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Summary

The lifetime of a patient is considered from a systems-theoretic perspective that
accommodates for the possibility of right censoring and left truncation. The systems-
theoretic solution results in the Kaplan-Meier estimator as the appropriate estimate
for survival that adjusts for censoring risk and truncation in both the single event
and competing risks settings. This systems-theoretic viewpoint uses multi-state semi-
Markov models to represent the lifetime of the patient and also provides a circuitry
interpretation for the passage of the patient through censoring states and for de-
layed entry into the study. While the Kaplan-Meier estimator is a nonparametric
maximum likelihood estimator, this alternative systems-theoretic and circuitry mo-
tivation provides another interpretation for the Kaplan-Meier from a quite different
physical perspective. More fundamentally, these systems-theoretic results provide in-
dependent support for the use of likelihood procedures. When covariates are present,
simple extensions lead to some commonly used estimates for the baseline survival in
both single event and competing risks settings.

Some key words: Competing risks; Flowgraph; Kaplan-Meier; Left truncation; Right
censoring; Self-consistency; Semi-Markov; Systems theory.

1 Introduction and overview

One aim of survival analysis is to use censored and truncated survival data to deter-

mine the lifetime distribution F 0 of a patient that is free from the risk of censoring
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and adjusted for truncation. As described below, this may be accomplished from

a systems-theoretic perspective. When censoring and truncation are independent

of survival time, the systems-theoretic solution to the problem is shown to result

in the Kaplan-Meier estimator F̂ 0 for F 0. Without truncation, this estimator has

been traditionally motivated as either a nonparametric maximum likelihood estima-

tor (Kaplan-Meier, 1958), a redistribute-to-the-right estimator (Efron, 1967), or as an

estimator that satisfies a self-consistency relationship (Efron, 1967). With truncation

and censoring, it has been suggested as a nonparametric maximum likelihood estima-

tor by Turnbull (1976). In the current paper, the Kaplan-Meier estimator is shown

to be the systems-theoretic solution to generalizations of the self-consistency equa-

tions introduced in Efron (1967), however expressed in terms of their Laplace-Stieltjes

transforms.

The systems point-of-view uses an analog circuit to represent the progressive

stages in the life of the patient; see Figure 1. Suppose the certainty of the pa-

tient is represented by an electrical charge of 1. The arrival of the patient into the

study corresponds to the arrival of a Dirac function to the input node of a circuit

used to model the lifetime of the patient. The transient currents that pass through

the various wires over time represents the rates at which “portions” of the virtual

patient pass between nodes in the circuit. At the output node, which corresponds to

the death state of the patient, a plot of current versus time is the impulse response

function for the system driven by Dirac input; it is also the survival density dF 0(t) of

the patient whose accumulation of probability over time must be the total probability

or the charge of 1.

An empirical version of this analog circuit based on right-censored and left-

truncated data approximates the system that describes a patient’s lifetime; see Figure

2. The corresponding empirical impulse response function for the empirical circuit is
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shown to be dF̂ 0(t), the mass points for the Kaplan-Meier estimator.

The proposed analog circuit is represented mathematically as a multi-state semi-

Markov process whose flowgraph provides a schematic diagram for the circuit; see

Figure 1. This flowgraph is labelled with Laplace-Stieltjes transforms which are

the “transmittances” through the various wires. The Laplace-Stieltjes transform for

the impulse response at the output node is the system transfer function and for the

empirical version of the circuit will be recognized as the Laplace-Stieltjes transform for

the Kaplan-Meier mass probabilities. It is common to refer to this transfer function

as the “solution” to the circuit or system.

