem. The preceding search results will be applied to
this example. The example chosen is of interest in several areas of
digita1 data communications, particularly for interference resistant
military communication systems and multiple user satellite communications
systems employing code division multiple access techniques to separate
the user signals from one another.

For systems of these types the transmitter employs a specially
constructed binary code sequence to scramble and significantly increase
the redundancy of the radiated signal. The signal alterations are per-
formed in ways which are known to the intended receiver and hence can be
neutralized by him in a useful way.

A major difficulty encountered in using such signal structures is
that of initial synchronization. The receiver must locate the time ori-
gin of the received scrambled sequence before its effects can be
neutralized. (The frequency and phase of the waveform may also be
unknown in some cases, further complicating the problem.) The receiver's
privileged information concerning the redundant signal structure is of
value only after he has ‘located the correct time origin since this

information is necessary for proper system operation.
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Random disturbances of the separate timing clocks employed

by the transmitter and receiver, plus signal propagation time uncertain-
ties caused by the intervening propagation medium prevents the receiver
from knowing the time origin and forces him to search through a bounded
uncertainty region until he locates the appropriate signal epoch. This
problem is frequently modeled in terms of the general search problem
previously discussed. A description of the relationships befween the
technical aspects of this special search problem and the search
parameters a, 8, and N as discussed in this thesis are thoroughly de-
scribed in the previously referenced dissertation by Bohacek (14) and a
related paper by Selin and Tuteur (17). The problem model suggested in
each of these studies fits naturally into the framework of this disser-
tation and will be employed.

In this context, the receiver performs an experiment by
selecting one of the N potential signal parameter sets and employing the
signal corresponding to it in an instrument (detector) which performs a
simple, fixed sample, hypothesis test on the received signal. It will
be assumed that the receiver employs ideal noncoherent detection of a
known signal combined with additive white normal noise to perform the
preliminary decision making function (experiment); For this case the
design of the instrument and the expressions giving the resulting con-
ditional error probabilities o and 8 are well known, see for example
Van Trees (18). The technical parameter of interest for this problem is
the energy to noise density ratio, denoted d2=(Er/N0/2). The numerator
of this ratio represents the total received signal energy Er upon which
the preliminary decision is based. The total energy Er is simply related

to the average received signal power, S, and the duration of the
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experiment, T; namely Er=ST. Average power ‘isordinarily a constant for a

particular search and depends on the equipments involved and the problem
geometry. The experiment duration T may be considered to be at the
disposal of the experimenter and is related to a distribution parameter
of the test statistic employed. The fixed preliminary test assumptions
of Chapter I thus implies that T be constant for all experiments; its
value may, however, be selected by the experimenter before the search
begins. The noise power density, No/2, may be shown to be equal to the
variance of the additive, zero mean, normal noise assumed as a condition
of the problem. The noise spectrum is assumed flat and located in the
detector bandwidth of W Hz with W=1/T for all T so that WT is a
constant, WT=1.

The above assumptions and conditions imply that the ratio d,
called the performance index, is a constant of the instrument once T is
seiected. Furthermore, each value of d constrains the parameters (a,8)
to have a fixed and known, although complicated, relationship to one
another. The functional relationship between o énd g for contours of
constant performance index, d, is illustrated in Figure 4-1. fhis figure
is adapted from Figure 4-58 in Van Trees and is usually called the re-
ceiver operating characteristic.

This illustration merely indicates the fact that decreasing B
increases o and vice versa for a fixed test distribution. Changing the
experiment duration (prior to the search) corresponds to selecting a
different contour for the experiments.

The hypothesis test which results for the above problem has a test
statistic which has a central X2 distribution with 2 degrees of freedom

for locations not containing the object and a noncentral X'2 distribution
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[1- pgl—

Figure 4-1. Receiver Operating Characteristic, (1-g)
vs o for Constant Performance Index, d
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with 2 degrees of freedom for the true object location. The noncentral-

lity parameter A may be related to the previous technical parameters,
namely A=2Er/No=d2. The conditional error probabilities a« and B are
thus integrals over appropriate regions of the real line as determined
by the experimenter's choice of decision boundary (or threshold). The
two probabilities o and B are related by a numerically integrable and

tabulated function, Marcum's Q function(19),

1-8=0Q(d, V-Zlnea)

An alternative source is the X' table by Haynam et. al. (20) although
this source is limited to 0.1 > o > 0.001.

Having selected the duration of each experiment, T, the experi-
menter can vary the instrument error parameters along the appropriate
contour of constant d. This is accomplished by altering the instrument
decision boundary or threshold (selecting the size of the test).

