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Abstract

Permutation tests for symmetry are suggested for data that are subject to
right censoring. Such tests are directly relevant to the assumptions that underlie
the generalized Wilcoxon test since the symmetric logistic distribution for log-
errors has been used to motivate Wilcoxon scores in the censored accelerated
failure time model. Its principal competitor is the log-rank test motivated by an
extreme value error distribution that is positively skewed. The proposed one-
sided tests for symmetry against the alternative of positive skewness are directly
relevant to the choice between usage of these two tests.
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1 Introduction

Tests of symmetry for a distribution of log-survival times are proposed when the data

are subject to independent right censoring. Such tests are relevant in the censored

accelerated failure time (AFT) model ([10], ch. 7) where log-logistic errors have

traditionally been used to motivate the scores for the generalized Wilcoxon test.

Given the need and relevance in checking for such symmetry, we have not found any

such tests in the literature that can deal with the additional complication of right
∗Corresponding author : Email: rbutler@smu.edu

1



censoring. This paper shows how such tests can be performed by using two-sample

weighted log-rank tests that are commonly used in survival analysis.

Initially suppose the median is known (a condition to be removed) and there is

no censoring (also to be removed). Let data consist of unordered log-survival times

yi = log ti for i = 1, ...,N which form a random sample from continuous distribution

G with known median 0. In this context, a test for symmetry of G about 0 by using

the two-sample Wilcoxon/Mann-Whitney test is suggested by Gupta in [7]. The data

are “folded” about zero and taken to be |y1|, ..., |yN |. Indices {i : yi > 0} in the right

tail are designated as the “treatment” group and indices {i : yi < 0} in the left

tail comprise the “control” group. If the null holds and Y ∼ G is symmetric, then

the folded left tail is the same as the right tail; e.g. the conditional distributions

−Y |Y < 0 and Y |Y > 0 are the same so that |y1|, ..., |yN | are a random sample

from a common distribution. In [20] this two-sided test is shown to be at least as

powerful as the test of McWilliams in [13], who in turn shows his test to be more

powerful than tests by Butler in [2], Rothman and Woodroofe in [18], and Hill and

Rao in [8] for selected alternatives in the asymmetric lambda distribution class.

Now let the median be unknown and suppose data are uncensored. The point

of symmetry is the median of G whose estimate m̂ is subtracted as described in [9],

§3.9. The test is now based upon testing symmetry about zero using centered data

{yi − m̂}.

The current paper supposes the median of G is unknown but includes the added

complication that data are independently right censored. Now centering must sub-

tract a median estimate that accounts for the censoring and so the median estimate

determined by inverting the Kaplan-Meier estimator is used as described in section

2.1 below. Let {y∗i } be the unordered log-survival/censoring times that have been

centered by using the Kaplan-Meier estimate for median. Treatment labels are as-

signed to {i : y∗i > 0}, the right tail, and control labels are assigned to {i : y∗i < 0},

the left tail. Values of {y∗i } are now folded about 0, however the folded left-tail values
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are not simply {|y∗i |} when y∗i results from a censoring time; this leads to a substan-

tial and unavoidable loss of information as discussed in section 2.2. Now, in this

two sample context, the folded values can be used to compute a weighted log-rank

statistic v that accounts for the censoring. A sufficiently small (large) v indicates

that the treatment distribution or right tail is stochastically larger (smaller) than its

control counterpart, the left tail, so that Y is positively (negatively) skewed.

The test that rejects the hypothesis of symmetry of Y for small v is the one-sided

test used with the alternative hypothesis that Y is positively skewed. Symmetry

assumptions for Y underlie the generalized Wilcoxon weights for v whereas positively

skewed assumptions for Y are consistent with Y having an extreme value distribution

that would motivate log-rank weights. Thus the use of this one-sided test helps to

distinguish logistic versus extreme value errors for homogeneous groups in the AFT

model as discussed in section 2.2. The mid-p-value associated with this test measures

the degree of skewness ranging from positive skewness (small mid-p-value) to negative

skewness (large mid-p-value).

Numerical examples of such one-sided tests are given in section 3, and simulated

level and power for these tests are described in section 4.

The simulations suggest that the symmetry test from the log-rank class that uses

log-rank weights maintains its level well with light censoring and becomes conservative

under very heavy censoring by not rejecting often enough. By contrast, the test using

generalized Wilcoxon weights is the opposite; it is too liberal under light censoring

and has accurate level with very heavy censoring. In power simulations, tests using

the log-rank weights demonstrated greater power for the most part with all levels of

censoring up to 50%. In these power simulations, the alternative was that Y has a

positively skewed extreme value distribution. Our focus on this particular alternative

is based on the need to decide between the use of Wilcoxon or log-rank weights when

picking v as a member of the log-rank class.