This circuitry or systems-theoretic approach has been previously used in Butler &

Bronson (2002) to estimate passage time distributions in multi-state survival models

that lack censoring using bootstrap methods. A major aim and motivation for the

present work has been to incorporate censoring into such models thus subsuming the

treatment of censoring into the systems-theoretic approach. The results of this paper,

as concerns the extensions to the competing risk setting, suggest that Laplace-Stieltjes

transforms for the Kaplan-Meier mass probabilities can be used as transmittances in

such models and can be justified as modules or chips within the circuitry to deal with

the existence of right censoring from system states. For a more complete description

of these systems-theoretic methods, see Butler (2001, 2007 Ch. 13) as it concerns

multi-state semi-Markov processes.

A fundamentally important yet unintended consequence of this work is the sup-

port that the systems-theoretic approach provides for the use of maximum likelihood

as a method of statistical inference. The systems-theoretic framework of this paper

motivates the Kaplan-Meier estimator, a nonparametric maximum likelihood estima-

tor, as an adjustment for right censoring and left truncation. By equating the passage

of a virtual patient through the various states of a multi-state semi-Markov process
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with the flow of current through an electrical circuit, the fundamental concept of

current additivity in parallel circuits leads to use of the Kaplan-Meier estimator to

make the adjustment. Thus this framework provides a separate and fundamentally

different motivation for an estimator that would otherwise be motivated in terms

of mathematical likelihood. The physical basis for the systems-theoretic motivation

and its independence from likelihood concepts give additional reassurance for the

Kaplan-Meier estimator and more fundamentally for the likelihood principle and its

maximization as a method for statistical inference.

Finally, covariate u may be entered into the single event setting by assuming that

covariate dependence in F 0(t) enters through the proportional hazards structure. In

this context, survival time Xθ has survival S0(t)θ with S0(t) as baseline survival and

θ = exp(βTu). Within the circuitry interpretation of this systems-theoretic approach,

some commonly used estimates of baseline survival S0(t) may be determined. These

estimates use the idea that the risk of Xθ is equivalent to the risk of θ independent

hypothetical (virtual) baseline subjects that represent a charge of θ. The relative

risk for all the Xθ subjects are assessed in terms of the corresponding risks for the

collection of their virtual baseline counterparts. Extensions of these ideas to the

competing risks setting are also given.

2 Censored and truncated lifetimes

Let random variable X0 be the lifetime for a patient in the population with distribu-

tion function F 0 (x) and survival function S0 (x) . Suppose a random truncation time

T 0 that is independent of X0 which may also be interpreted as age upon entry into

the study. Let the censoring time Z0 be random, independent of X0, and dependent

on T 0 only through the fact that the event {T 0 < Z0] is assumed to have probability
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1. If T 0 = t, then also assume that the conditional distribution function of Z0|T 0 = t

is the distribution function G0 restricted to (t,∞) or the residual life distribution for

G0 given Z0 > t. For an untruncated patient who enters into the study, the truncation

time T 0 is observed along with min(X0, Z0). This is the single event setting since one

event time X0 is considered.

Since only the smaller of X0 and Z0 is observed when T 0 < min(X0, Z0), it is

convenient to define the following competitive variables and their conditional distri-

butions:

T
d
= T 0 | {T 0 < X0} ∼ E (x)

X
d
= X0 | {T 0 < X0 < Z0} ∼ F (x)

Z
d
= Z0 | {T 0 < Z0 < X0} ∼ G (z)

with p1 = pr{X
0 < Z0 |T 0 < X0} and p0 = 1− p1. The three random variables T, X,

and Z represent competitive values for truncation time, lifetime, and censoring time

respectively, and the probability p1 is also competitive. All three distributions and

p1 are estimable from the observed data. The support for all random variables is

assumed to be (0,∞) .

