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Sample Size Calculation for Clustered Binary Data with Nonparametric Methods Using

Different Weighting Schemes

Summary

We propose a sample size calculation approach for testing a proportion using the weighted sign test

when binary observations are dependent within a cluster. Sample size formulas are derived with

nonparametric methods using three weighting schemes: equal weights to observations, equal weights

to clusters, and optimal weights that minimize the variance of the estimator. Sample size formulas

are derived incorporating intracluster correlation and the variability in cluster sizes. Simulation

studies are conducted to evaluate a finite sample performance of the proposed sample size formulas.

Empirical powers are generally close to nominal levels. The number of clusters required increases

as the imbalance in cluster size increases and the intracluster correlation increases. The estimator

using optimal weights yields the smallest sample size estimate among three estimators. For small

values of intracluster correlation the sample size estimates derived from the optimal weight estima-

tor are close to that derived from the estimator assigning equal weights to observations. For large

values of intracluster correlation, the optimal weight sample size estimate is close to the sample

size estimate assigning equal weights to clusters.

Keywords: Proportion test; Intracluster correlation; Optimal weights; Simulation; Cluster size

imbalance.
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1 INTRODUCTION

Clustered binary data often arise in medical studies such as dental and radiologic studies in which

observations are taken from multiple observations of each subject (called ’clusters’). For example,

as many as 60 lesions may be observed through positron emission tomography (PET) in one patient

since PET offers the possibility of imaging the whole body [1]. A major issue in the analysis of

clustered data is the dependence among observations within each cluster. The degree of depen-

dence is usually measured by the intracluster correlation coefficient. Application of the traditional

statistical methods such as t-tests or chi-square tests developed for independent observations is

invalid since observations within the same subject tend to be dependent. In other words, clustered

binary data should be analyzed using statistical methods that take account for the dependence of

within-subject observations.

While parametric methods have been extensively studied for the analysis of clustered binary data

for the last three decades [2-6], nonparametric statistical methods have recently received increasing

attention for the analysis of clustered data [7-12]. Larocque [7] accounted for clustering in a

signed-rank test with a variance estimate that is based on the sums of squares over independent

clusters. To account for clustering, Rosner et al. [8] adjusted the variance in the signed-rank test

by estimating it from the ranks of absolute observations with a common intracluster correlation.

Datta and Satten [12] derived a signed-rank test for clustered data in which the distribution of

pairwise differences within a cluster depends on cluster size.

Jung et al. [13] proposed a sample size calculation method for testing a proportion in clustered

binary data using parametric statistical methods. Hu et al. [14] derived the sample size formula for

testing a proportion in clustered binary data with a sign test assigning equal weights to observations.

In this paper we focus on sample size estimation for testing a proportion using a sign test with

different weighting schemes; equal weights to observations, equal weights to clusters, and optimal

weights that minimize the variance of the estimator. Here, the sample size refers to the number of

clusters. Noether [15] discussed sample size determinations for some common traditional nonpara-

metric tests under the assumption of independence among observations, in which Noether’s sample

size formula for a sign test is a special case of the sample size formulas presented in this paper.

We propose a nonparametric sample size calculation method for testing a proportion in clustered

binary data incorporating the intracluster correlation and the distribution of cluster sizes. In this
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paper our discussion is limited to testing a one-sample proportion in clustered binary data. In

Section 2,we review weighted sign test statistics for testing a binomial proportion. In Section 3, we

derive sample size formulas using three different weighting schemes. In Section 4, we apply sample

size formulas to the design of a dental study. In Section 5, we conduct extensive simulation studies

to evaluate the performance of the sample size formulas and to investigate the effects of cluster size

imbalance and intracluster correlation.

2 STATISTICAL METHOD

Let Xij be the binary random variable (Xij=1 for success, -1 for failure) for the jth observation

in the ith cluster, j = 1, ..., ni and , i = 1, ..., m. We can express the total as the difference

between the total number of successes and the total number of failures for each cluster by coding

Xij=1 and -1 for success and failure, respectively [16, 17]. Cluster size (ni) may vary at random

from a certain distribution with mass function f(.). We assume the common correlation model

[18], that is, observations in a cluster are assumed to be exchangeable in the sense that, given

ni, Xi1, ..., Xini
have a common marginal response probability P (Xij = 1) = p(0 < p < 1) and

a common intracluster correlation coefficient ρ = corr(Xij, Xij′) for j 6= j ′. We test the null

hypothesis H0 : p = p0, versus H1 : p = p1 for p0 6= p1.