A consequence of right censoring is that weighted log-rank tests end up being
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computed but using only a subset of the centered data y∗1, ..., y
∗
N . This subset consists

of all of the centered data from the right tail along with only the centered log-

survival times from the left tail. Censored data from the left tail are not involved in

test statistic computation. This oddity might naturally lead to the impression that

censored control data are not informative about the alternative under test. However,

as discussed in section 2.2, these data do determine the median estimate that defines

the control and treatment groups so they are somewhat informative. However, once

the groups are determined, the left-tail sample size is diminished since left-tail values

are not informative about the left tail of G. Consequently, this severely affects the

power in testing for symmetry. Since there is no alternative but to fold the left tail

onto the right tail for comparison, there appears nothing that can be done about the

loss of information and reduction in power. One must accept that there is no further

information available from the data for testing symmetry.

2 Test construction

2.1 Centering and folding data that have been censored

Testing for symmetry inevitably entails choosing a folding point as the hypothesized

point of symmetry, folding the left tail onto the right (or equivalently the right onto

the left), and making comparisons of the folded distributional shapes. This folding

point is S−1(0.5), the median of log-survival function S(t) which, because of censoring,

is chosen as the median Ŝ−1(0.5) from the Kaplan-Meier estimate Ŝ. Estimate Ŝ uses

the log-survival/censored data {yi, δi : i = 1, . . . ,N}, with δi as a survival indicator

of yi, and is a decreasing step function with steps located at log-survival points.

Thus the value Ŝ−1(0.5) is either a single log-survival time or the range of values in

between two log-survival times should there be a horizontal step at height 0.5. The

former setting is simpler and more common and is discussed in detail below. In the

latter setting, Ŝ−1(0.5) is taken as the midpoint of this horizontal step and this case
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is discussed in section 2.4.

In the setting for which the median estimate is a single log-survival time, the

centered median becomes 0 which, for purposes of testing symmetry, should not be

considered as belonging to either the treatment or control group. The value y∗ = 0

has no discriminatory value between the two groups and therefore should not enter

into the computation of the test statistic for symmetry.

The small data set given in the left-most column of Table 1 illustrates the centering

and folding of the data in order to test for symmetry. The median estimate is the

unique value Ŝ−1(0.5) = 4 so responses 1, 2+, and 3 form the control group and 5+

and 6 are treatment group. Centered survival times are y∗i = yi − Ŝ−1(0.5), however

the centering of censored data is best understood in terms of centering the survival

range. For example, survival range 2+ = (2,∞) is centered to range −2+ = (−2,∞)

or more generally y+i is centered to (y
∗
i ,∞).

Folding about zero is straightforward for all survival times and for censored val-

ues in the right tail. Centered treatment range (1,∞) folds onto 1+ = (1,∞) and

is unchanged. However, all censored values in the left tail fold into [0,∞) as, for

example, occurs with (−2,∞).

For the purpose of weighted log-rank test construction, folded survival times {y∗i },

and ranges {(y∗i ,∞)} can be described by the triple (fi, zi, δi). Here, fi is either |y∗i |

or the left edge of the folded range, zi is the group indicator, and δi indicates right

censored. From the example, one can see that censored control values in the left tail

always fold into the triple (0, 0, 0) and censored treatment values always fold into

{yi − Ŝ−1(0.5), 1, 0}.

2.2 One-sided log-rank tests

Weighted log-rank tests can now be applied to the pooled folded data {fi, zi, δi : i =

1, . . . ,N − 1}. Suppose 0 < f(1) ≤ f(2) ≤ · · · ≤ f(k) are the ordered values from

{fi : δi = 1}, the log-survival values that have been centered and folded (excluding
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the folded median for which fi = 0). The weighted log-rank test statistic that tests

symmetry with weights {wi : i = 1, . . . , k} is

v =
k∑

i=1

wi



z(i) −
1

ni

∑

l∈R{f(i)}

zl



 (1)

where z(i) is a treatment indicator for f(i), and ni is the size of the risk set at f(i), or

R{f(i)}.

Computation of v for the example in Table 1 uses the last four columns to give

v = w1

{
0− 2

4

}
+w2

{
1− 1

2

}
+w3

{
0− 1

1

}
.