2.1 Semi-Markov systems

The lifetime of a random subject that may be right-censored and left-truncated is

shown in the semi-Markov flowgraph of Figure 1. If times are expressed in terms of

age, then a subject is born into node B at time 0. The transmittance input to node B

takes the value 1 and is the Laplace-Stieltjes transform for a Dirac function input at

time 0. An untruncated subject enters the study in the upper portion of the flowgraph

at time T ∈ [t, t + dt) through state 1t where t indexes one among the continuum

of truncation-time states {1t : t > 0}. An observed lifetime occurs when the subject
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passes directly from 1t → D with D as the absorbing death state. A right-censored

subject passes to state Rz among the continuum of states {Rz : z > t} where z is

the absolute time of censoring. After censoring, the subject’s subsequent unobserved

lifetime depends on z as indicated by the transition from Rz → D. The unobserved

direct transition B→ D indicated at the bottom of the flowgraph is the transmittance

to death for a truncated subject. All transition times in the semi-Markov flowgraph

are observed except for passage from B → D and Rz → D.

Each pathway in the flowgraph is labelled with its transmittance defined as the

product of the state transition probability times the moment generating function for

the holding time in the originating state. For example, the transition B → 1t occurs

in time t hence the moment generating function is est with probability

dL(t) = pr{T 0 ∈ [t, t+ dt), T 0 < X0} = τdE(t) (1)

where τ = pr{T 0 < X0} =
∫∞
0

dL(t). With lifetime y, the transmittance 1t → D with

incremental transition time y − t is

Mt(s) =

∫ ∞

t

es(y−t)dBt(y) (2)

where dBt(y) is the probability the subject has observed lifetime y after entering the

study at time t, or

dBt(y) = pr{X
0 ∈ [y, y + dy), Z0 > y |T 0 ∈ [t, t+ dt), T 0 < X0}. (3)

A subject who is censored at time z > t makes transition 1t → Rz in time z − t with

probability

dQt(z) = pr{Z
0 ∈ [z, z + dz), X0 > z |T 0 ∈ [t, t+ dt), T 0 < X0}, (4)

hence the transmittance es(z−t)dQt(z). The fact that this transmittance depends on

the destination state Rz is the reason for referring to the flowgraph as semi-Markov.
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Two of the transmittances N(s, z) and Υ(s) are associated with transition times

that are not directly observable. These transmittances are reexpressed in Lemma 1

in terms of quantities that are estimable as a result of the independent censoring and

truncation assumptions.

Lemma 1 Suppose that E0, F 0, and G0 have no common jump points so that all

Riemann-Stieltjes integrals are defined. The transmittances that correspond to unob-

served transition times are estimable though the following relationships.

N(s, z) =
e−sz

S0(z)

∫ ∞

z

esydF 0(y) (5)

Υ(s) =

∫ ∞

0

esy
{
1− τ

∫ y

0

dE(t)

S0(t)

}
dF 0(y). (6)

Proof : For (5),

N(s, z) =

∫ ∞

z

es(y−z)dHz(y) (7)

where, for y > z > t,

dHz(y) = pr{X0 ∈ [y, y + dy) |Z0 ∈ [z, z + dz), Z0 < X0}

= dF 0(y)/S0(z). (8)

Substitution of (8) into (7) leads to (5).

Derivation of (6), requires first determining the relationship of dE(t) to dE0(t) as

dE(t) = pr{T 0 ∈ [t, t+ dt) |T 0 < X0}

= pr{T 0 ∈ [t, t+ dt), t < X0}/τ

= dE0(t)S0(t)/τ . (9)
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Thus

Υ(s) =

∫ ∞

0

esy pr
{
X0 ∈ (y, y + dy), X0 < T 0

}

=

∫ ∞

0

esy{1−E0(y)}dF 0(y)

=

∫ ∞

0

esy
{
1−

∫ y

0

dE0(t)

}
dF 0(y)

which, upon using (9), gives (6). �

Semi-Markov modelling to explain right censoring (but without truncation) was

previously considered in Lagakos, Sommer, & Zelen (1978) and later Anderson et al

(1993, Ex. III2.8). Their models record passage time up tomin(X0, Z0) and represent

censoring as a single absorbing node in a semi-Markov competing risks model. These

models do not consider transitions after censoring as is required when explaining all

state changes connected with lifetime X0. In modelling the entire lifetime X0, a single

censoring state cannot express the semi-Markov structure after censoring; such states

must be indexed as {Rz} in order to allow subsequent transition to state D in time

X0−z. These other models are different because they address different concerns: the

determination of a nonparametric maximum likelihood estimator for F 0. The current

model rather explains the entire passage time X0 and requires a semi-Markov model

as in Figure 1 to take account of the unobserved residual lifetime after censoring from

min(X0, Z0) to X0.

