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Summary

In multistate survival analysis, the sojourn of a patient through the various clinical
states is shown to correspond to the diffusion of 1 coulomb of electrical charge though
an electrical network. The essential comparison has differentials of probability for the
patient correspond to differentials of charge and equates clinical states to electrical
nodes. Indeed, if the death state of the patient corresponds to the sink node of the
circuit, then the transient current that would be seen on an oscilloscope as the sink
output is equivalent to the probability density for the survival time of the patient.

This electrical circuit analogy is further explored by considering the simplest pos-
sible survival model with two clinical states - alive and dead. The corresponding
states of a circuit are its source and sink nodes. For the survival model, if the pa-
tient’s lifetime is subject to independent right censoring and left truncation, then
Kaplan-Meier is the appropriate estimate for survival time free from censoring risk
and truncation. When appropriate analogs to censoring and truncation are incor-
porated into an electrical circuit, then the sink output that would be seen on an
oscilloscope is also the Kaplan-Meier mass function.

An important consequence of this electrical analogy is the support it provides for
the use of maximum likelihood as a method for statistical inference. The dynamics
of current flow gives a fundamentally different motivation for the Kaplan-Meier esti-
mator which would normally be motivated as a nonparametric maximum likelihood
estimator.

A competing risks setting has multiple death states and corresponds to a circuit
with multiple sinks. Again, after adjusting for censoring and truncation, Kaplan-
Meier mass functions are the outputs at the sink nodes for the corresponding circuits.
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If covariates are present, then the electrical analogy provides for an intuitive un-
derstanding of partial likelihood and the various baseline hazard estimates that are
often used with the proportional hazards model.

Some key words: Competing risks; Electrical network; Kaplan-Meier; Left truncation;
Multistate survival; Proportional hazards; Right censoring; Self-consistency; Semi-
Markov.

1 Introduction and overview

Multistate survival models are used to describe the sojourn of a patient through

various clinical states of an illness. These states typically consist of transient states

and absorbing (death) states so that the sojourn is a first passage to one of the

absorbing states. Rather than thinking of the patient occupying a single state at

any time, it is perhaps more beneficial to consider the diffusion of probability for the

patient through the clinical states so that, the patient is considered occupying all

states (with certain probabilities) all of the time. The patient becomes a “virtual”

patient defined in terms of occupancy (interval transition) probabilities. If probability

is equated to charge, then the multistate survival process may be considered as a

diffusion of 1 coulomb of electrical charge through an electrical network. The essential

comparison has differentials of probability for the patient correspond to differentials

of charge and equates clinical states to electrical nodes. Indeed, under this analogy,

if the death states of the survival model correspond to the sink nodes in the circuit,

then the transient current that would be seen on an oscilloscope at any particular sink

output is equivalent to the density of the subdistribution of the patient dying from

that particular cause. Such subdistribution densities integrate to give the absorption

probabilities for their associated death causes or, in the electrical analog, the total

charge that is absorbed at that sink node.

Section 1 reviews the basics of semi-Markov processes that have traditionally

been used to represent multistate survival models. The emphasis is on developing the
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relevant tools related to determining sojourn times of patients and interval transition

probabilities. Section 2 builds upon the semi-Markov structure by developing the

electrical network analogy just described and finding electrical analogs to sojourn

time distributions as impulse response functions.

Previous analogies between stochastic processes and electrical networks were intro-

duced by Kelly (1978) when considering the dynamics of reversible Markov processes.

Kelly introduced two analogous electrical models. Our model agrees with his first and

perhaps least considered model in which probability is equated with electrical charge.

In his first model, Kelly (1978) shows that for certain Markov processes, the forward

equations given in his equation (1.20), which describe the transient behavior of the

process, are equivalent to Kirchhoff’s equations for current flowing in an analog circuit

with resistance between nodes (states) and capacitors grounding out the nodes. The

particular processes for which this holds are processes which, when started in their

stationary distribution, satisfy local balance equations so that they are reversible.

In both of Kelly’s electrical analogies, local balance is critical in establishing the

conductivities and hence resistances between nodes (states) of the analogous electrical

network. Kelly’s second electrical analogy equates probability to electrical potential

(voltage) and also assumes processes are reversible in their equilibrium condition.

Doyle and Snell (1984) build upon this potential analogy which, over the years, has

resulted in this particular model becoming the better known probabilistic analogy.

This second approach, however, is not considered below.

Of course survival models are for the most part transient processes and the anal-

ogy developed below allows for transient processes that are not constrained by the

assumptions of stationarity and reversibility used by Kelly (1978) and Doyle and Snell

(1984). The Markov assumption is also relaxed to allow consideration of semi-Markov

models traditionally used in multistate survival analysis.
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Our circuitry analogy for transient semi-Markov processes is further explored by

considering the simplest possible survival model that has two clinical states - alive and

dead. The corresponding states of an electrical network are its source and sink nodes.

If patients’ lifetimes are subject to independent right censoring and left truncation,

then Kaplan-Meier would be an appropriate estimator of survival that is free from

censoring risk and truncation. By indulging upon this electrical network analogy,

appropriate censoring states and truncation options can be built into an “empirical”

electrical network based on the data. When this is done, the impulse response function

that would be would be seen on an oscilloscope attached at sink output, is the Kaplan-

Meier mass function. The essential idea, is that the superpositioning of current flows

in the empirical electrical network sets up a transform domain version of the self-

consistency equations introduced by Efron (1967). Inversion of these transforms leads

to Efron’s self-consistency equations in the time domain whose solution is both the

Kaplan-Meier mass function as well as the impulse response function at the death

node.

When considering proportional hazards models, the electrical analogy provides

simple yet intuitive interpretations for partial likelihood and also for the various

baseline hazard estimators. When covariate value u is considered in this setting,

survival time Xθ with θ = exp(βTu) has survival function S0(t)
θ where S0(t) is

baseline survival. Within the electrical framework, the patient with lifetime Xθ is

assigned charge θ rather than 1. Partial likelihood is based upon hazard probabilities

that are recorded in terms of the fraction of total charge at risk at each of the death

times.

The competing risks setting is a simple extension of the single risk setting to

which the electrical analogy may be extended by having multiple sink nodes. All the

ideas discussed carry through into this setting. For example, the impulse response
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functions at the various sink nodes turn out to be Kaplan-Meier weights that are

associated with the corresponding Kaplan-Meier subdistribution estimates. These

output responses are a consequence of applying the superpositioning of current flows

in an empirical electrical network to construct transform domain versions of some

self-consistency equations whose solutions are Kaplan-Meier subdistributional mass

functions.

A fundamentally important consequence of this electrical analogy is the support it

provides for the use of maximum likelihood as a method of statistical inference. The

Kaplan-Meier estimator is a nonparametric maximum likelihood estimator which ad-

justs for right censoring and left truncation. However, by equating patient transitions

with the flow of current through an empirical electrical circuit designed to account for

censoring and truncation, the Kaplan-Meier mass function is also obtained through

an alternate motivation. This motivation uses superpositioning of current flows to

justify self-consistency relationships that characterize the Kaplan-Meier estimator.

Thus, the electrical analogy provides a separate and fundamentally different motiva-

tion for an estimator that would otherwise be motivated in terms of mathematical

likelihood.