Let Si be the difference between the total number of successes and the total number of failures in

the ith cluster (Si =
∑ni

j=1
Xij), and (w1, w2, ..., wm) be a sequence of cluster weights such that

wi ≥ 0 and (1/m)
∑m

i=1
wini = 1. Then we have a class of statistics used in this sign test

T =
m∑

i=1

wiSi =
m∑

i=1

wi(n
+

i − n−

i ), (1)

where n+

i and n−

i are the total numbers of successes and failures in the ith cluster, respectively.

The expected value of T under the null hypothesis is given by

µ0(T ) =
m∑

i=1

wiE(Si|H0) = m(2p0 − 1). (2)

Under the null hypothesis, the variance of T is

σ0(T )2 =

m∑

i=1

w2
i V ar(Si|H0) = 4p0(1− p0)

m∑

i=1

w2
i ni{1 + (ni − 1)ρ}, (3)
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which can be consistently estimated by

̂σ0(T )2 = 4p0(1 − p0)

m∑

i=1

w2
i ni{1 + (ni − 1)ρ̂}, (4)

where ρ̂ can be estimated by the ANOVA method [19]. Through simulation, Ridout et al. [20]

evaluated the performance of various estimators of ρ for clustered binary data under the common-

correlation model, ρ = corr(Xij, Xij′) for j 6= j ′. They showed that the ANOVA estimator per-

formed well through simulation.

The weighted sign test is defined by

Z =

∑m
i=1

wi(n
+

i − n−

i ) − m(2p0 − 1)√
4p0(1− p0)

∑m
i=1

w2
i ni{1 + (ni − 1)ρ̂}

, (5)

which is asymptotically normal with mean 0 and variance 1.

The choice of wi = m/
∑m

i=1
ni provides equal weights to observations, and the test statistic (1)

can be expressed as

Tu =
m∑m
i=1

ni

m∑

i=1

(n+

i − n−

i ), (6)

and its corresponding test statistic from (5) is

Zu =

∑m
i=1

(n+

i − n−

i ) − n(2p0 − 1)√
4p0(1 − p0)

∑m
i=1

ni{1 + (ni − 1)ρ̂}
, (7)

where n =
∑m

i=1
ni.

The choice of wi = 1/ni assigns equal weights to clusters, and the test statistic (1) becomes the

nonparametric statistic of Datta and Satten [12]

Tc =
m∑

i=1

(
n+

i − n−

i

ni

)
, (8)

and its corresponding test statistic from (5) is

Zc =

∑m
i=1

(
n

(+)
i

−n
(−)
i

ni

)
− m(2p0 − 1)

√
4p0(1− p0)

∑m
i=1

{1 + (ni − 1)ρ̂}/ni

. (9)

The variance of T, σ0(T )2, is minimized under the constraint of (1/m)
∑m

i=1
wini = 1 when wi is

given by

wi =
m{1 + (ni − 1)ρ}−1

∑m
i=1

ni{1 + (ni − 1)ρ}−1
. (10)
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That is, the choice of the above wi provides the minimum variance of T . We refer the resulted

statistic and the test statistic using optimal weights as To and Zo, respectively. Note that the

optimal weights, wi, depends on ρ. The test statistic Zo has the same form as (5) except that wi

needs to be estimated. We reject H0 if the absolute value of the test statistic, (Zi, i = u, c, o), is

larger than z1−α/2, which is the 100(1− α/2) percentile of the standard normal distribution.

3 SAMPLE SIZE DETERMINATION

Noether [15] proposed a sample size formula for some common nonparametric tests such as a sign

test. He showed that the sample size or the power (1-β) of the test can be estimated from the

following equation. {
µ1(T ) − µ0(T )

σ0(T )

}2

= (z1−α/2 + rz1−β)2, (11)

where r = σ1(T )/σ0(T ).