A Markov model that allows for random left truncation has also been given in

Anderson et al (1993, Ex. III3.3). This model shows the parallel connection of

untruncated and truncated paths but otherwise has not been expanded to also allow

for right censoring as in Figure 1.
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2.2 Self-consistency of F 0

The assumptions of independent censoring and truncation provide a context in which

it is possible to remove the censoring risk factor and adjust for truncation when

estimating F 0. When considered in terms of the flowgraph, the density dF 0(x) of X0

is the output of the analog circuit at node D and the plot of dF 0(x) versus x would

be the output seen on an oscilloscope were it to be attached to D. The Laplace-

Stieltjes transform of F 0(x) is the transfer function of the system and is determined

by summing all parallel transmittances from B → D. Thus

∫ ∞

0

esydF 0(y) = Υ(s) + ∆(s) + Ξ(s) (10)

is the respective sum over a virtual patient who may have been truncated, may have

had an observed lifetime, or may have been censored with

∆(s) =

∫ t=∞

t=0

estdL(t)Mt(s) (11)

Ξ(s) =

∫ t=∞

t=0

estdL(t)

{∫ z=∞

z=t

es(z−t)dQt(z)N(s, z)

}
. (12)

The Stieltjes integrals in (10), (11) and (12) exist so long as the distributions have no

common jump points. Expressions (10), (11) and (12) may also be derived from first

principles without the flowgraph presentation. However, the use of flowgraphs and

the basic principle of summing over parallel conductances gives an intuitive physical

interpretation for the preservation of probability flow through the multi-state process.

A general estimable solution F 0(y) to (10) follows provided Υ, ∆, and Ξ can be

expressed in terms of F 0 and the estimable distribution functions F, G, and H. As

shown in the Appendix,

∆(s) = τp1

∫ ∞

0

esydF (y) (13)

Ξ(s) = τp0

∫ ∞

0

esy
{∫ y

0

dG(z)

S0(z)

}
dF 0(y) (14)
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and these expressions may be substituted into (10) along with (6) to yield

∫ ∞

0

esydF 0 (y) =

∫ ∞

0

esy
{
1− τ

∫ y

0

dE(t)

S0(t)

}
dF 0(y) (15)

+ τp1

∫ ∞

0

esydF (y) + τp0

∫ ∞

0

esy
{∫ y

0

dG(z)

S0(z)

}
dF 0(y).

Inverting the transforms leads to the unique solution for dF 0 (x) as

dF 0 (y) =

{
1− τ

∫ y

0

dE(t)

S0(t)

}
dF 0(y) (16)

+ τp1dF (x) + τp0

{∫ y

0

dG(z)

S0(z)
dz

}
dF 0(y).

Cancelling dF 0(y) on both sides as well as the common factor τ leads to

dF 0 (y) =

{∫ y

0

dE(t)

S0(t)
− p0

∫ y

0

dG(z)

S0(z)

}−1
p1dF (y) (17)

when the term in curly braces is not zero or negative. This is the population version

of the self-consistent equation originally introduced by Efron (1967) for the estima-

tion of F 0 (x) without truncation. If there is no truncation, then dE(0) = 1 so
∫ y
0

dE(t)/S0(t) = 1 and (17) gives Efron’s result for the population distribution.

Simple computations show that the right side of (17) is dF 0(y). Expression (9)

leads to
∫ y

0

dE(t)

S0(t)
=

E0(y)

τ
.