2 Semi-Markov survival models

Multistate survival analysis has traditionally used semi-Markov models to describe

the movement of a patient afflicted with an illness through its various clinical states

S = {1, . . . ,m}. In the simplest setting, a patient enters state 1 at baseline time 0

and moves from state to state while holding in each state for a random amount of

time. Upon entering state 1, a semi-Markov model presumes that exit from state 1 is

a competing risk situation for which the m-dimensional distribution H1 determines
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the holding time and next state. If random vector (H11, . . . , H1m) has distribution

H1, then j1 = argminj{H1j : j ∈ S} is the next state and the holding time in state

1, with destination j1 assured, has cumulative distribution function (CDF)

P (H1j1 ≤ t |H1j1 = min
j
H1j}.

Upon entering state j1 at time H1j1 , departure from state j1 becomes another com-

peting risk with distribution Hj1 that depends upon the holding state j1 but which

is otherwise independent of the past. The sojourn continues in this way through the

various states of a semi-Markov model so that the sojourn itself can be thought of as

a sequence of independent competing risk exits from the visited states.

From this description of a sojourn, one can see that the collection ofm-dimensional

exit distributionsH1, . . . ,Hm from states determines the process dynamics. However,

not all aspects of these distributions are estimable from sojourn data through S. Those

aspects of Hi that are estimable can be characterized as the collection of subdistribu-

tions associated with exit from state i; see Miller (1981, §8.2). Subdistribution Cij(t)

is defined as the probability of making the transition from state i to state j before

duration t; an unbiased estimate from sojourn data would be the sample proportion

of exit data from state i that pass to state j before duration t.

Subdistributions for exiting state i are more formally defined as

Cij(t) = P{Hij = min
k
(Hik : k ∈ S) ≤ t} = pijDij(t),

where

pij = P{j = argmin
k
Hik}

Dij(t) = P{Hij ≤ t | j = argmin
k
Hik}.

Here, {pij : j ∈ S} are exit probabilities from state i and Dij(t) is the holding time

CDF in state i given passage to state j is assured.
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While Miller (1981) focusses on the estimability of subdistributions, a more con-

ventional and equivalent approach to competing risks, such as in Cox and Oakes (1984,

§9.2), emphasizes estimability for the collection of cause specific hazards associated

with exit from state i, or

hij(t) = P{passage i→ j in (t, t+ dt) | holding in i for duration t}/dt

for j ∈ S. The equivalence of these approaches rests on the one-to-one correspondence

between the set of exit subdistributions {Cij(t) : j ∈ S} and the set of cause specific

hazards {hij(t) : j ∈ S}. The formal relationship, which may be inferred from Cox

and Oakes (1984, eqn. 9.3) is

dCij(t)/dt = P{i→ j in (t, t+ dt) ∩ holding in i for duration t}/dt

= hij(t) exp

{

−

∫ t

0

m∑

k=1

hik(u)du

}

.

Subdistributions provide the link for making direct comparisons with electrical

networks and will be the focus of this discussion.

2.1 Convolutions and Transmittances

Any distributional consideration of two successive state transitions entails convolving

sets of subdistributions in the time domain. The even more complicated analysis of a

sojourn through S thus becomes intractable unless these convolutions are considered

in terms of the Laplace-Stieltjes transforms of the subdistributions or

Tij(s) =

∫ ∞

0

estdCij(t) = pij

∫ ∞

0

estdDij(t) = pijMij(s).

In electrical engineering, function Tij(s) is a transmittance and is the product of a

transition probability and a moment generating function (MGF). The m×m matrix

function

T(s) = {Tij(s)} = {pij} ⊙ {Mij(s)} := P⊙M(s)
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is the transmittance matrix of the semi-Markov process and is the component-wise

product of transition probability matrixP andM(s), a matrix of one-stepMGFs. The

transmittance matrix T(s) characterizes the semi-Markov process and also provides

the means for analyzing and computing sojourn times over state space S.

2.2 Sojourn transmittances

The sojourn timeX of a patient entering state 1 at time 0 and passing to an absorbing

state m can be specified in terms of transmittance matrix T(s). Define

f1mF1m(s) = E(esX1{X<∞}) (1)

as the first-passage transmittance from state 1 → m, where f1m = P (X < ∞) and

F1m is the conditional MGF given {X <∞}. A simple general relationship between

(1) and T(s) has been given in Butler (2000) and is replicated in (5) below.

Before considering this general relationship however, consider the simple illness-

death model shown in the flowgraph in Figure 1.

Figure 1. Illness-death model showing transmittances. States 1,2, and 3 represent
good health, illness, and death respectively.

A patient starts in state 1 at time 0 with good health and eventually dies at time

(t, t + dt) in one of two distinct ways. Either the patient dies directly (1 → 3) with

probability (w.p.) dC13(t) or becomes ill (1 → 2) in time u ∈ (0, t) w.p. dC12(u)

and subsequently dies in time t− u w.p. dC23(t− u). Summing over the two distinct
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paths and over all possible transition times u ∈ (0, t) from 1→ 2 gives transmittance

density

P{X ∈ (t, t+ dt)} = dC13(t) +

∫ t

0

dC12(u)dC23(t− u). (2)

Since this is a proper density with f13 = 1, the first-passage transmittance is computed

as the transform of (2) which gives

F13(s) = T13(s) + T12(s)T23(s). (3)

The example is quite simple because all states are progressive, meaning once a state

has been entered, it cannot be reentered. The computation of F1m(s) becomes more

complicated with non-progressive states that can be reentered an arbitrary number of

times. Non-progressive states result when feedback loops are present in the flowgraph.

For example, if transmittance T21 is added to the illness-death flowgraph in Figure 1,

the path 1→ 2→ 1 constitutes a feedback loop whose presence allows for an arbitrary

number of reentries into states 1 and 2. This leads to a countably infinite number of

distinct paths from 1→ 3. Summing over all such paths and using the same argument

used to derive (3) leads to the more complicated first-passage transmittance

F13(s) =
∞∑

k=0

{T12(s)T21(s)}
k T13(s) +

∞∑

k=0

{T12(s)T21(s)}
k T12(s)T23(s)

=
T13(s) + T12(s)T23(s)

1− T12(s)T21(s)
. (4)

With additional states and more complex feedback patterns amongst the states,

summing over all distinct paths from 1 → m becomes intractable without general

expressions for doing so. Butler (2000) provides such an expression in which (1) is

determined from T(s) as

f1mF1m(s) =
(m, 1) cofactor of Im −T(s)

(m,m) cofactor of Im −T(s)
:=
(−1)m+1|Ψm1(s)|

|Ψmm(s)|
(5)

where Ψm1(s) is the (m, 1) minor of Im−T(s), etc. Expression (5) is well-defined as

the first-passage transmittance if S contains all relevant states to the sojourn 1→ m
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and does not contain any irrelevant states, i.e. states that cannot possibly be transient

intermediate states during the sojourn.

Expression (3) is easily derived using (5) with

T =






0 T12 T13

0∗ 0 T23

0 0 0





. (6)

Expression (4) results when 0∗ is replaced by T21 in (6) to form a feedback loop.

In control theory and electrical engineering, first-passage transmittance f1mF1m(s)

would traditionally be computed by using Mason’s Gain Rule; see Phillips and Harbor

(1996). If the two cofactors in ratio (5) are expanded in terms of their permutation

sums and the non-zero terms in these sums are appropriately organized, then (5)

can be shown to agree with Mason’s Rule. A general proof of this is given in Butler

(2001).