Alternatively, increasing the experiment duration T for a‘fixed
decision boundary reduces 8 thereby reducing the average number of
experiments required but at a cost of increasing the duration of each
experiment.

The above experimental situation will be employed, together with
a uniform prior distribution, to illustrate the fact that the preceding
theoretical results have practical application and furthermore that the
experimenter can sometimes exercise the limited control that he has over
the instrument parameters a, 8 and T to improve the search operation.

For example, it may be beneficial for the experimenter to increase the

time expended for each experiment T, thereby reducing 8, in order to
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reduce the average number of experiments required, LP. It is possible

that the product of these two, say TL = TLP

, may be reduced by doing
so. This implies that the total time required to locate the object,
the product TL, is of importance to the experimenter. This implication
is true for the case at hand and reducing this time is usually of
critical importance to the receiving terminal.

Because of the complexity of the integral involved in determining
o and g the minimization cannot conveniently be accomplished analytically
and a brief numerical example is given. The minimum TL product which is
determined is thus approximate (and perhaps only a local minimum). The
primary purpose of the example is to illustrate that beneficial tradeoffs

can frequently be made by the experimenter in a real situation.

Fixing the performance index d at several constant values,
specifically d=4,5,6, and 7 for the computations which were made, and
then appropriately varying o and 8 along a contour of constant d permits
one to examine the resulting variation in the average number of experi-
ments, Lp, and the probabi]ity of successful search termination gy.

The numerical results were determined by employing the expressions given
in Chapter III, equations (3-45) and (3-30), respectively. Both LP and

P_ increase monotonically with decreasing o (increasing 8) along a contour
of constant d in the region of interest. These results are shown in
Figures 4-2 and 4-3, respectively. Although it is not shown in these
figures, recall that g8 increases with decreasing o, for constant d, ala

Figure 4-1. The monotonic nature of the average search duration is not

unexpected since decreasing o decreases the probability of erroneously
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locating the object while simultaneously increasing g, thus increasing
the probability of passing the true location several times before it's

finally recognized.

Setting an operating standard by selecting a value for the pro-
U

[ ]

bability of correct search termination, P =0.999, one can immediately
select the appropriate conditional values of o given d from Figure 4-3.
Having done so for each value of d the result can be transferred to
Figure 4-2 and a contour of equal Pg=0.999 drawn; One notes from
Figure 4-2 that the average number of experiments required to obtain the

same measure of search success, PU=0.999, varies inversely with the

performance index d. The duration of each experiment varies directly with

2

d2 for constant S and No’ d“~ T, as previously discussed. One might well

expect that the total length of the search, TL, (the duration of each
experiment times the average number of experiments), could be minimized
by appropriately selecting T. This is indeed the case, at least locally,
as is illustrated in Figure 4-4. The result shown is only relative
since S and N0 are unspecified. The experiment duration was assumed
unity for d=4, i.e. T4=1 for convenience. The relative values of the
other experiment durations are then T5=25/16, T6=36/16 and T7=49/16,
respectively.

The result of Figure 4-4 indicates that there is at least a local
minimum for the total relative search duration, TL, in the neighborhood
of d=5. The corresponding instrument parameters are a=1.7x10'4,
g=0.11.

The experimentef may thus select a value of T according to
Figure 4-4 for a known ratio S/No. Further numerical explorations could

pinpoint the result still further but with little real benefit since TL

varies slowly with d.
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The preceding example has indicated how the theory derived in
preceding chapters can be applied to a real problem and furthermore that
for each such problem it may be possible to intelligently select the
parameters of the search instrument to minimize the total time required
to find the object. Each such problem must, however, be examined on its

own merits and no general results of this sort are possible.



CHAPTER V
SUMMARY

The preceding chapters have developed an optimum sequential
search policy for locating a single stationary object situated in a
discrete search space having N potential locations. A single search
instrument was employed to perform the search. The instrument was
assumed to perform a simp]e; fixed sample, hypothesis test for each
experiment; both false alarm and false dismissal errors were considered
and the conditional probability of each was assumed known; o and B
respectively. A completely specified discrete probability distribution
was assumed to describe the experimenter's a pr16r1 knowledge of the
true object location.

The search policy obtained specifies that the experimenter always
takes his next observétion at the location which has the largest
a posteriori probability of being the true location as computed from
the prior probability distribution and previous experimental evidence
via Bayes Rule. General expressions for the posterior probabilities
were derived for any given search history, instrument parameter set,
and prior probability distribution.