The use of Bayes theorem on dG(z) in the second term of (17) leads to

p0

∫ y

0

dG(z)

S0(z)
= p0

∫ y

0

pr {Z0 ∈ [z, z + dz) |Z0 < X0, T 0 < X0}

S0(z)

= p0

∫ y

0

dG0(z)S0(z)

p0τS0(z)
=

G0(y)

τ
.

Since {Z0 ≤ y} ⊆ {T 0 ≤ y}, the term in curly braces in (17) is

E0(y)

τ
−

G0(y)

τ
=
pr(T 0 ≤ y < Z0)

pr(T 0 ≤ X0)
.
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The right side of (17) is now

{
pr(T 0 ≤ y < Z0)

pr(T 0 ≤ X0)

}−1
p1 pr{X

0 ∈ [y, y + dy)|T 0 < X0 < Z0} = dF 0(y)

when Bayes theorem is used on the last probability for dF (y).

3 A self-consistent estimator for F 0(x)

Untruncated data consist of n1 lifetimes, observed as the pairs {(t1i, xi) : i = 1, . . . , n1}

where truncation time t1i < xi, and n0 censored values {(t0j , zj) : j = 1, . . . , n0} with

t0j < zj . Distribution functions E, F, and G are estimated by their empirical counter-

parts Ê(t), F̂ (x), and Ĝ(z) based on {t1i} ∪ {t0j}, {xi}, and {zj} respectively while

p̂1 = n1/n· with n· = n0 + n1.

Figure 2 shows a semi-Markov flowgraph that is an empirical version of the graph

in Figure 1. Each subject contributes a separate path from B → D with weight τ/n·.

The unobserved branches Rzj → D and B → D direct have empirical transmittances

N̂(s, zj) =
e−szj

Ŝ0(zj)

∫ ∞

zj

esydF̂ 0(y)

Υ̂(s) =

∫ ∞

0

esy

{

1−

∫ y

0

τdÊ(t)

Ŝ0(t)

}

dF̂ 0(y)

where estimate F̂ 0(y) = 1 − Ŝ0(t) is presumed to exist. Summing over all parallel

connections gives the empirical counterpart to (15) as

∫ ∞

0

esydF̂ 0 (y) = Υ̂(s) +
τ

n·

n1∑

i=1

est1ies(xi−t1i) +
τ

n·

n0∑

j=1

est0jes(zj−t0j)N̂(s, zj). (18)

The second term is τn1/n·
∫∞
0

esydF̂ (y) while the last term is

τn0
n·

∫ ∞

0

1

Ŝ0(z)

{∫ ∞

z

esydF̂ 0(y)

}
dĜ(z) =

τn0
n·

∫ ∞

0

esy

{∫ y

0

dĜ(z)

Ŝ0(z)

}

dF̂ 0(y).
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Inverting the Laplace-Stieltjes transforms in (18) leads to

Ĉ(y)dF̂ 0 (y) :=

{∫ y

0

dÊ(t)

Ŝ0(t)
− p̂0

∫ y

0

dĜ(z)

Ŝ0(z)

}

dF̂ 0 (y) = p̂1dF̂ (y) (19)

as the defining equation for self-consistency. The solution to (19) is summarized in

Theorem 2.

Theorem 2 Suppose that Ê(t), F̂ (t), and Ĝ(t) have no common jump points. Let

x∗ = min{xi} and x∗ = max({xi}, {zj}) and suppose, without any loss in generality,

that censored values less than x∗ have already been deleted as uninformative. If Nt is

the number of subjects at risk at time t, the assumption that Nt > 0 for all t ∈ (x∗, x∗)

assures that there is a unique self-consistent solution to (19) over (x∗, x
∗) which is

the Kaplan-Meier estimator.