2.3 Interval transition probabilities

Let Y (t) be the state of a patient at time t who enters state 1 at time 0. The interval

transition probability functions are

Pi(t) = P{Y (t) = i}

for i ∈ S. In the time domain, these functions are quite complicated convolutions of

subdistributions, but their Laplace transforms (using kernel e−st) are simple functions

of T(−s). Pyke (1961, eqn. 4.3) has shown that

P∗i (s) =

∫ ∞

0

e−stPi(t)dt =
(i, 1) cofactor of Im −T(−s)

|Im −T(−s)|
×
1−

∑
k∈S Tik(−s)

s
. (7)

Medhi (1994, §7.3.1) also provides a derivation.
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As a simple example, consider computation of P1(t) in the illness-death model.

The value of T in (6) gives

P∗1 (s) =
(1, 1) cofactor of I3 −T(−s)

|I3 −T(−s)|
×
1−

∑
k∈S T1k(−s)

s

= 1×
1− T12(−s)− T13(−s)

s
, (8)

which is the Laplace transform of

1− p12F12(t)− p13F13(t) = P (Occupy state 1 at time t).

The computation of P2(t) in the illness-death model is less trivial, but it also

provides a more general understanding of the factors in (7). This expression is

P∗2 (s) = (−1)
2+1

∣∣∣∣∣∣




−T12(−s) −T13(−s)

0 1





∣∣∣∣∣∣
×
1− T23(−s)

s

= T12(−s)×
1− T23(−s)

s
, (9)

which is the Laplace transform for convolution
∫ t

0

p12F
′
12(u)× {1− F23(t− u)}du :=

∫ t

0

E2(u)×H2(t− u)du,

where

E2(u)du = P{Enter into state 2 at time (u, u+ du)}

H2(t− u) = P{Hold in state 2 for t− u |Enter into state 2 at time u}.

The same interpretation for (7) applies in the general setting of an m-state network

with transmittance T and initial state 1 entered at time 0. The entrance rate Ei(t)

into state i at time t and holding probability Hi(t) in state i have respective Laplace

transforms

(i, 1) cofactor of Im −T(−s)

|Im −T(−s)|
and

1−
∑

k∈S Tik(−s)

s
(10)

that are the two factors of (7).
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3 Electrical network analogy

Now consider the clinical states S of the survival model as the nodes for the analogous

electrical network. A patient that arrives in state 1 at time zero becomes a Dirac

function δ(t) input at node 1 that records current with units dependent on the scale

of time for t. The total charge arriving in the network at instant t = 0 is therefore
∫ 0+
0

δ(t)dt = 1 coulomb. The analogy equates probability 1, the certain arrival of

the patient at time 0, with 1 coulomb of charge. From time 0 onward, the diffusion

of probability for the patient through the clinical states is exactly the diffusion of

charge through nodes of the electrical network. The fundamental idea is to dismantle

probability 1 into differentials of probability which equate with differentials of charge

flowing through nodes of the network. Whether considered as probability or charge

differentials, this collection of differentials represents the “virtual patient”.

3.1 Nodal charges over time

With probability as charge, then Pi(t) is both the probability the patient occupies

state i at time t and also the total charge residing at node i at time t. The virtual

patient occupies all states in S all of the time (t > 0) with positive probabilities, i.e.

Pi(t) > 0 for all i ∈ S, if C ′ij(t) > 0 for all t > 0 and all i, j ∈ S.Were the computation

of Pi(t) to be performed in the time domain, it would require two layers of summation.

The outer sum would be over all distinct finite-step paths from 1→ i. For each such

path, the inner sum would convolve the path’s associated subdistribution differentials

over all allocations of the allotted time (0, t] to states along the particular path for

which Y (0) = 1 and Y (t) = i. Of course the flow of charge actually follows every

possible finite-step path according to every possible allocation of finite time. However,

working in the transform domain and computing P∗i (s) instead eliminates the inner
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layer of convolving since transmittances for finite-step paths get multiplied under

convolution of their associated subdistributions. Indeed, were the right side of (7) to

be fully expanded in terms of permutation sums for the determinants as well as for

the division of determinants, formula (7) would lead to summation over all distinct

finite-step paths from 1→ i.

3.2 Impulse response function

In first-passage transmittance (5), the probability f1m that the patient reaches statem

in finite time is the total charge that eventually reaches sink node m. If f1m < 1, then

X has a defective distribution that puts probability 1− f1m at ∞ which corresponds

to charge that never reaches sink m.

In the survival model, MGF F1m(s) is the transform for the density/mass function

of sojourn time X given X < ∞ or fX(t). Product f1mfX(t) is the arrival rate of

sojourn probability at time t. For the electrical network, f1mfX(t) is the arrival rate

of charge or current arriving at node m at time t. A plot of current f1mfX(t) versus t

is the impulse response function for the Dirac input at node 1 which would be seen on

an oscilloscope attached to node m. The transform of this impulse response function

(with kernel est) is first-passage transmittance f1mF1m(s) which is often referred to

as the transfer function at node m.

The computation of f1mF1m(s) in (5) assumes a flow of charge that follows every

possible finite-step path from 1 → m according to all possible allocations of finite

time. If the right side of (5) were to be fully expanded using permutation sums for the

determinants as well as for the division of determinants involved, then the formula

would lead to a summation over all distinct finite-step paths from 1 → m of the

associated path transmittances, defined as the product of one-step transmittances

along the path. As an example, see (3) for the simple illness-death model. Path
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transmittances serve in place of a second layer of convolving which would be required

for direct computation of f1mfX(t) in the time domain as seen, for example, in (2).

Transform analysis is preferred here because of its tractability and also becauseF1m(s)

is easily and accurately inverted by using saddlepoint methods to determine highly

accurate approximations for fX(t) and its CDF; see Butler (2000 and 2007, ch. 13).

3.3 Limiting behavior

Limiting behaviors as t→∞ can be compared within the two interpretations of our

model. If the semi-Markov model has transient and absorbing states only, then

lim
t→∞

Pi(t) =





0 if state i is transient

αi if state i is absorbing,
(11)

where αi > 0 is the absorption probability into state i when starting in state 1. For

the electrical network, αi is the total charge that accumulates in sink node i. In this

transient setting, the limiting current into state i is limt→∞P ′i(t) = 0 for all i ∈ S.

This may be shown by noting that

lim
t→∞

P ′i(t) = lim
s→0

s

∫ ∞

0

e−stP ′i(t)dt = lim
s→0

s {sP∗i (s)−P
∗
i (0)} = 0. (12)

Alternatively, in the case where S is finite and the semi-Markov process has sta-

tionary distribution {πi : i ∈ S}, the limit in (11) is πi the steady-state charge at

node i; see, for example, Medhi (1994, §7.4). In this case, the limit in (12) is likewise

0 for all i since the net flow of current into state i in its equilibrium state is 0.