The risk set R{f(1)} = R(1) includes 4 out of the 6 data points. The two data points

notably missing are the censored control value which folds over to 0 and the median

estimate which folds to 0. Neither of these values is in R{f(1)} or R{f(i)} for i > 1.

The simple example illustrates two important general points about the data points

that do not enter into the computation of v in (1). Censored data from the left tail

fold into the value (0, 0, 0) and do not enter into the computation of v. Neither does

the data point associated with the median. Thus all censored values in the left tail

are “uninformative” after folding since they do not enter into log-rank test statistic

computation. Of course censored values in the left tail are informative in the sense

that their presence in the data contribute to determining the data center through

value Ŝ−1(0.5).

The log-rank test rejects for small values of v which suggests that the distribution

for the right tail is stochastically larger than the distribution for the folded left

tail. Such a situation generally occurs when the log-survival distribution is positively

skewed as given in the following result that can be easily shown.

Lemma 1 Suppose m = G−1(0.5) is the unique median of G. The distribution for

the control group is 1−2G(m−y) for y ∈ (0,∞) while the distribution for treatment is

2G(m+y)−1 for y ∈ (0,∞).When Y has a symmetric distribution, these distributions
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are the same, e.g.

1− 2G(m− y) = 2G(m+ y)− 1 ∀y > 0. (2)

Under the alternative in which the treatment CDF is stochastically larger, the equality

in (2) is replaced by ≥ with strict > for some y.

The two cases of particular importance are when G assumes a logistic distribution

and an extreme value distribution with CDF exp(−e−y). These two error distributions

in the AFT model motivate score tests whose weights in the log-rank class of tests are

the generalized Wilcoxon and log-rank weights commonly used in survival analysis.

These two distributions may be distinguished by the fact that equality (2) holds for

the symmetric logistic and strict inequality occurs with an extreme value distribution

for all y > 0 as formalized below. Thus these two distributional classes are in the

null and alternative hypotheses respectively for the one-sided test described.

Lemma 2 If G is an extreme value distribution, then the relationship in (2) is strict

for all y > 0 with equality holding only for y = 0.

Proof. For this distribution, the relationship in (2) can be shown equivalent to

2−e
y

+ 2−e
−y ≤ 1.

This inequality is strict for y �= 0 and equal only for y = 0.

2.3 Negative skewness

A test for symmetry against the alternative that the distribution of Y is negatively

skewed entails testing that −Y is positively skewed. Such tests start with negative

data −y1, ...,−yN which get centered and folded. Using the explanation given in

the last paragraph, it can be shown that the folded data for testing negative skew-

ness are exactly the same data used for testing positive skewness except that the
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treatment/control labels are reversed. This leads to folded data {fi, 1 − zi, δi : i =

1, . . . ,N − 1}. The resulting weighted log-rank test statistic v− in (1) is

v− =
k∑

i=1

wi



1− z(i) −
1

ni

∑

l∈R{f(i)}

(1− zl)


 =
k∑

i=1

(wi − 1)− v+

where v+ is used for testing positive skewness.

This shows that rejecting for small v− when testing for negative skewness is equiv-

alent to rejecting for large v+ using the test statistic for positive skewness. Thus the

mid-p-value of the one-side test that rejects for small v+ is a measure of the degree of

skewness with small (large) values indicating positive (negative) skewness and target

0.5 representing symmetry.

Several points must be made to understand why negative data fold into {fi, 1−

zi, δi : i = 1, . . . ,N − 1}. First, the division into treatment/control groups for the

negative data is the same as for the positive data with the group labels reversed.

This occurs because the Kaplan-Meyer estimates for the two data sets are related by

Ŝ−1−Y (0.5) = −Ŝ−1Y (0.5), e.g. the median estimate for negative data is the negative of

the median estimate for the original data. Secondly, the negative data are now left

censored. As a result, negative control data that are left censored do not fold into

[0,∞) but rather into the right censored regions (y∗i ,∞) of the treatment group from

the positive data. These right censored regions that come from the negative control

data group now enter into the computation of v−. Thirdly, negative treatment data

that are left censored fold into [0,∞), the same folded regions of the positive control

data that are right censored.

2.4 Median is not unique

If Ŝ−1(0.5) assumes a range of values [A,B] with

A = inf{y : Ŝ(y) = 0.5}, B = sup{y : Ŝ(y) = 0.5},

then Ŝ−1(0.5) = (A + B)/2 is used for centering. With this choice, all censored

values within the range (A,B) end up not in the risk set R(f(1)) and therefore do
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not enter into computation of v. This is because those in the left half of (A,B) are

censored controls, while those on the right half lie in [0, f(1)) and thus are also not in

R(f(1)). Thus all censored log-times falling within the median range (A,B) do not

affect computation of v.

