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Abstract

Suppose p + 1 experimental groups correspond to increasing dose levels of
a treatment and all groups are subject to right censoring. In such instances,
permutation tests for trend can be performed based on statistics derived from
the weighted log-rank class. This paper uses saddlepoint methods to determine
the mid-p-values for such permutation tests for any test statistic in the weighted
log-rank class. Permutation simulations are replaced by analytical saddlepoint
computations which provide extremely accurate mid-p-values that are exact
for most practical purposes and almost always more accurate than normal
approximations. The speed of mid-p-value computation allows for the inversion
of such tests to determine confidence intervals for the percentage increase in
mean (or median) survival time per unit increase in dosage.

Keywords: Mid-p-value; Permutation distribution; Saddlepoint approxima-
tion; Trend test; Weighted log-rank class.

1 Introduction

Suppose survival times subject to right censoring are recorded for an experiment with

p+1 treatment groups. Let the groups correspond to increasing dose levels l1 < l2 <

· · · < lp+1 in which perhaps dose l1 is administered as a control. Tests that the group

∗Corresponding Author: rbutler@mail.smu.edu, 214-768-1427
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survival functions are stochastically increasing (or decreasing) with dosage level are

generally based on the class of weighted log-rank statistics originally suggested in

Tarone and Ware (1977). This class includes the log-rank statistic of Mantel (1966),

Cox (1972), and Peto and Peto (1972); Gehan’s (1965) statistic; the generalized

Wilcoxon statistic suggested in Peto and Peto (1972) and Prentice (1978); a specific

statistic suggested by Tarone and Ware (1977); and the Fleming and Harrington

(1981) class of statistics.

This paper proposes the use of saddlepoint approximations as a means for de-

termining significance levels for tests of trend in the weighted log-rank class under

their exact permutation distributions. The speed of such saddlepoint computation

also allows these tests to be inverted to yield confidence intervals for the percent-

age increase in mean (or median) survival time per unit increase in dosage. Such

computations would be exceedingly time consuming without the use of saddlepoint

methods and consequently no attempts to make such computations have been found

in the literature.

Permutation significance was advocated in the original development of such tests

by Peto and Peto (1972) however current software such as SAS uses asymptotic

normal approximations as described, for example, in Klein and Moeschberger (1997).

It will be shown through examples and simulations that saddlepoint approximations

are extremely accurate and almost always closer to the true permutation significance

levels than the normal approximations.

The computational methods for saddlepoint approximation are exceptionally sta-

ble and have been programmed as a general purpose “black box” procedure with

executable files available at http://www.smu.edu/statistics/faculty/butler.html. In

the software, mid-p-values are computed for all five of the weighted log-rank tests

mentioned above and exemplified in the paper. In addition, confidence intervals at

level 95% are computed for the percentage increase in mean (or median) survival

rate by inverting the log rank and generalized Wilcoxon test statistics. Use of the

2



mid-p-value rather than the p-value has been advocated by Agresti (1992), Routledge

(1994) and Kim and Agresti (1995) since the ordinary p-value is too conservative.

This is particularly so when tests are inverted to determine confidence intervals. Use

of ordinary p-values leads to overcoverage, while use of mid-p-values leads to intervals

whose attained and nominal coverages are in close agreement.

Previously, double saddlepoint approximations for conditional distributions re-

lated to two-sample tests were suggested by Daniels (1958) and later Booth and

Butler (1990). The application of such saddlepoint methods to the two-sample log-

rank tests was considered in Abd-Elfattah and Butler (2006) and the current paper

extends these methods to consider an arbitrary number of treatment levels.

Section 2 provides an overview of the weighted log-rank tests along with the

associated permutation distributions that determine their mid-p-values. Saddlepoint

approximation to these permutation distributions is addressed in section 3. Section 4

provides numerical examples along with extensive simulations that demonstrate the

extraordinary accuracy of the saddlepoint approximations. Section five shows the

modifications needed to deal with tied survival times. Section six concludes with

confidence interval computation for the percentage increase in survival rate per unit

of dosage that is obtained through inversion of these permutation tests.

2 The weighted log-rank class

Suppose that the group sample sizes are N1, ...,Np+1 with a total of N observations.