3.4 Summary

The underlying reasons why multistate survival models and electrical networks share

a common mathematical analysis can be traced to double summation representations
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for sojourn probability densities and impulse response functions as well as for interval

transition probabilities and nodal charge distributions. A sojourn density (or impulse

response function) from 1 → m at time (t, t + dt) is an outer summation, over all

finite-step paths from 1→ m, of an inner summation that convolves randomly timed

path steps so that first arrival in state m is assured at time (t, t+ dt). Thus first pas-

sage through a finite-state feedback network is essentially a countably infinite parallel

connection of finite-step paths that are, in turn, series connections of randomly de-

layed steps. The two models, for a patient sojourn and the flow of electrical charge,

treat parallel connections and series connections the same way (but for different rea-

sons) and is why they share a common mathematical basis. The same explanation

holds for the mathematical equivalence between interval transition probabilities of a

patient and nodal charge distributions.

First consider the inner series connection associated with a particular finite-step

path 1→ 4→ 2→ m. The path probability p14p42p2m and the MGF for path passage

timeM14(s)M42(s)M2m(s) are factors in the path transmittance regardless of whether

the flow is probability or charge. For the patient, the product of one-step transmit-

tances along the path, p14M14(s)× p42M42(s)× p2mM2m(s) computes the probability

of taking the path times the MGF for the time to traverse the path assuming indepen-

dent holding times in the path states. For the flow of charge, the path transmittance

is the product of two terms: the proportion of current following the path out of node

1 and the transform for a convolution that reflects the superpositioning of contin-

uous current flow for all t > 0 through the series connection of the nodes in path

1 → 4 → 2 → m. The main point here is that the path transmittance is the correct

transform in both instances: whether the patient moves from 1 → 4 → 2 → m in

only one particular time increment (t, t + dt) or flows as current through the series

connection during all time increments, as with the virtual patient.
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Secondly, the outer summation of path transmittances over all distinct finite-step

paths for 1 → m is the proper computation whether considering patient movement

or charge flow. To make this more clear, consider 3 parallel paths as in Figure 2 with

transmittances Ti(s) = piMi(s) as Laplace-Stieltjes transforms of subdistributions

piFi(t).

Figure 2. Parallel connection of transmittances.

The passage distribution through the mutually exclusive parallel paths is a finite

mixture distribution given by the total probability formula

dF (t) =
3∑

i=1

pidFi(t), (13)

with transmittance

T (s) =

∫ ∞

0

estdF (t) =
3∑

i=1

piMi(s) =
3∑

i=1

Ti(s) (14)

summed over distinct paths. This is also the proper computation for the superpo-

sitioning of current flow in the parallel connection of the electrical network. If (13)

is divided by dt, the resulting equation is Kirchhoff’s Law for the flow of currents

through a parallel connection and (14) is its transform version. The main difference,

however, is that current flows through all three of the parallel paths all of the time,

while the patient only takes one of the paths during one specific time increment.

In summary, whether patient movement or the flow of charge is concerned, the

same mathematical techniques and formulas apply. The mathematical theory is that

used in superpositioning of linear systems and is appropriate both for multistate

survival models and for electrical network models.
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4 Self-consistency and electrical networks

Suppose patients are subject to a single risk factor (death) but also may be inde-

pendently right censored or left truncated. Section 4.2 devises a theoretical electrical

network in which the flow of charge to sink describes the probability flow of such a

patient to the death state while also accommodating for both censoring and trunca-

tion. In determining the impulse response at the death node, the distribution function

F 0 (x) for patient lifetime is shown to satisfy a self-consistency relationship like that

of Efron (1967) but for the population distributions that are involved.

When censored data subject to left-truncation are observed, an empirical electrical

network, such as that given in Section 5, describes the flow of empirical probability

reflected in the data. When determining the impulse response output at the death

node, estimate F̂ 0 (x) is shown to satisfy the same self-consistency relationship as

proposed in Efron (1967) and reduces to the Kaplan-Meier estimate for accommodat-

ing right censoring and left truncation. In this electrical context, the Kaplan-Meier

estimate is the impulse response function reflecting the flow of empirical probability

through an electrical network designed to accommodate censoring and truncation.

4.1 Censored and truncated lifetimes

Let random variable X0 be the lifetime for a patient in the population with distribu-

tion function F 0 (x) and survival function S0 (x) . Suppose T 0 is a random truncation

time that is independent of X0 and which may also be interpreted as age upon en-

try into the study. Let the random censoring time Z0 be independent of X0 and

dependent on T 0 only through the fact that the event {T 0 < Z0] is assumed to have

probability 1. If T 0 = t, then also assume that the conditional distribution function

of Z0|T 0 = t is the distribution function G0 restricted to (t,∞). For an untruncated
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patient who enters into the study, the truncation time T 0 is observed along with

min(X0, Z0). This is the single event setting since one event time X0 is considered.

Since only the smaller of X0 and Z0 is observed when T 0 < min(X0, Z0), it is

convenient to define the following competitive variables and their conditional distri-

butions:

T
d
= T 0 | {T 0 < X0} ∼ E (t)

X
d
= X0 | {T 0 < X0 < Z0} ∼ F (x)

Z
d
= Z0 | {T 0 < Z0 < X0} ∼ G (z)

with p1 = P{X0 < Z0 |T 0 < X0} and p0 = 1− p1. The three random variables T,X,

and Z represent competitive values for truncation time, lifetime, and censoring time

respectively, and the probability p1 is also competitive. All three distributions and p1

are estimable from observed data. The support for all random variables is assumed

to be (0,∞) .

4.2 Semi-Markov systems

The lifetime of a random patient that may be right-censored and left-truncated is

shown in the semi-Markov flowgraph of Figure 3. A patient is “born” into node B

at time 0. The transmittance input to node B takes the value 1 and is the Laplace-

Stieltjes transform for a Dirac function input at time 0. An untruncated patient enters

the study in the upper portion of the flowgraph at time T ∈ [t, t+ dt) through state

1t where t indexes one amongst a continuum of truncation-time states {1t : t > 0}

as indicated by the triples of vertical dots. An observed lifetime occurs when the

patient passes directly from 1t → D with D as the absorbing “death” state. A

right-censored patient passes to state Rz amongst the continuum of right-censored

states {Rz : z > t} where z is the absolute time of censoring. After censoring, the
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patient’s subsequent unobserved lifetime depends on z as indicated by the transition

from Rz → D. The unobserved direct transition B → D, indicated at the bottom of

the flowgraph, is the transmittance to death for a truncated patient. All transition

times in the semi-Markov flowgraph are observed except for passages from B → D

and Rz → D.

Each pathway in the flowgraph is labelled with its transmittance. For example,

the transition B → 1t occurs in time t hence the MGF is est with probability

dL(t) = P{T 0 ∈ [t, t+ dt), T 0 < X0} = τdE(t), (15)

where τ = P{T 0 < X0} =
∫∞
0
dL(t). With lifetime y, the transmittance 1t → D with

incremental transition time y − t is

Mt(s) =

∫ ∞

t

es(y−t)dBt(y), (16)

where dBt(y) is the probability the patient has lifetime y observed after entering the

study at time t, or

dBt(y) = P{X0 ∈ [y, y + dy), Z0 > y |T 0 ∈ [t, t+ dt), T 0 < X0}. (17)

A patient who is censored at time z > t makes transition 1t → Rz in time z − t with

probability

dQt(z) = P{Z0 ∈ [z, z + dz),X0 > z |T 0 ∈ [t, t+ dt), T 0 < X0}, (18)

hence the transmittance es(z−t)dQt(z). The fact that this transmittance depends on

the destination state Rz is one reason why the flowgraph is semi-Markov.