When Ŝ−1(0.5) is chosen to be (A+B)/2, a complication also arises that involves

tied absolute log-survival times. Subtracting the midpoint of [A,B] from the log-

survival times A (control) and B (treatment) results in folded centered log-survival

times that are tied at (B−A)/2 and from opposite groups; e.g. {(B−A)/2, 0, 1} for A

and {(B−A)/2, 1, 1} for B. The recommendation in [10], p. 234 for dealing with such

a tie is to average the two mid-p-values determined from the two configurations that

are consistent with the tie. Thus, in this instance, our computation of overall mid-p-

value averages the two mid-p-values that result from permuting the treatment/control

labels for the tie at (B −A)/2.

A median choice other than Ŝ−1(0.5) = (A+B)/2 would give unequal treatment

to values A and B in the computation of v. This lack of balanced treatment seems

unnatural and, in fact, is a good reason for selecting (A+B)/2 as the median estimate.

3 Examples

Our examples consider exact permutation tests for symmetry as originally recom-

mended in [14]. One-sided permutation mid-p-values for weighted log-rank statistics

are computed by fixing the set of pairs {(fi, ∗, δi : i = 1, . . . ,N − 1} and permuting

the labels for treatment and control assigned to ∗ so as to maintain a fixed value

of z• =
∑N−1
i=1 zi. “Exact” mid-p-values have been computed by simulating 10

6 val-

ues of v from all of its
(N−1
z•

)
possible values and then computing the permutation

significance for the observed value of v. Saddlepoint approximations for the exact

mid-p-values are also computed that require no simulation. These approximations al-

most exactly reproduce the exact permutation mid-p-values and have been described
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in [1]. The third approximation is the standard normal approximation used in SAS

and described, for example, in [11].

Three examples are used to illustrate these tests for symmetry. Data in the first

example have no censored values while data in the last two examples are subject to

heavy censoring.

Example 1. Uncensored data in [6] measure the percentage of silica for N = 22

chondrites meteors. The data are to be tested for symmetry about the median value

{log(28.69) + log(29.36)}/2 which leads to 11 in both groups. Using the Wilcoxon

signed rank test, the “exact” permutation mid-p-value from simulation is 0.36156, the

saddlepoint mid-p-value is 0.36166, and the normal approximation yields 0.42914.

Example 2. Table 2 shows 22 survival/censoring times, in months, taken from [15]

for patients suffering from chronic active hepatitis treated with prednisolone.

Median estimate Ŝ−1(.5) = 4.98 is a log-survival time and seven censored values to

its left do not enter into test computation. Note that the treatment value 5.00+

is retained since after centering it assumes the value 0.02+ just to the right of the

smallest absolute centered log-survival time f(1) = 0.02.

Table 3 provides mid-p-values for 5 tests from the weighted log-rank class. These

tests included the log-rank (LGR) test (wi ≡ 1), the generalized Wilcoxon (GWL)

test

wi =
i∏

j=1

nj
nj + 1

advocated by Peto and Peto [14], and Prentice [17], Gehan’s [5] (GH) test (wi = ni),

the Tarone-Ware [19] (TW) test (wi =
√
ni), and a test (FH) in the Fleming and

Harrington [4] class in which wi = ŜF (f(i−1)) where ŜF is the Kaplan-Meier estimator

of the folded data. Note the lack of significance for the assumption of symmetry which

may be attributed to the lack of information about the right tail in which there is

only one survival and 4 censoring times.
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A comparison of the exact mid-p-values in Table 3 with their saddlepoint (Sadpt.)

approximations demonstrates the very striking accuracy of the latter and contrasts

with the poor performance of the normal approximation.

Example 3. Censored survival times for patients with non-Hodgkins lymphoma are

taken from [3]. The asymptomatic portion of the log-times are used and are displayed

in Table 4. The value Ŝ−1(0.5) coincides with the flat inter-survival step (5.684, 5.707)

so midpoint 5.6955 is used for centering and the censored log-time 5.704+ is unin-

formative. After centering and folding, the control response at 5.684 and treatment

response 5.707 lead to a tie at the value 0.0115. This leads to 15 control survivals

and 14 treatment responses among which 12 are censored. As a result of the tie, the

mid-p-values in Table 5 have been computed as the average of the two mid-p-values

that are consistent with the tie.