The pooled data are {(ti, zi, δi) : i = 1, ...,N}, where ti is a time to event, zi is a (p+

1)×1 treatment indicator, and δi indicates that a survival rather than censoring time

has been observed. Assume independent censoring with the censoring distribution not

dependent on group membership. A test of H0 : S1(t) = · · · = Sp+1(t) = S(t), that

group survival functions are the same versus the stochastically increasing alternative

H0 : S1(t) < · · · < Sp+1(t) for all t, is generally based on statistics from the weighted
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log-rank class.

Let t(1) < t(2) < · · · < t(k) be the distinct ordered survival times among the pooled

data with ti1, · · · , timi
as the right censored times in the interval [t(i), t(i+1)), i =

0, 1, · · · , k where t(0) = −∞, t(k+1) = ∞ and k +
∑k

i=1mi = N . Also, let z(i) and

zij for i = 1, ..., k and j = 1, ...,mi represent the corresponding (p + 1)× 1 indicator

vectors for group membership. If we assume no ties among the uncensored data

from different groups, then test statistics in the general weighted log-rank class are

constructed from (p+ 1)× 1 vectors of the form

v =
k∑

i=1

wi


z(i) −

1

ni

∑

l∈R(t(i))

zl


 , (2.1)

where wi is a weight, ni is the total number of individuals at risk at time t−(i) and

R(t(i)) is the set of individuals at risk at t−(i). In tests for trend, the components of

v are generally weighted by the increasing dosage levels l = (l1, ..., lp+1)
T with H0

rejected for small values of u = lTv.

In the log-rank class, the weight function wi is a fixed function of the risk set

sizes {n1, n2, · · · , ni} up to time t(i). Among such tests are the log-rank test, wi = 1,

with optimal power against proportional hazards alternatives, Gehan’s (1965) test,

wi = ni, the Tarone and Ware (1977) class, wi = f(ni), with specific recommendation

wi =
√
ni considered here, the weight function

wi =
∏i

j=1

nj
nj + 1

suggested in Peto and Peto (1972) and Prentice (1978) and referred to as the gen-

eralized Wilcoxon, and the general class of tests of Fleming and Harrington (1981)

in which the weight function depends on the Kaplan-Meier estimator Ŝ(·). Here the

specific example wi = Ŝ(t(i−1)) is considered.

In the randomization used for the permutation distribution of v, the survival

times and censoring times remain fixed in time order while the N1, ..., Np+1 treatment

labels are randomly assigned to the
(

N

N1, ... ,Np+1

)
distinct time positions. Saddlepoint
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approximation for this permutation distribution is simplified by rewriting v in the

linear form

v =
k∑

i=1

(
ciz(i) + Ci

mi∑

j=1

zij

)
(2.2)

where the constants ci and Ci are fixed constants that depend only on their time

position t(i). The weighted log-rank statistic v in (2.1) has a null permutation distri-

bution given as the distribution of (2.2) where z(1), {z1j}, ..., z(k), {zkj} are (p+1)× 1

indicator vectors with uniform distribution over the
(

N

N1, ... , Np+1

)
values for which

∑k

i=1(z(i) +
∑mi

j=1 zij) = (N1, ..., Np+1). The weights in (2.2) are

ci = wi −
i∑

l=1

wl
nl

, Ci = −
i∑

l=1

wl
nl

.

3 Saddlepoint approximation for the permutation

distribution

The null permutation distribution places a uniform distribution on the set of (p+1)×1

group indicator vectors {z(i)} ∪ {zij}. This distribution may be constructed from a

corresponding set of i.i.d. p×1Multinomial (1, θ1, ..., θp+1) indicator vectors which are

denoted in capitals by {Z−(i)}∪{Z−ij} = Z−. In the reduction from (p+1)-dimensional

z(i) to p-dimensional Z−(i), the last component of z(i) has been ignored so Z−(i) represents

the random allocation to the first p components of z(i) with all components of Z−(i)

zero indicating allocation to group p+ 1. The uniform permutation distribution over

all one-way designs for which
∑k

i=1(z(i) +
∑mi

j=1 zij) = (N1, ...,Np+1) is constructed

from the i.i.d. multinomial variates as the conditional distribution of

Z
− = {Z−(i)} ∪ {Z−ij} |

k∑

i=1

(
Z−(i) +

mi∑

j=1

Z−ij

)
= (N1, ..., Np)

T = NT
−
.