We will extend Noether’s nonparametric sample size formula to obtain sample size formula for

clustered binary data. Noether [15] stated that it will be often appropriate to assume that σ1(t) is

closse to σ0(T ) for alternatives that do not differ too much from the alternative hypothesis. Here

we assume that cluster sizes ni’s are small relative to m so that asymptotic results can be attained

with respect to m. The expected value of T under the alternative distribution is

µ1(T ) =

m∑

i=1

wiE(Si|H1) = m(2p1 − 1).

Since ni’s are independent and identically distributed random variables, from (3) we obtain three

limits,

1

m
σ0(Tu)2 → 4p0(1− p0){(1− ρ)E[N ] + E[N 2]ρ}/E[N ]2

1

m
σ0(Tc)

2 → 4p0(1 − p0){(1− ρ)E[1/N ] + ρ}

1

m
σ0(To)

2 → 4p0(1 − p0)
1

E[N{1 + (N − 1)ρ}−1]
,

as m → ∞, where N is the random variable with mean θ and variance τ2 corresponding to the

cluster size, and E[.] is the expectation with respect to the distribution of the cluster size. Then
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we have

σ0(Tu)2 → 4mp0(1 − p0)

{
1 − ρ

θ
+ ρ +

τ2

θ2
ρ

}

σ0(Tc)
2 → 4mp0(1− p0){(1− ρ)E[1/N ] + ρ}

σ0(To)
2 → 4mp0(1 − p0)

1

E[N{1+ (N − 1)ρ}−1]
.

Note that the limiting quantities of σ0(Tu)2 and σ0(Tc)
2 are linear in ρ. The convergent quantity of

σ0(Tc)
2 is dependent on the distribution of cluster sizes only through its harmonic mean, E[1/N ]

while that of σ0(Tu)
2 depends on the distribution of cluster sizes through its first and second

moments. With a power of 1 − β, the sample size estimates from (11) (mi, i = u, c, o) to test

H0 : p = p0 versus H1 : p = p1 are

mu =
(z1−α/2 + z1−β)2

(p1 − p0)2

{
1 − ρ

θ
+ ρ +

τ2

θ2
ρ

}
p0(1− p0) (12)

mc =
(z1−α/2 + z1−β)2

(p1 − p0)2
{(1− ρ)E[1/N ] + ρ}p0(1 − p0) (13)

mo =
(z1−α/2 + z1−β)2

(p1 − p0)2
1

E[N{1 + (N − 1)ρ}−1]
p0(1 − p0). (14)

When cluster size is constant, the sample size formulas (12) - (14) are identical. If all responses are

independent (ρ = 0) and all cluster sizes are equal to 1, then all the sample size formulas (12)-(14)

then reduce to Noether’s formula [15].

4 EXAMPLE

We use the data of Hujoel et al. [21] to illustrate the sample size estimation for clustered binary data

with the weighted sign test using different weighting schemes. An enzymatic diagnostic test was

performed to investigate whether a site was infected by either treponema denticola or bacteroides

gingivalis. An antibody assay was used as the gold standard to determine infected sites against

the two organisms. There were different numbers of infected sites per subject. Table 1 shows the

number of true positive test results (Si) and the number of infected sites (ni) in 29 subjects. Table

2 presents the observed distribution and the projected distribution of cluster size (N ).

Suppose we want to use the above data as pilot data to design a similar experiment to test the

hypothesis H0 : p = 0.6 versus H1 : p = 0.7. From these data, we obtain the intracluster correlation

7



coefficient estimate ρ̂ = 0.2 using the ANOVA method. Thus, we assume the intracluster correlation

coefficient of ρ̂ = 0.2 for a new experiment. We get E[N ] = 4.9 by both the observed distribution

and the projected distribution. Hence, the estimated sample sizes required in the experiment for

80% and 90% are mo = 70 and mo = 95 for To, respectively. Similarly, we obtain mu = 71 (and

95) for Tu and mc = 71 (and 95) for Tc for the power of 80% (and 90%) of power. Although the

difference is small, mo is the smallest.