Two of the transmittances N(s, z) and Υ(s) are associated with transition times

that are not directly observable. These transmittances are reexpressed in Lemma 1

in terms of quantities that are estimable as a result of the independent censoring and

truncation assumptions.
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Lemma 1 Suppose that E0, F 0, and G0 have no common jump points so that all

Riemann-Stieltjes integrals given below are defined. The transmittances that corre-

spond to unobserved transition times are estimable though the following relationships.

N(s, z) =
e−sz

S0(z)

∫ ∞

z

esydF 0(y) (19)

Υ(s) =

∫ ∞

0

esy
{
1− τ

∫ y

0

dE(t)

S0(t)

}
dF 0(y). (20)

Proof : For (19),

N(s, z) =

∫ ∞

z

es(y−z)dHz(y), (21)

where, for y > z > t,

dHz(y) = P{X0 ∈ [y, y + dy) |Z0 ∈ [z, z + dz), Z0 < X0}

= dF 0(y)/S0(z), (22)

upon using independent censoring. Substitution of (22) into (21) leads to (19).

Derivation of (20), requires first relating dE(t) to dE0(t) as

dE(t) = P{T 0 ∈ [t, t+ dt) |T 0 < X0}

= P{T 0 ∈ [t, t+ dt), t < X0}/τ

= dE0(t)S0(t)/τ. (23)

Thus

Υ(s) =

∫ ∞

0

esyP
{
X0 ∈ (y, y + dy), X0 < T 0

}

=

∫ ∞

0

esy{1− E0(y)}dF 0(y)

=

∫ ∞

0

esy
{
1−

∫ y

0

dE0(t)

}
dF 0(y),

which, upon using (23), gives (20). �

20



4.3 Self-consistency of F 0

The semi-Markov flowgraph in Figure 3 describes the flow of probability for the

patient and so the impulse response function at node D must be the density of X0

or dF 0(x)/dx. A plot of current dF 0(x)/dx versus x would be the output seen on

an oscilloscope were it to be attached to D. As an electrical network, the Laplace-

Stieltjes transform of F 0(x) is the transfer function of the network and is determined

by summing all parallel transmittances from B → D. This gives

∫ ∞

0

esydF 0(y) = Υ(s) + ∆(s) + Ξ(s) (24)

and represents a total probability transmittance summation for a virtual patient who

may be truncated Υ(s), may have an observed lifetime ∆(s), or may be censored

Ξ(s). Here,

∆(s) =

∫ t=∞

t=0

estdL(t)Mt(s) (25)

Ξ(s) =

∫ t=∞

t=0

estdL(t)

{∫ z=∞

z=t

es(z−t)dQt(z)N(s, z)

}
. (26)

The Stieltjes integrals in (24), (25) and (26) exist so long as the distributions have no

common jump points. Expressions (24), (25), and (26) may also be derived from first

principles without the flowgraph presentation, however, the use of flowgraphs and the

superpositioning of parallel transmittances add clarity and emphasize the electrical

network analogy.

Expression (24) is actually a self-consistency equation for F 0(x) expressed in the

transform domain that can be solved for the value of F 0(x). To do this, the transmit-

tances Υ(s), ∆(s), and Ξ(s) must first be expressed in terms of F 0 and the estimable

distribution functions F,G, and H. Equation (20) expresses Υ(s) in terms of F 0(x)

and is substituted into (24). Expressions for ∆(s) and Ξ(s) in terms of F 0(x) and
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F (x) are

∆(s) = τp1

∫ ∞

0

esydF (y) (27)

Ξ(s) = τp0

∫ ∞

0

esy
{∫ y

0

dG(z)

S0(z)

}
dF 0(y), (28)

as shown in the Appendix. When substituted into (24), the self-consistency equation

for F 0(x) becomes

∫ ∞

0

esydF 0 (y) =

∫ ∞

0

esy
{
1− τ

∫ y

0

dE(t)

S0(t)

}
dF 0(y) (29)

+ τp1

∫ ∞

0

esydF (y) + τp0

∫ ∞

0

esy
{∫ y

0

dG(z)

S0(z)

}
dF 0(y).

Inverting the transforms leads to the unique solution for dF 0 (x) as

dF 0 (y) =

{
1− τ

∫ y

0

dE(t)

S0(t)

}
dF 0(y) (30)

+ τp1dF (y) + τp0

{∫ y

0

dG(z)

S0(z)

}
dF 0(y).

Cancelling dF 0(y) on both sides, as well as the common factor τ that remains, leads

to

dF 0 (y) =

{∫ y

0

dE(t)

S0(t)
− p0

∫ y

0

dG(z)

S0(z)

}−1
p1dF (y) (31)

where the term in curly braces is positive. This is the population version of the self-

consistent equation originally introduced by Efron (1967) for the estimation of F 0 (x)

without truncation. If there is no truncation, then dE(0) = 1 so
∫ y
0
dE(t)/S0(t) = 1

and (31) gives Efron’s result for the population distribution.

Simple computations show that the right side of (31) is dF 0(y). Expression (23)

leads to ∫ y

0

dE(t)

S0(t)
=
E0(y)

τ
.
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The use of Bayes theorem on dG(z) in the second term of (31) leads to

p0

∫ y

0

dG(z)

S0(z)
= p0

∫ y

0

P {Z0 ∈ [z, z + dz) |Z0 < X0, T 0 < X0}

S0(z)

= p0

∫ y

0

dG0(z)S0(z)

p0τS0(z)
=
G0(y)

τ
.

Since {Z0 ≤ y} ⊆ {T 0 ≤ y}, the term in curly braces in (31) is

E0(y)

τ
−
G0(y)

τ
=
P (T 0 ≤ y < Z0)

P (T 0 ≤ X0)
.

The right side of (31) is now
{
P (T 0 ≤ y < Z0)

P (T 0 ≤ X0)

}−1
p1P{X

0 ∈ [y, y + dy)|T 0 < X0 < Z0} = dF 0(y)

when Bayes theorem is used on the last probability for dF (y).

5 Kaplan-Meier and the flow of empirical proba-

bility

Suppose untruncated data consist of n1 lifetimes, observed as the pairs {(t1i, xi) :

i = 1, . . . , n1} where truncation time t1i < xi, and n0 censored values {(t0j , zj) : j =

1, . . . , n0} with t0j < zj. Distribution functions E,F, and G are estimated by their

empirical counterparts Ê(t), F̂ (x), and Ĝ(z) based on {t1i} ∪ {t0j}, {xi}, and {zj}

respectively while p̂1 = n1/n· with n· = n0 + n1.

Figure 4 shows a semi-Markov flowgraph that is an empirical version of the graph

in Figure 3. Each patient contributes a separate path from B→ D with weight n−1· τ .