Writing the trend statistic u = lTv in terms of the p-dimensional vectors in Z− =

{Z−(i)} ∪ {Z−ij} instead of the (p + 1)-dimensional {z(i)} ∪ {zij} and denoting this
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statistic as u(Z−), then its permutation distribution is the conditional distribution of

the scalar statistic

u(Z−) |
k∑

i=1

(
Z−(i) +

mi∑

j=1

Z−ij

)
= NT

−
. (3.1)

Simple computations in the Appendix show that

u(Z−) = lT
−

k∑

i=1

(
ciZ

−

(i) + Ci

mi∑

j=1

Z−ij

)

where l− = (l1 − lp+1, ..., lp − lp+1)
T .

A saddlepoint approximation for the conditional distribution in (3.1) is con-

structed in terms of the p-dimensional random variables

Y =
k∑

i=1

{
ciZ

−

(i) + Ci

mi∑

j=1

Z−ij

}

X =
k∑

i=1

{
Z−(i) +

mi∑

j=1

Z−ij

}
.

Assuming any probability vector {θ1, ..., θp+1} for the multinomial distribution, the

conditional distribution of U = lT
−
Y given X = (N1, ...Np)

T = N
T
−
is the required

permutation distribution which can be approximated by using the double saddlepoint

approximation of Skovgaard (1987).

Let P be a random variable with the required permutation distribution and let u0

be the observed value of U. The mid-p-value is Pr(P < u0) + Pr(P = u0)/2 = mid-

p(u0) and is approximated from the Skovgaard (1987) saddlepoint procedure as the

conditional tail probability Pr(U ≤ u0|X = N−). This approximation uses the joint

cumulant generating function for (X,U) given by K(s, t) = logMX,U(s, t) where

MX,U(s, t) =
k∏

i=1

[{
p∑

l=1

θl exp(sl + rilt) + θp+1

}{
p∑

l=1

θl exp(sl +Rilt) + θp+1

}mi
]

(3.2)

with s = (s1, ..., sp)
T , ril = cil(ll − lp+1), and Ril = Cil(ll − lp+1). Then

mid -p(u0) ≃ P̂r(U ≤ u0|X = N−) = 1−Φ(ŵ)− φ(ŵ)

(
1

ŵ
− 1

û

)
, (3.3)
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where

ŵ = sgn(t̂)
√ (
2
[
{K (ŝ0, 0)−NT

−
ŝ0} − {K(ŝ, t̂)−NT

−
ŝ− u0t̂}

])

û = t̂
√{∣∣K ′′(ŝ, t̂)

∣∣ /|K ′′

ss(ŝ0, 0)|
}
.

In these expressions, K ′′ is the (p+ 1)× (p+ 1) Hessian matrix and K ′′

ss is the p× p

sub-block ∂2/∂s∂sT . The numerator saddlepoint (ŝ, t̂) solves

K ′

sl
(ŝ, t̂) =

k∑

i=1

{
θl exp(ŝl + rilt̂)∑p

l=1 θl exp(ŝl + rilt̂) + θp+1
+

miθl exp(ŝl +Rilt̂)∑p

l=1 θl exp(ŝl +Rilt̂) + θp+1

}
= Nl

(3.4)

K ′

t(ŝ, t̂) =
k∑

i=1

{ ∑p

l=1 θlril exp(ŝl + rilt̂)∑p

l=1 θl exp(ŝl + rilt̂) + θp+1
+

mi

∑p

l=1 θlRil exp(ŝl +Rilt̂)∑p

l=1 θl exp(ŝl +Rilt̂) + θp+1

}
= u0

for l = 1, ..., p and the denominator saddlepoint ŝ0 = (ŝ10, ..., ŝp0)
T solves

K ′

sl
(ŝ0, 0) =

k∑

i=1

{
θl exp(ŝl0)∑p

l=1 θl exp(ŝl0) + θp+1
+

miθl exp(ŝl0)∑p

l=1 θl exp(ŝl0) + θp+1

}
= Nl (3.5)

for l = 1, ..., p. Since the computations of ŵ and û do not depend on the particular

value of θ used, the value θl = Nl/N has been used in both (3.4) and (3.5) since it

results in an explicit solution for (3.5) as ŝ0 = 0 and this simplifies the calculations.