The stopping rule employed stated that the experimenter was to
stop whenever a yes instrument response was obtained. The policy de-
rived was shown to minimize the number of consecutive no responses
received and also to maximize the probability that the first yes

response was received at the correct location.
73
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Conditions were derived enabling the experimenter to specify a

set of instrument parameters which would at least assure him of attain-
ing a desired probability of successful search termination. Several
properties were derived for the optimum search policy including the
average duration of the search, the probability of correct search ter-
mination, and the probability of terminating the search in a fixed
number of experiments.

Properties of major interest for the opfimum search polity are
summarized below. The cumulative probability of successful search ter-
mination in n or fewer experiments was developed in Section 3.2

equation (3-28) and may be written

N |
P, = (1-8) 25 (1-0)""1 K;py(es)
i=1

where the terms in the sum are defined in the referenced section and

the products Kipo(ei) are representative of the search history. The
probability of successful termination is obtained by letting n grow with-
out bound and can be closely approximated with a finite number of terms
for any specific numerical problem. For the special case of a uniform

prior distribution the corresponding (n+«) result is given by

U 1gf 1o (1)
No |1 - gm0
The uniform distribution represents a lower bound on P_ in the
U

0

sense that P_ > P_ for all known prior distributions if the optimum

search policy is followed. This result and the approximation given in

equation (3-31) can be used to establish a satisfactory instrument
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parameter set (a,8) to satisfy a desired termination probability stand-

ard, Pg 3-Ps° The closed expression Pg would be computationally more
convenient for numerica11y estimating whether the given (or proposed)
set of instrument parameters would perform to the experimenter's
satisfaction.

Another result of interest is the probability of terminating the

search (correctly or incorrectly) in n or fewer experiments. This

result, given in equation (3-41) is reproduced below,

n
Pt 1= (1) + (1-0-8) (1-)™ 1 S Kepples)
i=1

If the prior distribution is uniform, then for n=rN+s, the above result

becomes
pro1 - (1)) |1 - 8 Ak
n 1-o N 1-a

The average duration of the search, L, was given in Section 3.5

and is shown in the following equation,
1 i-
L'_ = o [1 - (1‘01‘5) * 2(1'0‘)1 ! Kipo(ei)}
=1

This general result takes on the following form for a uniform prior

distribution

L - 5[1 - (1ag) [ 2 (1-0)" ]]

N(! 1 - B(l‘a)N-l

A hypothesis test was discussed in Section 3.6 which provided a
logical basis for enabling the experimenter to select an experiment

truncation point if he is uncertain as to the presence of an object.
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For the no-object case the untruncated optimum search policy is sure to

locate an object erroneously since the search continues until the
instrument responds favorably. This result thus provides a method for
extending the search policy to this case also.

Chapter IV discussed the numerical minimization of the total
search time for a realistic communication system search problem. This
result illustrated a dependence of the instrument parameters (a,g) which
is typical for many problems and showed that the experimenter could use
his Timited design freedom to improve the search operation with this
constraint.

There are many avenues which could be followed for extending the
results obtained in this dissertation. The assumption of location and
time independent instrument parameters could be altered. Several alter-
native stopping rules could be considered which would be potentially
better choices fdr the case of a poor and unalterable instrument.

One could also consider the multiple object problem or alterna-
tively the case of a continuous search space with a finite resolution
instrument. Answers to each of these would be of practical interest in
problems which are not well suited to the assumptions and conditions

required for the results derived herein.



APPENDIX A

MATHEMATICAL DERIVATIONS OF THE PROBABILITY OF SEARCH
TERMINATION AND THE AVERAGE SEARCH DURATION

Secion 3.3, equation (3-30), presented a result representing the

probability of successful search termination for a uniform prior distri-

U

bution, P_. The derivation of this result is given below. From

equation (3-28) the general form, P_, may be written
- (1o _yi-1 -
P = (1-8) D (1-)""1 Kypge;) (A-1)
i=1

For the special prior distribution po(i) = 1/N, ¥ i and the search pro-

cedure discussed in Section 3.3 the above sum may be equivalently written

as follows,

- (e ® g N )
S )™ e < 1 S0 S
i=1 h &

j=1
N
_ 1 1- (1-a)
* Vo N1 (A-2)
1 - 8(1-a)
Equation (3-30) given in the text follows immediately
U_ 18| 1- (1-o)"
P = Na N-1 (A-3)
1 - g(1-a)

Section 3.4 presented an expression in equation (3-41) representing
the probability of search termination on or before the nth experiment,
denoted PA. This result is derived below.