If estimate F̂ 0(y) = 1 − Ŝ0(t) is assumed to exist, then unobserved branches Rzj →

D and B → D direct have empirical transmittances

N̂(s, zj) =
e−szj

Ŝ0(zj)

∫ ∞

zj

esydF̂ 0(y)

Υ̂(s) =

∫ ∞

0

esy

{

1−

∫ y

0

τdÊ(t)

Ŝ0(t)

}

dF̂ 0(y)
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obtained by using the estimable expressions in Lemma 1. Superpositioning by sum-

ming over parallel empirical transmittances, gives a transfer function for the output

at node D as

∫ ∞

0

esydF̂ 0 (y) = Υ̂(s) +
τ

n·

n1∑

i=1

est1ies(xi−t1i) +
τ

n·

n0∑

j=1

est0jes(zj−t0j)N̂(s, zj). (32)

The second term is τn1/n·
∫∞
0
esydF̂ (y) while the last term is

τ

n·

∫ ∞

0

1

Ŝ0(z)

{∫ ∞

z

esydF̂ 0(y)

}
n0dĜ(z) =

τn0
n·

∫ ∞

0

esy

{∫ y

0

dĜ(z)

Ŝ0(z)

}

dF̂ 0(y).

Inverting the Laplace-Stieltjes transforms in (32) and rearranging terms leads to

Ĉ(y)dF̂ 0 (y) :=

{∫ y

0

dÊ(t)

Ŝ0(t)
− p̂0

∫ y

0

dĜ(z)

Ŝ0(z)

}

dF̂ 0 (y) = p̂1dF̂ (y) (33)

as the defining equation for self-consistency. The solution to (33) is now summarized.

Theorem 2 Let x∗ = min{xi} and x∗ = max({xi}, {zj}). A unique self-consistent

solution exists to (33) over (x∗, x
∗) which is the Kaplan-Meier estimator. As a conse-

quence, the Kaplan-Meier mass points at {xi} comprise the discrete impulse response

function at node D for the flow of empirical probability through the network in Figure

4. These results require the following conditions: (i) Ê(t), F̂ (t), and Ĝ(t) have no

common jump points; (ii) without any loss in generality, censored values less than

x∗ have already been deleted as uninformative; (iii) if Nt is the number of patients

at risk at time t, then Nt > 0 for all t ∈ (x∗, x∗). Assumption (iii) assures that the

solution is unique.

Proof. Since dF̂ (y) = 0 for y /∈ {xi}, the support for dF̂ 0 (y) can only be {xi} and

also regions in (x∗, x
∗) for which Ĉ(y) = 0. The latter possibility will be eliminated

with the assumption thatNt > 0 for all t ∈ (x∗, x∗). For the sake of argument, suppose

that x1 < x2 < · · · < xn1 . For any t between min[{t1i}, {t0j}], and x1, Ĉ(t) > 0 and
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and dF̂ (t) = 0 imply dF̂ 0 (t) = 0 so that Ŝ0(t) = 1 over this range. At x1 = x∗, (33)

is

Ĉ(x1)dF̂
0 (x1) =

(
N1
n·
− 0

)
dF̂ 0 (x1) =

1

n·
(34)

where N1 denotes the number truncated before x1 and therefore at risk, while 0 is

the number censored before x1. The solution to (34) is dF̂ 0 (x1) = 1/N1 so that

Ŝ(x1) = 1− 1/N1.

More generally, the following recursions

1

dF̂ 0(xl)
=

Nl

Ŝ0(xl−1)
and Ŝ0(xl) = Ŝ0(xl−1)

(
1−

1

Nl

)
(35)

are shown to hold for l = 1, . . . , n1 which are those for the Kaplan-Meier estimator.

The l = 1 case above has been shown to hold with x0 = x−1 .

The proof of (35) proceeds by using induction wherein recursion l in (35) is shown

to imply recursion l + 1. Suppose that ∆Tl+1 = n·{Ê(xl+1) − Ê(xl)} and ∆Rl+1 =

n·p̂0{Ĝ(xl+1) − Ĝ(xl)} count the number of truncation and right censoring times

within (xl, xl+1). From (33),

1

dF̂ 0(xl+1)
=

1

n·Ĉ(xl+1)
=

1∑

k=0

∑

{j : tkj <xl+1}

1

Ŝ0(tkj)
−

∑

{j : zj <xl+1}

1

Ŝ0(zj)

=
1

dF̂ 0(xl)
+
∆Tl+1

Ŝ0(xl)
−
∆Rl+1

Ŝ0(xl)
,

where the constant value Ŝ0(t) ≡ Ŝ0(xl) over t ∈ [xl, xl+1) has been used. From (35),

this is

1

dF̂ 0(xl+1)
=

Nl

Ŝ0(xl−1)
+

∆Tl+1 −∆Rl+1

Ŝ0(xl−1) (1− 1/Nl)

=
Nl

Ŝ0(xl−1) (Nl − 1)
(Nl − 1 + ∆Tl+1 −∆Rl+1)

=
Nl+1

Ŝ0(xl)
, (36)

upon using the recursion for Ŝ0(xl) in (35). Using Ŝ0(xl+1) = Ŝ0(xl)−dF̂ 0(xl+1) and

(36) gives the remaining recursion. �
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5.1 Relevant Literature

Semi-Markov modeling has been used to explain right censoring (but without trun-

cation) in Lagakos, Sommer, & Zelen (1978) and later Anderson et al. (1993, Ex.

III2.8). Their models record passage time up to min(X0, Z0) but not afterwards

and alternatively represent censoring as an absorbing node that competes with the

death node. Their semi-Markov competing risks models are different and only show

branches of the model that are observable. By contrast, our semi-Markov models take

account of the unobservable transitions that include life transitions after censoring,

Rz → D, and truncation without observation, B → D. By accounting for all transi-

tions leading to state D, the impulse response at state D is the density for X0. This

cannot happen in these other model settings where censoring and death are compet-

ing as absorbing states in the model. Of course these other models were developed

to address different concerns: the determination of a nonparametric maximum likeli-

hood estimator for F 0. Perhaps what is most interesting is that both models lead to

the same Kaplan-Meier estimator.

AMarkov model that allows for random left truncation was also given in Anderson

et al. (1993, Ex. III3.3). This model shows the parallel connection of untruncated

and truncated paths but otherwise has not been expanded to also allow for right

censoring as in Figure 3.

5.2 Irregularities and examples

Uniqueness of the solution to the self-consistent equations in (33) may be lost if no

patients are at risk during a portion of the informative time span, i.e., there is a

t0 ∈ (x∗, x
∗) for which Nt0 = 0. Furthermore, in this instance Ŝ0 does not have

to place all mass on {xi} but rather can place non-zero mass on an interval that
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contains t0 since Ĉ(t0) = 0. Let t∗ be the next observed time point above t0, which

is necessarily a truncation time, and let z∗ be the next time point below t0 which

is necessarily a lifetime or censoring time. If z∗ is a censoring time (lifetime), then

interval (z∗, t
∗) can (cannot) hold non-zero mass in the solution to the self-consistency

equations. Support intervals such as (z∗, t
∗) were first noted by Frydman (1994) as

additional sites capable of holding mass for the nonparametric maximum likelihood

estimate when there is truncation. Such sites were not mentioned in Turnbull’s (1976)

original account dealing with general interval censoring and truncation. These points

are illustrated using two simple examples.

Example 1. Consider the ordered data

tx1 < tx2 < x1 < tz1 < z1 < x2 < tx3 < x3

in which tx1 is the truncation time for x1, etc. At x2, the two patients entered into the

study are no longer at risk but the third patient has not yet entered. The example

violates the conditions of Theorem 2 since there are no patients at risk during the

interval (x2, tx3). The self-consistent solution places mass 1/2 on x1 and 1/2 on x2.