For further discussion about this approximation, see Butler (2007, Ch. 4).

The expression in (3.3) uses the saddlepoint approximation as if U, and con-

sequently P, were continuous random variables. The reason that this continuous

formula is the appropriate saddlepoint form is that it provides the most accurate

approximation for the mid-p-value; see Pierce and Peters (1992), Davison and Wang

(2002) and Butler (2007, § 6.1.4) who discuss reasons for this accuracy.

4 Numerical examples and simulations

Two datasets are used to show the accuracy of the saddlepoint methods as compared

to normal approximation. The first dataset is the carcinogenicity data of Thomas et
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al. (1977) which is a small heavily censored dataset with 3 group (censoring) sizes

10(5), 10(4), and 9(5). Mid-p-values of the 5 weighted log-rank tests for trend are

shown in Table 1. “Dosages” in this context are the decreasing scores l = (2, 1, 0)T

so that tests are either rejected for large values of v given in (2.2) or for small values

of v using negative scores −l.

Table 1. True, saddlepoint, and normal mid-p-values for the log-rank (LR), gen-
eralized Wilcoxon (GW), Gehan (GH), Tarone-Ware (TW) and Fleming-Harrington
(FH) statistics applied to the two sets of data.

LR GW GH TW FH

Thomas et al. (1977) 10(5), 10(4), 9(5) l = (2, 1, 0)T

True1 mid-p 0.01725 0.01319 0.00641 0.00981 0.01183
Sadpt.2 mid-p 0.01693 0.01302 0.00622 0.00974 0.01185
Normal p 0.01697 0.01161 0.00617 0.00895 0.01038

Henderson & Milner (1991) 4(2), 4(2), 4(2) l = (0, 1, 2)T

True1 mid-p 0.06504 0.09801 0.12617 0.09112 0.09448
Sadpt.2 mid-p 0.06393 0.09613 0.12189 0.08819 0.09155
Normal p 0.10214 0.10497 0.12483 0.10197 0.10195

1Based on 106 simple random samples of N− from N and holding the
survival/censoring orders fixed. 2Sadpt. is saddlepoint.

The second dataset is shown in Table 2 and consists of a portion of the data given

by Henderson and Milner (1991). The 5 tests for trend using the scores l = (0, 1, 2)T

are shown in Table 1.

The entries in Table 1 show that saddlepoint approximations are highly accurate

for both datasets and consistently more accurate than the normal approximations.

Also the saddlepoint method demonstrates considerably greater accuracy when used

to approximate mid-p-values for the widely used log-rank (LR) test.

The normal approximations use an asymptotic covariance for v which assumes

censoring is independent of the dosage level. This covariance is Ξ(
∑k

l=1w
2
l ) where
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Ξ = (ξij) has components

ξij =





−NiNj/N
2 if i 
= j

Ni(N −Ni)/N
2 if i = j.

(4.1)

This is a generalization to the log-rank class of the covariance expression for the

Gehan estimator given in Breslow (1970, pp. 583-4).

The true (simulated) mid-p-values have been calculated by taking 106 simple ran-

dom samples of N− from N, holding the censoring orders fixed, and computing the

proportion of times that P is less than u0 plus half the proportion of time it attains

u0.

Table 2. Graft survival times in months of 12 renal transplant patients from
Henderson and Milner (1991) with three different levels L0-L2 denoting the total
number (0,1,2) of HLA-B or DR antigen mismatches between donor and recipient.

L0 L1 L2
0.068+ 0.101+ 10.66+

0.508+ 4.410 19.50
13.46 12.21+ 20.90+

19.73 22.10 32.70

+Right censored.