4 Simulation of level and power for one-sided tests

4.1 Level

Q-Q plots were constructed to determine if the distribution of mid-p-values for the

one-sided tests are uniform under the null hypothesis of symmetry. In the weighted

log-rank class of tests, only the more commonly used tests with log-rank and gener-

alized Wilcoxon weights were considered.

Suppose that log-survival has the logistic distribution G(y) = (1 + e−y)−1 that

is symmetric about 0 and log-censoring has the log-Weibull (2, 9) distribution with

Weibull (a, b) density

f(t;a, b) = a/b (t/b)a−1 exp{−(t/b)a}.

Using these two distributions, independent censoring leads to a censoring rate of

14.6%.
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This random censoring model was used to generate 10, 000 datasets with sample

sizes N = 20, 40, and 60. For each of the three sample sizes, 10, 000 mid-p-values

were computed using both log-rank and generalized Wilcoxon weights. Q-Q plots

have been used to assess their fit to a Uniform (0, 1) distribution and are shown in

Figure 1. The left (right) column from top (N = 20) to bottom (N = 60) shows Q-Q

plots based upon using log-rank (generalized Wilcoxon) weights.

In the important range (0.0, 0.1), log-rank mid-p-values conform more closely

to a uniform distribution particularly for N = 40 and 60 where the test based on

generalized Wilcoxon weights is too liberal and rejects too often. In the N = 20

case, the test with log-rank weights is slightly conservative and does not reject often

enough.

The accuracy of test levels subject to heavy censoring is considered in the Q-Q

plots of mid-p-values in Figure 2. The tests used log-rank weights (left) and gener-

alized Wilcoxon weights (right). Each plot used 10, 000 mid-p-values computed from

datasets with sample size N = 40. Data were again generated from the independent

censoring model but instead used a log-censoring distribution that is log-Weibull

(2, 2) which resulted in 40.5% censoring.

The test with log-rank weights is not rejecting often enough and is thus overly con-

servative with such heavy censoring. By contrast, the test with generalized Wilcoxon

weights maintains accurate level in the range (0.0, 0.1).

4.2 Power

Powers for the 5% level tests using log-rank (LGR) and generalized Wilcoxon (GWL)

weights were determined when log-survival has the positively skewed extreme value

distribution. This specific alternative is of interest because it suggests the use of

equal log-rank weights when computing v from the log-rank class. Varying amounts

of censoring and varying sample sizes were considered and the simulated powers of

these tests are displayed in the entries of Table 6. For each combination of degree of
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censoring × sample size, 10, 000 datasets of log-survival values were generated from

the extreme value distribution and censored according to the random censoring model

using a log-Weibull (2, b) censoring distribution. Decreasing values of b = 6.5, 4.0, 3.0,

and 2.5 lead to the increasing censoring percentages from 10.1 to 42.8% that appear

in the table.

The test with log-rank weights shows greater power in all settings. Both tests show

deteriorating power as censoring percentage increases, as would be expected due to

the loss of information. This loss in power is consistent with the views expressed by

Lawless (2003, p. 38):

“...rather large samples are often needed before the superiority of one model over
another in terms of fit is indicated, and severe right censoring limits the comparison
of models.”

Given the more conservative level when using log-rank weights, it would appear that

log-rank weights show more discriminating power against an extreme value alternative

for the log-survival distribution.

5 Conclusions

The simulations suggest using log-rank weights for the test statistic rather than gen-

eralized Wilcoxon weights when testing symmetry versus positive skewness in the

presence of censoring. If the data represent responses from treatment and control

groups in a clinical study, and separate tests of symmetry for both treatment and

control groups reject in favor of positive skewness, then greater credence should be

given to the log-rank test for treatment effect rather than the generalized Wilcoxon

test.

With light censoring, tests of symmetry using the log-rank weights maintained

more accurate level with small and moderate sample sizes; with quite heavy censoring

these tests were conservative. As concerns power, tests using log-rank weights showed

greater discriminatory power between the hypotheses than tests using generalized
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Wilcoxon weights. A theoretical reason for this is that log-rank weights are the

consequence of the score test motivated from the positively skewed extreme value

distribution and therefore lead to a test that is more responsive to an alternative

hypothesis of positive skewness and the extreme value distribution in particular.