77
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From equation (3-40) which was developed in the text the desired

result may be initially written

1”)2( (1-8) (1-a)3" 1[

z Kipp (e )}

(_J 17851%; =1,0=4|(e 1,2))) n=1,2,... (A-4)

Substituting from equation (3-27) and changing the form somewhat, this

becomes

n n . Jj-1
2 1-0)971 = (1- a-B)aZ(l-a)J-z > Kipyley) +
Jj=1 Jj=1 i=1

n
+ (1-0-8) Zl(l-a)‘]-l K;poles) (A-5)
J:

The first term can be immediately summed. By interchanging the
order of summation for the second term one of'the two summations can be

performed for this term also. Note that the second term has value zero

for j=1.
(1 n n-1 n L
Py =“1_:(’1:_3'}" (-a-g)r) Kipgleg) > (1-a)72 4
i=1 j=i+l
n
- _g)3-1 -
+ (1-0-8) ) (1-a)3"! Kyple,) (-6)

j=1

The sketch in Figure (A-1)a illustrates the region of summation and the
interchange in the order of summation. Performing the inner sum in the

second term results in the expression
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Figure A-1. Regions of Summation, Finite a) and Infinite b)
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n

i o1M1=(1-0)" 1
Py = 1-(1-0)" - a(1-0=8) D Kipgle;) (1-a) T Tlzel— ]
i=1
n .
¢ (1ma-8) ) (1-a)3T Kypgley) (A-7)

n
1-(1-0)" + (1-a-8) (1-0)""1 > Kopge;)
i=1

This last result is the form shown in equatioh (3-41) and thus substan-
tiates the result shown. Q.E.D.

Consider now the special case of a uniform prior distribution and
assume the search procedure employed is that discussed in Section 3.3.

For this case, writing n=rN+s, where r=0,1,...; O<s<(N-1), this may

be written
n ms (es) r j L N rS
2 ngley) = 2 ) E o115 D po(1)
i=1 j=1 i=1 i=1 .
r . S
J-1 r
= > ER) +(E) D)
j=1 i=1
By .S
"3 (1_;;) (1) zpo(‘)
1-o i=1
r
= 1};?8[1—(11)"]*-(1-%) % (A-8)

since po(i) = 1/N, ¥ i.
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Incorporating this special case into the above general result,
one obtains the probability of terminating the search in n or fewer

experiments for a uniform prior distribution

' r r
’n 1‘(1‘a)n+(1‘“‘8)(1‘“)n-1[1};?s ) ek ﬁ}

"

r. r
1- (1-0)"+(1-0)" [1- (1) |#(1-0-8) (1-0) "M (12D)

1 - (1‘0‘)n(—1%;)r[1 ) _:l_ (1'(1-5)] (A-9)

1-a

This last result is the form shown in equation (3-42) and completes
the derivation. Q.E.D.
Another result which was stated without proof in the text was
the average search duration, see Section 3.5. From equation (3-43), the

defining equation, the expression we wish to determine is denoted L,
where

L = . - - -

Then from equation (3-36)

<) © J‘].
L= 1[a+(1-a-B)P0(el)]+°‘ j(l-a)‘]-l-a(l-a-ﬂ) Zj(l-a)‘]-z ZKipo(ei) +
j=2 =2 i=1

+ (1-ag) %j(1-a)j‘1 K;pge ) (A-12)
Jj=
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The second term may again be summed by employing the book by Jolley (p.2)

and reduces to the following form.

The third, double sum, term can similarly be partially reduced by inter-

changing the order of summation. See Figure (A-1)b.

© j-1
\ " . j=2.
T = -a(1-a-8) ) §(1-a)372 > Kiple;)
j=2 i=1
= -q(1- a-B)Z K. po(e ) z l-a)‘] -2
j=i+l
III =

-(1- 0-6{;51(1 o) 71k, iPole; )+ZS(1 o)7L K, iPole) +
=1 i=1

1- i-

+ ("‘;g') 2(1‘0'-)1 1 K'ipo(e'l)]
i=1

Combining these results one obtains

L = at(l-a-g)pgle;) + 3 - o -(1-a-) D i(1-a) " Nkipyles) +
i=1

(1-0-8 z 1-a) " M;pgle) - (1-a-g) (L2 )Z(l @) " pgley) +
i=1 i=1

+(1-a-a)22 31-)3 1 kopey) (A-12)
Jj=
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This expression may be simplified to the following form which is identical

to equation (3-44).

-

L=1 [1-(1-a-8) : i(l-a)i-l Kipo(e.)] (A-13)

The above general equation may once again be simplified by assuming
a uniform prior distribution and the previously specified search policy.

For a uniform distribution the above sum may be evaluated by again

letting n=rN+s,

- since po(i) = 1/N, ¥ i.
Substituting into equation (A-13) above yields LP, the average

search duration for a uniform prior distribution

U 1| 1 (qeqep) L [22(=) R
L a|:1 (1-0-8) 1 [1-6(1-01)”‘1}} (A-14)
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