This leads to Ŝ0(x2) = 0 and Ĉ(x2) = 2 from which the value for

Ĉ(tx3) = Ĉ(x2) +
1

Ŝ0(tx3)

is undefined due to division by Ŝ0(tx3) = 0.

In computing the nonparametric maximum likelihood estimate, the support set

from Turnbull (1976) is xi with probability si for i = 1, 2, 3. The respective likelihood

terms contributed by x1, z1, x2, and x3 are

L = s1(s2 + s3)
s2

s2 + s3

s3
s3
= s1s2

and the maximum likelihood estimate agrees with the self-consistent estimate with

ŝ1 = ŝ2 = 1/2.
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Example 2. Interchange z1 and x2 from Example 1 to get ordered data

tx1 < tx2 < x1 < tz1 < x2 < z1 < tx3 < x3.

Again there are no patients at risk during (z1, tx3) so Theorem 2 is violated. The

self-consistent solution places mass 1/2 on x1, 1/4 on x2, mass p in (z1, tx3), and mass

1/4− p at x3 for any p ∈ [0, 1/4). In the self-consistent solution,

Ĉ(z1) = 4−
1

Ŝ0(z1)
= 4− 4 = 0.

By allowing arbitrary mass p in (z1, tx3), then

Ĉ(tx3) = Ĉ(z1) +
1

Ŝ0(tx3)
=

1

1/4− p
> 0

for any p ∈ [0, 1/4) which leaves dF̂ 0(x3) = 1/4− p.

The support set for the maximum likelihood estimate is determined from Frydman

(1994) as x1, x2, (z1, tx3), and x3 with probabilities s1, . . . , s4. The nonparametric

likelihood is

L = s1s2
s3 + s4

s2 + s3 + s4
= s1s2

1− s1 − s2
1− s1

which attains the same collection of maxima as the self-consistent solution.

5.3 Proportional hazards extensions in single event settings

Suppose data consist of n patients with responses (ti, xi, δi, ui) for i = 1, . . . , n where

the respective values are truncation time, lifetime/censoring time, indicator of lifetime

response, and covariate vector. For notational convenience suppose that x1 < · · · <

xn and that there are no ties. In the context of the proportional hazards model,

patient i with lifetime Xθi has survival function P (Xθi > t) = S0(t)
θi with θi =

exp(βTui). This patient’s survival function is the same as that for θi independent

virtual baseline patients, hence, in electrical terms, this patient has a charge of θi
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coulombs. Equivalently, the hazard for Xθi is the sum of the hazards of these θi

virtual baseline patients.

By working with a total charge of θ· =
∑n

i=1 θi coulombs or virtual patients rather

than n heterogeneous patients, partial likelihood and baseline survival S0(t) estimates

take on new interpretations. For an assumed β, the partial likelihood under both right

censoring and left truncation is

Lp(β) =
n∏

i=1

(
θi∑
j∈Ri

θj

)δi
, (37)

where Ri is the risk set at time xi so that j ∈ Ri whenever tj < xi < xj. At death

point xi, the hazard contribution to partial likelihood is the proportion of charge or

the fraction of virtual patients that die at that time point. It is the proportional

hazards model assumption itself that allows a risk set of Ri heterogenous patients to

be summarized by putting
∑

j∈Ri
θj coulombs of charge at risk at time xi amongst

which θi coulombs are dissipated.

The Breslow or Nelson-Aalen estimate of baseline survival for an assumed value

of β is simply

Ŝ0(t) =
∏

{i : xi≤ t}

(

1−
1∑

j∈Ri
θj

)δi
. (38)

Estimate (38) is meaningful under the electrical analog because 1−1/
∑

j∈Ri
θj is the

probability that 1 coulomb or a single baseline patient survives lifetime point xi when
∑

j∈Ri
θj coulombs or virtual baseline patients are subject to risk at time x−i . Thus

(38) adjusts the observed probabilities pertaining to θi-patients so they are relevant

to a single baseline patient.

The Kalbfleisch & Prentice estimator (2002, eqn. 4.36)

ŜKP0 (t) =
∏

{i :xi≤ t}

(

1−
θi∑
j∈Ri

θj

)δi/θi
(39)
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is equally simple to motivate. The probability that θi coulombs survive time xi is

1− θi/
∑

j∈Ri
θj when computed from amongst

∑
j∈Ri

θj coulombs at risk. However,

this is the survival probability S0(t)
θi for Xθi not X1. To have this apply to a baseline

patient, the probability is raised to the 1/θi power as shown in (39).

The electrical analogy equates the risk of a θi-patient with θi independent baseline

patients. From this perspective, very simple and intuitive interpretations result for

these three commonly used estimators.

6 Competing Risks

In the classical competing risks setting, there are multiple event times X0
1 , . . . , X

0
K

with distribution F 0(x1, . . . , xK) that compete with independent censoring time Z0

and independent left truncation time T 0. The value and index for M0 = min{X0
k}

are observed if the events are untruncated, T 0 < M0, and uncensored, M0 < Z0. The

aim is to estimate the collection of subdistributions

F 0k (x) = P (Xk =M0 ≤ x) k = 1, . . . , K

associated with F 0 from competitive data that are subject to right censoring and

left truncation. The distributional structure of the censoring and truncation vari-

ables supposes T 0 ∼ E0 and Z0|T 0 = t ∼ G0 restricted to (t,∞) with T 0 and Z0

independent of X0
1 , . . . ,X

0
K . The survival function of M0 is S0+(t) = 1− F 0+(t) where

F 0+(t) =
∑K

k=1 F
0
k (x).

The data are observed to come from the competitive distributions

T
d
= T 0 | {T 0 < X0} ∼ E (x)

Xk
d
= X0

k | {T
0 < X0

k =M0 < Z0} ∼ Fk (x)

Z
d
= Z0 | {T 0 < Z0 < M0} ∼ G (z) .
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for k = 1, . . . ,K. The competitive probabilities pk = P (X0
k = M0 < Z0) for k ≥ 1

and p0 = P (Z0 < M0) are estimable from the data and add to 1.

6.1 Population semi-Markov flowgraph

Figure 5 shows the competing risk flowgraph when there are K = 2 possible events

that are subject to random right censoring and left truncation. The transmittances

along with estimable expressions, determined from arguments similar to those in sec-

tion 4.2, are dL(t) = τdE(t) where τ = P (T 0 < M0) and Mkt(s) =
∫∞
t
es(y−t)dBk(y)

where

dBk(y) = P
{
X0
k =M0 ∈ [y, y + dy),M0 < Z0 |T 0 ∈ [t, t+ dt), T 0 < M0

}

dQt(z) = P
{
Z0 ∈ [z, z + dz), Z0 < M0 |T 0 ∈ [t, t+ dt), T 0 < M0

}

Nk(s, z) =
e−sz

S0+(z)

∫ ∞

z

esydF 0k (y)

Υk(s) =

∫ ∞

0

esy
{
1− τ

∫ y

0

dE(t)

S0+(t)

}
dFk(y).

The sum over all paths from B to Dk, within which lifetimes of type k are observed,

gives transmittance

∆k(s) = τpk

∫ ∞

0

esydFk(y).

Summing from B to Dk but passing through censored states {Rz} gives

Ξk(s) = τp0

∫ ∞

0

esy
{∫ y

0

dG(z)

S0+(z)

}
dF 0k (y).