The presence of right censoring can dramatic effect our ability to detect symme-

try in a distribution. With no censoring, the Gehan test is exactly the Wilcoxon

test that was found to be quite powerful in the simulation study of [20]. However,

when censoring is heavy, there can be a substantial loss in power due to an effective

reduction in sample size as well as the loss of informativeness of censored values in

the left tail from folding. A sample of n may be roughly divided in half to give n/2

to the left and right tail groups. With 50% censoring, roughly half the data in the

left tail are uninformative about the left tail and so the effective sample sizes for the

left and right tails become roughly n/4 and n/2. This explains the substantial loss

in power since, with an effective sample size of n/4, little information remains about

the left tail and this dramatically reduces the power of the test.

When approximating exact permutation significance, it should also be clear that

saddlepoint mid-p-values are superior to the usual normal approximation p-values

provided in the standard packages, particularly with the diminished informativeness

due to splitting the tails and with censoring. Executable files with instructions for

performing all five of the tests for symmetry considered above are available and may

be found at

http://www.smu.edu/statistics/faculty/butler.html.
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Table 1. Illustrative example to show centering and folding. The conversion of 2+ to
0+ under folding explains why censored control data do not enter into the computation
of log-rank test statistics. +Indicates right censoring.

Raw Data y∗i or (y
∗
i ,∞) Folded (fi, zi, δi) f(i) ni

∑

l∈R{f(i)}
zl

1 −3 3 (3, 0, 1) f(3) = 3 1 1

2+ = (2,∞) −2+ = (−2,∞) 0+ = [0,∞) (0, 0, 0)

3 −1 1 (1, 0, 1) f(1) = 1 4 2

4 = Ŝ−1(0.5) 0 0

5+ = (5,∞) 1+ = (1,∞) 1+ = (1,∞) (1, 1, 0)

6 2 2 (2, 1, 1) f(2) = 2 2 1

Table 2. Uncentered log-times from [15]. +Indicates right censoring.

0.693 1. 79 2. 48 3. 99 4. 03+ 4. 22 4. 49 4. 56 4. 56 4. 83+ 4. 85+

4. 88+ 4. 94+ 4. 95+ 4. 96 4. 97+ 4. 98 5. 00+ 5. 09+ 5. 12 5. 15+ 5. 20+

Table 3. Mid-p-values for testing symmetry of the censored data from [15].

Mid-p-value LGR GWL GH TW FH

Exact .4226 .3793 .3887 .3899 .3694
Sadpt. .4081 .3719 .3887 .3874 .3714
Normal .2857 .3114 .3589 .3216 .3075
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Table 4. Uncentered log-times from [3]. +Indicates right censoring.

3. 912 4. 060 4. 564 4. 934 5. 023 5. 068 5. 242 5. 416 5. 476 5. 489
5. 549 5. 568 5. 638 5. 677 5. 684 5. 704+ 5. 707 5. 722+ 5. 796+ 5. 835+

5. 846+ 5. 855+ 5. 869+ 5. 883 5. 886+ 5. 892+ 5. 900+ 5. 935+ 5. 943+ 5. 961+

Table 5. Mid-p-values for testing symmetry of the censored data from [3].

Mid-p-value LGR GWL GH TW FH

Exact 0.1829 0.1347 0.1185 0.1307 0.1370
Sadpt. 0.1803 0.1348 0.1183 0.1305 0.1369
Normal 0.1107 0.1124 0.1095 0.1082 0.1126

Table 6. Power of tests using log-rank (LGR) weights and generalized Wilcoxon
(GWL) weights for various sample sizes and degrees of censoring. In all cases the
alternative distribution for log-survival is the positively skewed extreme value distri-
bution.

Degree of N = 40 N = 80 N = 160
Censoring LGR GWL LGR GWL LGR GWL

00.0% .503 .318 .753 .456 .931 .603
10.1% .404 .270 .572 .358 .770 .504
21.3% .271 .202 .368 .258 .508 .352
32.8% .192 .153 .233 .182 .304 .236
42.8% .152 .131 .160 .141 .183 .161
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Figure 1. Q-Q plots of mid-p-values checking fit to a Uniform (0, 1) distribution
with light censoring (14.6%). Tests using log-rank (LGR) weights and generalized
Wilcoxon (GWL) weights are shown on the left and right respectively. Rows 1, 2 and
3 represent the increasing sample sizes N = 20, 40, and 60 used in the mid-p-value
computation.
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Figure 2. Q-Q plots of mid-p-values checking fit to a Uniform (0, 1) distribution
with heavy censoring (40.5%). Tests using log-rank (LGR) weights and generalized
Wilcoxon (GWL) weights are shown on the left and right respectively. Sample size
N = 40 was used in the mid-p-value computation.
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