5 SIMULATION STUDY

In this section, we report the results of a simulation study to investigate the performance of sample

size formulas in terms of empirical powers. Since cluster sizes frequently exhibit considerable

variations in medical studies, cluster sizes were generated using a negative binomial distribution

truncated at zero as in Donner and Koval [22] and Ahn et al. [23]. We refer the reader to Ahn et

al. [23] or Johnson et al. [24] for details on the truncated negative binomial distribution.

The imbalance in cluster size is measured by the quantity κ = 1/(1+σ2/µ2), where µ and σ are the

mean and standard deviation of cluster size. The variation in cluster size decreases as κ increases.

All cluster sizes are equal when κ = 1. Cluster sizes are generated from the truncated negative

binomial distribution with mean cluster size of µ =5, 10, and 20, and the imbalance parameter of

κ =0.6, 0.8, and 1.0, which corresponds to severe, moderate, and no variability. We used ρ values

of 0.05, 0.1, 0.3, and 0.5. Here, we test the null hypothesis H0 : p = p0 against the alternative

hypothesis H1 : p = p1 with α = 0.05, 1 − β = 0.9 and (p0, p1)=(0.5, 0.7), (0.6, 0.7) and (0.7,

0.9). The required sample size (m) under three weighting schemes is estimated using sample size

formulas (12)-(14) for given values of p0, p1, ρ, κ, µ, α, and β. The correlated binary data are

generated by the method of Lunn and Davies [25] conditional on the estimated number of clusters

and mean cluster size.

We conducted 10,000 experiments for each parameter combination. The intracluster correlation

coefficient was estimated using the ANOVA estimator. The empirical powers were computed as the

proportion of rejecting H0 by the test statistics (Zi, i = u, c, o,) in 10,000 samples .

Table 3 shows empirical powers and estimated sample sizes for testing H0 : p = 0.6 vs. H1 : p = 0.7

at significance level of 5% and 90% power. In general, these empirical powers are close to the
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nominal power of 90% for all three weighted estimators. All the empirical powers are within 2%

of the nominal level. All the estimators provide the same results when all cluster sizes are equal

(κ = 1).

Tables 4 and 5 present the sample size estimates and the corresponding empirical powers for testing

H0 : p = 0.5 versus H1 : p = 0.7, and H0 : p = 0.7 versus H1 : p = 0.9, respectively. Table 4 shows

that all the empirical powers lie between 86% and 92% for testing H0 : p = 0.5 versus H1 : p = 0.7.

Table 5 shows that all test statistics are generally underpowered for testing H0 : p = 0.7 versus

H1 : p = 0.9. That is, when p1 is close to 1.0, the test statistics generally yields empirical powers

lower than the nominal level. When a large sample size is required, for example testing H0 : p = 0.6

versus H1 : p = 0.7, empirical powers are close to the nominal level of 90%. Tables 3-5 shows that

all three estimators generally yield similar empirical powers even though mo is always less than or

equal to mc or mu. If ρ is small and cluster size varies among clusters, mo is closer to mu. However,

as ρ increases, mo becomes closer to mc. When κ = 1, estimated sample sizes for all three methods

of assigning weights are equal.

Overall, The sample size estimates increase due to clustering effect for all three estimators as the

intracluster correlation ρ increases. As κ decreases, cluster sizes vary more and more severely, the

required number of clusters increases. When the mean cluster size µ increases, the required sample

size decreases.

6 DISCUSSION

In this article, we introduced sample size formulas for testing proportions using the weighted sign

test when binary observations are dependent within a cluster. We illustrated the sample size calcu-

lation using the data of an enzymatic diagnostic test. We evaluated the finite sample performance

of the test statistics (Zi, i = u, c, o), and the sample size formulas (12) - (14) for the proportion

test. All the empirical powers for testing H0 : p = 0.6 vs. H1 : p = 0.7 are within 2% of the

nominal level of 90% power for all three weighted estimators. All the empirical powers for testing

H0 : p = 0.5 vs. H1 : p = 0.7 lie within 4% of the nominal level of 90% power for all three weighted

estimators. However, all three weighted estimators become underpowered for testing H0 : p = 0.7

versus H1 : p = 0.9. That is, when p1 is close to 1.0, the test statistics generally yields empirical
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powers less than the nominal level.