The Laplace-Stieltjes transform for subdistribution F 0k is the sum over all trans-

mittances from B to Dk or Υk(s) +∆k(s)+Ξk(s). Transform inversion can be shown

to lead to

dF 0k (y) =

{∫ y

0

dE(t)

S0+(t)
− p0

∫ y

0

dG(z)

S0+(z)

}−1
pk dFk (y) (40)

for k = 1, . . . , K.
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6.2 Empirical semi-Markov flowgraph

The data consist of nk observed events of type k and n0 censored with total sample

size n· = n0 +
∑K

k=1 nk. Suppose xki is the ith observed event time of type k with

associated truncation time tki < xki. The times {t0i : i = 1, . . . , n0} are the truncation

times for the censored data. Truncation distribution E is estimated using Ê, the

empirical distribution of {tkj : k = 0, . . . , K; j = 1, . . . , nk} while F̂k and Ĝ are

the empirical distributions of {xki : i = 1, . . . , nk} and censoring times {zj : j =

1, . . . , n0}, respectively. Event probability estimates are p̂k = nk/n· .

Figure 6 shows the empirical competing risk flowgraph with K = 2. Summing

over all paths from B to Dk leads to the self-consistency equations

Ĉ(y)dF̂ 0k (y) = p̂kdF̂k(y) = 1/n· k = 1, . . . , K (41)

where

Ĉ(y) =

∫ y

0

dÊ(t)

Ŝ0+(t)
− p̂0

∫ y

0

dĜ(z)

Ŝ0+(z)
.

The solution to (41) is now summarized.

Theorem 3 Let x∗ = mink,i{xki} and x∗ = maxk,i,j({xki}, {zj}). Subject to condi-

tions (i)-(iii) below, a unique self-consistent solution exists to the K equations in (41)

over (x∗, x
∗). The solution has subdistribution mass functions given as the Kaplan-

Meier weights for this competing risks setting. These Kaplan-Meier weights are the

discrete impulse response functions at their respective nodes {Dk} that result from

the flow of empirical probability through the network in Figure 6 (adjusted if K > 2).

These results require the following conditions: (i) Ê(t), {F̂k(t)}, and Ĝ(t) have no

common jump points; (ii) without any loss in generality, censored values less than x∗

have already been deleted as uninformative; (iii) if Nt is the number of patients at

risk at time t, then Nt > 0 for all t ∈ (x∗, x∗). Assumption (iii), in particular, assures

that the solution is unique.
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Proof. The proof is the same inductive proof used for Theorem 2. Assumption

Nt > 0 assures that mass is only placed on event times. Order the N = n·−n0 event

times as x1 < · · · < xN and suppose the associated event types are i(1), . . . , i(N). The

l = 1 case of induction holds and states that dF̂ 0i(1)(x1) = 1/N1 and Ŝ
0
+(x1) = 1−1/N1

where N1 is the number of patients at risk at time x1 = x∗. Assuming the lth case

specified as

1

dF̂ 0i(l)(xl)
=

Nl

Ŝ0+(xl−1)
Ŝ0+(xl) = Ŝ0+(xl−1) (1− 1/Nl) ,

it can then be shown that the (l + 1)st case holds. This gives an inductive proof for

Kaplan-Meier weights. �

Subdistribution estimate F̂ 0k accumulates Kaplan-Meier probabilities dF̂ 0k at event

times of type k where the Kaplan-Meier estimate Ŝ0+(x) = 1 −
∑K

k=1 F̂
0
k (x) for the

survival of M0 has been computed by using the pooled set of event times. If x∗ is a

censored value, then Ŝ0+(x) and {F̂
0
k (x)} are indeterminate for x > x∗.

6.3 Proportional hazards extensions in competing risk set-

tings

Prentice et al. (1978) review the options proposed by Holt (1978) for including

covariates in the Cox model and offer two models for this setting. In the first,

regression coefficients are cause-specific so that a patient with covariate u would

have the cause-specific hazard θkλ0k(t) where θk = exp(βTk u) and the baseline haz-

ard is λ0k(t) = dF 0k (t)/S
0
+(t). For this model, the K cause-specific parameter sets

{θ1, λ01(·)}, . . . , {θK, λ0K(·)} are L-independent (Barndorff-Nielsen, 1978, §3.3) in

the sense that the likelihood is completely separable into K such groups of parame-

ters. Accordingly, cause specific baseline hazards, subdistributions, and regressions

are estimated separately by using the methods of section 5.3.
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Under the secondmodel, the cause specific baseline hazards are proportional so the

kth event type hazard is θkλ0(t) with θk = exp(αk + βTk u). In this model, a patient

with covariate u is assumed to have θ· =
∑K

k=1 θk coulombs of charge and can be

shown to have marginal survival function S0(t)
θ·. In regression estimation, this leads

to the partial likelihood given in Prentice et al. (1978, p. 547) that factors a logistic

model {θj/θ· : j = 1, . . . , K} for the event type of each patient as well as a partial

likelihood factor as in (37) that computes probabilities for deaths of patients but

assuming patients have charges of θ· that represent their total risk. Correspondingly,

estimates of S0(t) have support over the pooled collection of event times and can

be computed as in (38) or (39) but again assuming each patient has θ· coulombs of

charge.

7 Appendix

Proof of (27): Substituting (15), (16), and (17) into (25) gives

∆(s) = τ

∫ t=∞

t=0

estdE(t)

∫ y=∞

y=t

es(y−t)dBt(y)

= τ

∫ y=∞

y=0

esy
∫ t=y

t=0

P
{
X0 ∈ [y, y + dy), Z0 > y, T 0 ∈ [t, t+ dt) |T 0 < X0

}

= τ

∫ ∞

0

esyP{X0 ∈ [y, y + dy), Z0 > X0 |T 0 < X0} = τp1

∫ ∞

0

esydF (y).

Proof of (28): Substituting (15) and (19) into (26) gives

Ξ(s) = τ

∫ t=∞

t=0

dE(t)

∫ z=∞

z=t

dQt(z)

S0(z)

∫ ∞

z

esydF 0(y) =

∫ ∞

0

esydB(y),

where

dB(y) = τdF 0(y)

∫ z=y

z=0

1

S0(z)

∫ t=z

t=0

dQt(z)dE(t). (42)
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Substituting (18) into (42), the integral in t is

∫ t=z

t=0

P{Z0 ∈ [z, z + dz),X0 > Z0, T 0 ∈ [t, t+ dt) |T 0 < X0}

= P{Z0 ∈ [z, z + dz), X0 > Z0 |T 0 < X0}

= P{Z0 ∈ [z, z + dz) |T 0 < Z0 < X0}P{X0 > Z0 |T 0 < X0}

= dG(z)p0. (43)

Substitution of (43) into (42) gives (28).
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Figure 3. Semi-Markov flowgraph for a virtual patient’s lifetime subject to a single
risk.
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Figure 4. Empirical semi-Markov flowgraph providing an approximation for the
single-risk flowgraph of Figure 5.
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Figure 5. Semi-Markov flowgraph for a virtual patient’s lifetime subject to two
competing risks.
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Figure 6. Empirical flowgraph providing a semi-Markov approximation for the
competing-risks flowgraph in Figure 7.
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