Proof. Since dF̂ (y) = 0 for y /∈ {xi}, the support for dF̂ 0 (y) can only be {xi} and

also regions in (x∗, x
∗) for which Ĉ(y) = 0. The latter possibility will be eliminated

with the assumption thatNt > 0 for all t ∈ (x∗, x∗). For the sake of argument, suppose

that x1 < x2 < · · · < xn1 . For any t between min[{t1i}, {t0j}], and x1, Ĉ(t) > 0 and

dF̂ 0 (t) = 0 so that Ŝ0(t) = 1 over this range. At x1 = x∗, (19) is

Ĉ(x1)dF̂ 0 (x1) =

(
N1
n·
− 0

)
dF̂ 0 (x1) =

1

n·
(20)

where N1 denotes the number truncated before x1 and therefore at risk, while 0 is

the number censored before x1. The solution to (20) is dF̂ 0 (x1) = 1/N1 so that

Ŝ(x1) = 1− 1/N1.

More generally, the following recursions

1

dF̂ 0(xl)
=

Nl

Ŝ0(xl−1)
and Ŝ0(xl) = Ŝ0(xl−1)

(
1−

1

Nl

)
(21)

are shown to hold for l = 1, . . . , n1 which are those for the Kaplan-Meier estimator.

The l = 1 case above has been shown to hold with x0 = x−1 .
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The proof of (21) proceeds by using induction wherein recursion l in (21) is shown

to imply recursion l + 1. Suppose that ∆Tl+1 = n·{Ê(xl+1) − Ê(xl)} and ∆Rl+1 =

n·p̂0{Ĝ(xl+1) − Ĝ(xl)} count the number of truncation and right censoring times

within (xl, xl+1). From (19),

1

dF̂ 0(xl+1)
=

1∑

k=0

∑

{j : tkj <xl+1}

1

Ŝ0(tkj)
−

∑

{j : zj <xl+1}

1

Ŝ0(zj)

=
1

dF̂ 0(xl)
+
∆Tl+1

Ŝ0(xl)
−
∆Rl+1

Ŝ0(xl)

where the constant value Ŝ0(t) ≡ Ŝ0(xl) over t ∈ [xl, xl+1) has been used. From (21),

this is

1

dF̂ 0(xl+1)
=

Nl

Ŝ0(xl−1)
+

∆Tl+1 −∆Rl+1

Ŝ0(xl−1) (1− 1/Nl)

=
Nl

Ŝ0(xl−1) (Nl − 1)
(Nl − 1 + ∆Tl+1 −∆Rl+1)

=
Nl+1

Ŝ0(xl)
(22)

upon using the recursion for Ŝ0(xl) in (21). Using Ŝ0(xl+1) = Ŝ0(xl)−dF̂ 0(xl+1) and

(22) gives the remaining recursion. �

4 Irregularities and examples

Uniqueness of the solution to the self-consistent equations in (19) may be lost if no

subjects are at risk during a portion of the informative time span, i.e., there is a

t0 ∈ (x∗, x
∗) for which Nt0 = 0. Furthermore, in this instance Ŝ0 does not have

to place all mass on {xi} but rather can place non-zero mass onto an interval that

contains t0 since Ĉ(t0) = 0. Let t∗ be the next time point above t0, which is necessarily

a truncation time, and let z∗ be the next time point below t0 which is necessarily a

lifetime or censoring time. If z∗ is a censoring time (lifetime), then interval (z∗, t
∗)
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can (cannot) hold non-zero mass in the solution to the self-consistency equations.

Support intervals such as (z∗, t
∗) were first noted by Frydman (1994) as additional

sites capable of holding mass for the nonparametric maximum likelihood estimate

when there is truncation. Such sites were not mentioned in Turnbull’s (1976) original

account dealing with general interval censoring and truncation. These points are

illustrated using two simple examples.

Example 1. Consider the ordered data

tx1 < tx2 < x1 < tz1 < z1 < x2 < tx3 < x3

in which txi is the truncation time for x1, etc. At x2, the two subjects entered into the

study are no longer at risk but the third subject has not yet entered. The example

violates the conditions of Theorem 2 since there are no subjects at risk during the

interval (x2, tx3). The self-consistent solution places mass 1/2 on x1 and 1/2 on x2.