An optimal weighted estimator yields the smallest sample size estimate among three weighted

estimators. The optimal sample size estimate (mo) is closer to mu for smaller values of ρ while mo

is closer to mc for larger values of ρ. When κ = 1, all three estimators yield the same sample size.

The required sample size increases as the intracluster correlation ρ increases. As the variability

in cluster size increases, the required number of clusters increases. When the mean cluster size µ

increases, the required sample size decreases.

As a future study, we will investigate the asymptotic relative efficiency (ARE) of the weighted sign

test using optimal weights with respect to equal weights to observations or clusters. The ARE

will be computed for both the extent of correlation among observations within clusters and the

various moments of the distribution of the number of observations. We will investigate at which

distribution of the number of observations the maximum ARE occurs and the what the maximum

value is.
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Table 1: Pilot data of Si/ni from m = 29 subjects (clusters).

3/6, 2/6, 2/4, 5/6, 4/5, 5/5, 4/6, 3/4, 2/4, 3/4, 5/5, 4/4, 6/6, 3/3, 5/6, 1/2, 4/6,

0/4, 5/6, 4/5, 4/6, 0/6, 4/5, 3/5, 0/2, 2/6, 2/4, 5/5, 4/6

Table 2: Distribution of ni’s.

m

2 3 4 5 6

Relative frequency 2/29 1/29 7/29 7/29 12/29

Projected mass function 0.05 0.05 0.25 0.25 0.4
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Table 3: Empirical powers (%) and sample size estimates in parentheses

for testing H0 : p = 0.6 vs. H1 : p = 0.7 with α = 0.05 and β=0.1 from

10,000 simulations.

κ ρa µb Zu Zc Zo

0.6 0.05 5 91 (66) 92 (99) 91 (64)

10 89 (43) 90 (62) 90(40)

20 89(32) 90(40) 89(28)

0.1 5 90(84) 92(106) 91(77)

10 90(62) 90(72) 90(53)

20 88(51) 90(51) 89(41)

0.3 5 90(154) 91(136) 90(121)

10 89(137) 89(109) 90(100)

20 89(129) 90(93) 90(88)

0.5 5 89(224) 90(166) 90(159)

10 89(212) 90(146) 90(142)

20 90(206) 90(135) 90(133)

0.8 0.05 5 89(61) 90(76) 90(60)

10 89(38) 89(44) 89(37)

20 88(27) 89(28) 88(25)

0.1 5 90(74) 90(84) 89(71)

10 89(52) 90(55) 90(49)

20 88(41) 89(39) 89(37)

0.3 5 90(124) 90(119) 90(112)

10 89(107) 90(96) 89(93)

20 88(99) 90(84) 89(83)

0.5 5 90(174) 90(153) 89(151)

10 89(162) 89(137) 90(136)

20 88(156) 89(128) 90(128)

1 0.05 5 90(58) 90(58) 90(58)

10 89(35) 90(35) 89(35)

20 89(24) 89(24) 89(24)

0.1 5 90(68) 90(68) 90(68)

10 89(46) 89(46) 89(46)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1
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Table 3 (Continued): Empirical powers (%) and sample size estimates in parentheses

for testing H0 : p = 0.6 vs. H1 : p = 0.7 with α = 0.05 and β=0.1 from 10,000 simulations.

κ ρa µb Zc

u Zc

c Zc

o

20 89(35) 89(35) 89(35)

0.3 5 89(106) 89(106) 89(106)

10 89(89) 89(89) 89(89)

20 89(81) 89(81) 89(81)

0.5 5 90(144) 90(144) 90(144)

10 90(132) 90(132) 90(132)

20 90(126) 90(126) 90(126)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1
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Table 4: Empirical powers (%) and sample size estimates in parentheses

for testing H0 : p = 0.5 vs. H1 : p = 0.7 with α = 0.05 and β=0.1 from

10,000 simulations.