4.1 Simulation study

Simulation studies were used to show the accuracy of the saddlepoint approximation

over a range of data types, numbers of groups, sample sizes, degrees of censoring and

error distributions. Two error distributions were used to simulate data and include

the log-logistic and Weibull distributions. For each distribution various numbers of

groups and group sizes were used. For each consideration, 1000 datasets were drawn

from the distribution using a specific censoring percentage and the 1000 saddlepoint

and normal p-values were calculated and compared with the 1000 simulated “true”

mid-p-values. The censored data were selected at random, independently of the data

generation, and before allocation of the data to the various groups. In the group

allocation,Ni values were assigned to group i and the log-survival times were shifted in
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location by the amount iβ, where the value of β was chosen to approximately achieve a

p-value of 5%. The doses were chosen to be the equally spaced values {0, 1, 2, ...}. The

simulated mid-p-values associated with each consideration were computed as follows.

For each of the 1000 datasets, 106 permutations of the test statistic were computed

by holding the survival/censoring positions fixed. The simulated mid-p-value is then

the proportion of such generations that are less than the observed statistic plus half

the proportion that are equal. These calculations were implemented for both log-rank

and generalized Wilcoxon type trend tests. Tables 3 and 4 show the results for the

two distributions respectively.

Each table provides the following information: the “Mean” is the average true

mid-p-value (based on 106 simulations) over the 1000 datasets, “Sadpt. Prop.” is the

proportion of the 1000 datasets for which the saddlepoint mid-p-value was closer to

the true mid-p-value than the normal p-value, “Abs. Err. Sadpt.” is the average

absolute error of the saddlepoint mid-p-value from the true mid-p-value, “Rel. Abs.

Err. Sadpt.” is the average relative absolute error of the saddlepoint mid-p-value

from the true mid-p-value, and the remaining listings are the same assessments for

the normal approximation using the covariance estimate in (4.1).

For the log-rank simulations, the saddlepoint mid-p-value was more accurate in

98.3% of the overall cases as compared to the normal approximation. For the gener-

alized Wilcoxon simulation, the saddlepoint was only slightly worse achieving greater

accuracy in 89.7% of the overall cases. In both tables, the average absolute saddle-

point error was less than 0.001 with average relative error typically less than 0.01%.

Additional simulations that have not been reported considered the other three

tests (GH, TW, and FH) as well as a variety of other data types that reflect varying

amounts of censoring, small and large sample sizes, and varying degrees of imbalance

in dosage allocation. With all five tests and under all conditions the saddlepoint

approximations were found to be highly accurate and generally superior to the normal

approximations in replicating the exact permutation significance.
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Table 3. Performance under simulation from the log-logistic distribution. Notation
0m signifies m repetitions of 0 so that 0.0mnop = n.op× 10−m−1.

Stat. Mean Sadpt. Abs. Err. Abs. Err. Rel. Abs. Rel. Abs.
Prop. Sadpt. Normal Err. Sadpt. Err. Nor.

3 groups, sizes = 7, 8, 9. β = 1 30% censoring

LR 0.044 0.973 0.03364 0.02708 0.05666 0.05807
GW 0.035 0.969 0.03131 0.02130 0.06406 0.05828

3 groups, sizes = 5, 15, 25. β = 1 15% censoring

LR 0.030 0.997 0.03173 0.02661 0.05602 0.03118
GW 0.019 0.954 0.03127 0.03624 0.05261 0.05362

3 groups, sizes = 25, 20, 30. β = 0.225 30% censoring

LR 0.071 0.977 0.03194 0.02306 0.04111 0.03527
GW 0.077 0.867 0.03151 0.03421 0.05413 0.04281

5 groups, sizes = 7, 8, 7, 7, 8. β = 0.43 15% censoring

LR 0.059 0.994 0.03285 0.02463 0.04114 0.02209
GW 0.045 0.931 0.03136 0.03808 0.04284 0.03533

5 groups, sizes = 15, 12, 15, 10, 13. β = 0.15 30% censoring

LR 0.138 0.975 0.03256 0.02314 0.04233 0.03178
GW 0.130 0.810 0.03214 0.03512 0.05425 0.04233

Table 4. Performance under simulation from the Weibull distribution.

Stat. Mean Sadpt. Abs. Err. Abs. Err. Rel. Abs. Rel. Abs.
Prop. Sadpt. Normal Err. Sadpt. Err. Nor.