This leads to Ŝ0(x2) = 0 and Ĉ(x2) = 2 from which the value for

Ĉ(tx3) = Ĉ(x2) +
1

Ŝ0(tx3)

is undefined due to division by Ŝ0(tx3) = 0.

In computing the nonparametric maximum likelihood estimate, the support set

from Turnbull (1976) is xi with probability si for i = 1, 2, 3. The respective likelihood

terms contributed by x1, z1, x2, and x3 are

L = s1(s2 + s3)
s2

s2 + s3

s3
s3
= s1s2

and the maximum likelihood estimate agrees with the self-consistent estimate with

ŝ1 = ŝ2 = 1/2.

Example 2. Interchange z1 and x2 from Example 1 to get ordered data

tx1 < tx2 < x1 < tz1 < x2 < z1 < tx3 < x3.
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Again there are no subjects at risk during (z1, tx3) so Theorem 2 is violated. The

self-consistent solution places mass 1/2 on x1, 1/4 on x2, mass p in (z1, tx3), and mass

1/4− p at x3 for any p ∈ [0, 1/4). In the self-consistent solution,

Ĉ(z1) = 4−
1

Ŝ0(z1)
= 4− 4 = 0.

By allowing arbitrary mass p in (z1, tx3), then

Ĉ(tx3) = Ĉ(z1) +
1

Ŝ0(tx3)
=

1

1/4− p
> 0

for any p ∈ [0, 1/4) which leaves dF̂ 0(x3) = 1/4− p.

The support set for the maximum likelihood estimate is determined from Frydman

(1994) as x1, x2, (z1, tx3), and x3 with probabilities s1, . . . , s4. The nonparametric

likelihood is

L = s1s2
s3 + s4

s2 + s3 + s4
= s1s2

1− s1 − s2
1− s1

which attains the same collection of maxima as the self-consistent solution.

5 Proportional hazards extensions in single event

settings

Suppose data consist of n· subjects with responses (ti, xi, δi, ui) for i = 1, . . . , n·

where the respective values are truncation time, lifetime/censoring time, indicator

of lifetime response, and covariate vector. For notational convenience suppose that

x1 < · · · < xn·. In the context of the proportional hazards model, subject i with

lifetime Xθi has survival function pr(Xθi > t) = S0(t)θi with θi = exp(βTui). This

subject’s survival function is the same as that for θi independent virtual baseline

subjects. Equivalently, the hazard for Xθi is the sum of the hazards of these θi

virtual baseline subjects.
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By working with a total of θ· =
∑n·

i=1 θi independent virtual subjects instead of n·

heterogeneous subjects, extensions to the estimation of baseline survival S0(t) in the

proportional hazards setting can be easily determined if ties in responses are allowed.

Allowance for ties in the Kaplan-Meier estimator is easily justified on the grounds

that it is the limiting estimator when ties are separated slightly and then allowed to

approach one another in the tied configuration. We shall work under such limiting

assumptions and also use the total collection of θ· virtual subjects. Note that the

difficult case that allows for tied values of xi with different covariate values θi is not

under consideration.

Under such arrangements, both the partial likelihood for β and two baseline esti-

mates for S0(t) can be easily justified. For an assumed β, the partial likelihood under

both right censoring and left truncation is

Lp(β) =
n·∏

i=1

(
θi∑
j∈Ri

θj

)δi
(23)

where Ri is the risk set at time xi so that j ∈ Ri whenever tj < xi < xj. The partial

likelihood is simply the product of observed Bernoulli probabilities for the virtual

baseline subjects at the set of lifetimes.