κ ρa µb Zu Zc Zo

0.6 0.05 5 89 (17) 91 (26) 90 (17)

10 87 (11) 89 (16) 90(11)

20 89(9) 90(11) 86(7)

0.1 5 91(22) 92(28) 90(20)

10 88(16) 90(19) 88(14)

20 87(13) 88(13) 89(11)

0.3 5 90(40) 91(35) 90(31)

10 90(36) 89(28) 90(26)

20 89(33) 89(24) 89(23)

0.5 5 90(58) 91(43) 90(41)

10 89(55) 90(38) 90(37)

20 89(53) 89(35) 89(34)

0.8 0.05 5 88(16) 90(20) 89(16)

10 88(10) 90(12) 88(10)

20 86(7) 91(8) 88(7)

0.1 5 88(19) 90(22) 89(19)

10 89(14) 89(14) 88(13)

20 88(11) 87(10) 88(10)

0.3 5 89(32) 90(31) 89(29)

10 89(28) 90(25) 89(24)

20 89(26) 89(22) 89(22)

0.5 5 90(45) 91(40) 90(39)

10 90(42) 89(35) 89(35)

20 89(40) 89(33) 89(33)

1 0.05 5 89(15) 89(15) 89(15)

10 87(9) 87(9) 87(9)

20 86(6) 86(6) 86(6)

0.1 5 90(18) 90(18) 90(18)

10 88(12) 88(12) 88(12)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1
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Table 4 (Continued): Empirical powers (%) and sample size estimates in parentheses

for testing H0 : p = 0.5 vs. H1 : p = 0.7 with α = 0.05 and β=0.1 from 10,000 simulations.

κ ρa µb Zu Zc Zo

20 87(9) 87(9) 87(9)

0.3 5 89(28) 89(28) 89(28)

10 89(23) 89(23) 89(23)

20 89(21) 89(21) 89(21)

0.5 5 89(37) 89(37) 89(37)

10 89(34) 89(34) 89(34)

20 90(33) 90(33) 90(33)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1
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Table 5: Empirical powers (%) and sample size estimates in parentheses

for testing H0 : p = 0.7 vs. H1 : p = 0.9 with α = 0.05 and β=0.1 from

10,000 simulations.

κ ρa µb Zu Zc Zo

0.6 0.05 5 86 (12) 89 (17) 83 (11)

10 84 (8) 88 (11) 81(7)

20 83(6) 86(7) 81(5)

0.1 5 86(15) 89(19) 86(14)

10 84(11) 88(13) 85(10)

20 82(9) 86(9) 80(7)

0.3 5 87(27) 89(24) 87(21)

10 86(24) 87(19) 86(18)

20 86(23) 85(16) 87(16)

0.5 5 88(39) 89(29) 89(28)

10 87(37) 88(26) 88(25)

20 87(36) 88(24) 87(23)

0.8 0.05 5 86(13) 90(20) 86(11)

10 85(7) 87(8) 85(7)

20 83(5) 84(5) 84(5)

0.1 5 86(13) 87(15) 86(13)

10 82(9) 86(10) 85(9)

20 80(7) 83(7) 82(7)

0.3 5 87(22) 87(21) 87(20)

10 85(19) 86(17) 84(16)

20 84(17) 85(15) 85(15)

0.5 5 87(30) 88(27) 87(26)

10 87(28) 87(24) 88(24)

20 86(27) 86(22) 86(22)

1 0.05 5 85(10) 85(10) 85(10)

10 85(6) 85(6) 86(6)

20 86(5) 86(5) 86(5)

0.1 5 85(12) 86(12) 85(12)

10 83(8) 83(8) 84(8)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1
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Table 5 (Continued): Empirical powers (%) and sample size estimates in parentheses

for testing H0 : p = 0.7 vs. H1 : p = 0.9 with α = 0.05 and β=0.1 from 10,000 simulations.

κ ρa µb Zu Zc Zo

20 78(6) 78(6) 78(6)

0.3 5 87(19) 87(19) 88(19)

10 86(16) 87(16) 86(16)

20 83(14) 83(14) 84(14)

0.5 5 87(25) 87(25) 87(25)

10 88(23) 87(23) 88(23)

20 87(22) 86(22) 87(22)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1
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