3 groups, sizes = 9, 7, 8. β = 0.65 5% censoring

LR 0.030 0.990 0.03332 0.02581 0.03198 0.0149
GW 0.044 0.942 0.03267 0.02133 0.03132 0.02205

3 groups, sizes = 15, 5, 25. β = 0.15 15% censoring

LR 0.147 0.946 0.03678 0.02648 0.05331 0.04168
GW 0.166 0.790 0.03506 0.03852 0.06480 0.06343

5 groups, sizes = 7, 8, 7, 7, 8 β = 0.2 30% censoring

LR 0.070 0.986 0.03295 0.02481 0.04104 0.04616
GW 0.091 0.920 0.03188 0.03900 0.06838 0.05609

5 groups, sizes = 5, 15, 15, 5, 10. β = 0.2 30% censoring

LR 0.049 1.00 0.03149 0.02245 0.05641 0.04990
GW 0.074 0.907 0.03153 0.03712 0.05535 0.04168

5 groups, sizes = 15, 12, 15, 10, 13. β = 0.15 30% censoring

LR 0.055 0.998 0.03156 0.02266 0.05864 0.04534
GW 0.082 0.882 0.03159 0.03524 0.05396 0.04134
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5 Tied survival times

Suppose there are di ≥ 1 tied survival times at epoch t(i) for i = 1, ..., k. Simple

computations show that the expression for v in (2.2) can be used with each of the

tied survivals at t(i) using weight ci and each of the censored values in [t(i), t(i+1))

using weight Ci given by

ci = wi −
i∑

j=1

wjdj/nj Ci = −
i∑

j=1

wjdj/nj.

Thus, with the appropriate assignment of scores, the permutation distribution of u

can be approximated by using the Skovgaard expression as in §3.

As an example, consider the accelerated life tests on electrical insulation by

Schmee and Hahn (1979) for p = 4 groups of heat levels {150◦, 170◦, 190◦, 220◦

C}. Half their data have been used and are given in Table 5.

Table 5. Accelerated life test data taken from Schmee and Hahn (1979) with p = 4
groups of heat levels.

220◦ C 190◦ C 170◦ C 150◦ C
408 408 1764 8064+

504 1344 3542 8064+

528+ 1344 4860 8064+

528+ 1440 5448+ 8064+

528+ 1680+ 5448+ 8064+

+Right censored.

Dosage weights were taken as l = (0, 1, 2, 3)T . Since smaller failure times are

anticipated in higher heat groups, the trend test rejects for large values of u. Table 6

compares exact mid-p-values, determined by simulating 106 permutations of u, with

saddlepoint and normal mid-p-values.

Table 6. The accelerated life test data using l = (0, 1, 2, 3)T . Table entries are as
described in Table 1.

LR GW GH TW FH

True1 mid-p .00279 .00194 .00183 .00196 .00194
Sadpt. mid-p .00265 .00189 .00182 .00196 .00192
Normal p .00480 .00394 .00410 .00400 .00402
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6 Confidence interval for percentage increase in

mean (or median) survival time per unit dosage.

Prentice (1978) formulated tests for trend as tests for the dosage slope in a log-linear

rank model subject to right censoring. If T is an uncensored survival time, then log T

is assumed to have location parameter µ+ liβ for the ith treatment group with dosage

li and all groups are assumed to share a common error distribution. Let the unordered

log-survival/censored times be denoted by the N-vector y = (log t1, ..., log tN)
T with

x = (x1, ..., xN)
T indicating the dosage levels for corresponding components that

assume values from {l1 < · · · < lp+1}. The framework of the censored accelerated

failure time model, as described in Kalbfleisch & Prentice (2002), determines the

confidence interval for β, the log of the increase in mean survival per unit of dosage.

While the rank tests of §3 were concerned with testing H0 : β = 0 vs. H1 : β > 0

essentially using the components of y, these same tests provide for testing H0 : β = β0

vs. H1 : β > β0 if the log-survival/censored time residuals y − xβ0 are used in place

of y. Within this framework, a 95% confidence interval consists of those β0 values

whose mid-p-values in (3.3) fall within the range [0.025, 0.975].

The 95% confidence interval for β on the log-time-scale is more meaningfully

reported as a 95% confidence interval on the time scale as 100(eβ−1), the percentage

increase in mean (or median) survival time per unit dosage. To understand this

interpretation, suppose that Ti is a survival time using dosage i in the log-linear rank

model. Then a unit increase in dosage leads to the percentage increase in mean (or

median) survival times as

100

{
E(Ti+1)

E(Ti)
− 1
}
= 100

{
eµ+(i+1)βE(eε)

eµ+iβE(eε)
− 1
}
= 100

(
eβ − 1

)
. (6.1)

Confidence intervals for (6.1) can be computed by using the executable files that are

available along with instructions at http://www.smu.edu/statistics/faculty/butler.html.

The datasets from Table 1 have been used to construct confidence intervals that

are given in Table 7. The true, saddlepoint, and normal confidence intervals are
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given by inverting their corresponding test procedures. The Thomas data set used

dosages 2, 1, and 0 so one-sided tests for H0 : β = β0 vs. H0 : β > β0 were calculated

from log t − xβ0 where x as defined above. Exact, saddlepoint, and normal mid-p-

values were computed using incremental steps of ∆β0 = 0.001. Since plots of the true,

saddlepoint, and normal mid-p-values vs. β0 are step functions which cannot exactly

attain the end values 0.025 and 0.975, conservative intervals are reported in Table 7

using end values of β0 that take the first step below 0.025 and above 0.975.

For the Henderson and Milner data, the normal approximation for permutation

significance of the log rank test was not able to step above 0.975 when calculated

using large values of β0 therefore the upper range of the confidence interval has been

reported as ∞. Note that the three methods for inverting the generalized Wilcoxon

test lead to the same 95% confidence intervals. This happens because all three mid-

p-values jump below 0.025 and above 0.975 at the same β0 values but, in doing so,

have used quite different mid-p-values.

Table 7. Confidence intervals for the percentage increase in mean (or median)
lifetime per unit of dosage.

LR GW
lower upper lower upper

Thomas et al. (1977) 10(5), 10(4), 9(5)

True −51. 471 −9. 606 7 −46. 794 −10. 506
Sadpt. −51. 471 −9. 606 7 −46. 794 −10. 506
Normal −57. 387 −8. 148 8 −46. 794 −9. 606 7
Henderson & Milner (1991) 4(2), 4(2), 4(2)

True −11. 041 641. 87 −11. 839 641. 87
Sadpt. −11. 041 641. 87 −11. 839 641. 87
Normal −77. 665 ∞ −11. 839 641. 87
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7 Appendix

In order to write u(Z) as u(Z−), first denote Z(i) = (Z(i)1, ..., Z(i),p+1)
T = ({Z−(i)}T , Z(i),p+1)T

and Zij = (Zij,1, ..., Zij,p+1)
T = ({Z−ij}T , Zij,p+1)T . Then

u = lT
k∑

i=1

{
ciZ(i) + Ci

mi∑

j=1

Zij

}

=
k∑

i=1

[
lTp

(
ciZ

−

(i) + Ci

mi∑

j=1

Z−ij

)
+ lp+1

(
ciZ(i),p+1 + Ci

mi∑

j=1

Zij,p+1

)]
.

where lTp = (l1, ..., lp). Since Z(i),p+1 = 1 − 1TZ−(i) and Zij,p+1 = 1 − 1TZ−ij with

1 = (1, ...1)T as (p× 1), then

u =
k∑

i=1

[
cil

T
p Z

−

(i) + Ci

mi∑

j=1

lTp Z
−

ij + lp+1

{
ci(1− 1TZ−(i)) + Ci

mi∑

j=1

(1− 1TZ−ij )
}]

=
k∑

i=1

{
ci(l

T
p − lp+11

T )Z−(i) + Ci

mi∑

j=1

(lTp − lp+11
T )Z−ij

}
+Q

= lT
−

k∑

i=1

{
ciZ

−

(i) + Ci

mi∑

j=1

Z−ij

}
+Q,

where Q = lp+1(
∑n

i=1 ci +miCi) = 0; see Kalbfleisch and Prentice (2002, eqn. 7.20)

for the details about why Q = 0.
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