Estimation of baseline survival for an assumed value of β is simply

Ŝ0(t) =
∏

{i :xi≤ t}

(

1−
1∑

j∈Ri
θj

)δi
, (24)

which is the Kaplan-Meier form of the Breslow or Nelson-Aalen estimate. With-

out truncation, both (23) and (24) have been motivated as maximum profile semi-

parametric likelihood estimates by Johansen (1983). From the point-of-view of evalu-

ating the lifetimes of θ· independent virtual subjects, the justification of (24) is simply

that 1− 1/
∑

j∈Ri
θj is the probability that a single baseline patient survives lifetime

point xi from within the collection of
∑

j∈Ri
θj baseline subjects who are at risk at
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time x−i . Thus (24) adjusts the observed probabilities pertaining to θi-subjects so

they are relevant to a baseline subject.

The Kalbfleisch & Prentice estimator (2002, Eq. 4.36)

Ŝ0KP (t) =
∏

{i : xi≤ t}

(

1−
θi∑
j∈Ri

θj

)δi/θi

is equally simple to motivate. The probability that θi virtual patients survive time xi

is 1− θi/
∑

j∈Ri
θj when computed from among

∑
j∈Ri

θj subjects at risk at time x−i .

This is the survival probability S0(t)θi for Xθi , and so to have it apply to a baseline

patient, it needs to be raised to the 1/θi power.

By equating the risk of a θi-subject with θi independent baseline subjects, these

three commonly used estimators from the proportional hazards setting can be moti-

vated. Indeed it is the structure of the proportional hazards setting that allows for

and gives validity to these simple arguments.

6 Competing Risks

In the classical competing risks setting, there are multiple event times X0
1 , . . . , X

0
K

with distribution F 0(x1, . . . , xK) that compete with independent censoring time Z0

and independent left truncation time T 0. The value and index for M0 = min{X0
k}

are observed if the events are untruncated, T 0 < M0, and uncensored, M0 < Z0. The

aim is to estimate the collection of subdistributions

F 0
k (x) = pr(Xk = M0 ≤ x) k = 1, . . . , K

associated with F 0 from competitive data that are subject to right censoring and

left truncation. The distributional structure of the censoring and truncation vari-

ables supposes T 0 ∼ E0 and Z0|T 0 = t ∼ G0 restricted to (t,∞) with T 0 and Z0
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independent of X0
1 , . . . ,X

0
K . The survival function of M0 is S0+(t) = 1− F 0

+(t) where

F 0
+(t) =

∑K
k=1 F 0

k (x).

The data are observed to come from the competitive distributions

T
d
= T 0 | {T 0 < X0} ∼ E (x)

Xk
d
= X0

k | {T
0 < X0

k = M0 < Z0} ∼ Fk (x)

Z
d
= Z0 | {T 0 < Z0 < M0} ∼ G (z) .

for k = 1, . . . ,K. The competitive probabilities pk = pr(X
0
k = M0 < Z0) for k ≥ 1

and p0 = pr(Z
0 < M0) are estimable from the data and add to 1.

6.1 Population flowgraph

Figure 3 shows the competing risk flowgraph when there are K = 2 possible events

that are subject to random right censoring and left truncation. The transmittances

along with estimable expressions, determined from arguments similar to those in

section 2, are dL(t) = τdE(t) where τ = pr(T 0 < M0) and Mkt(s) =
∫∞
t

es(y−t)dBk(y)

where

dBk(y) = pr
{
X0
k =M0 ∈ [y, y + dy), M0 < Z0 |T 0 ∈ [t, t+ dt), T 0 < M0

}

dQt(z) = pr
{
Z0 ∈ [z, z + dz), Z0 < M0 |T 0 ∈ [t, t+ dt), T 0 < M0

}

Nk(s, z) =
e−sz

S0+(z)

∫ ∞

z

esydF 0
k (y)

Υk(s) =

∫ ∞

0

esy
{
1− τ

∫ y

0

dE(t)

S0+(t)

}
dFk(y).

Summing over all paths from B to Dk, within which lifetimes of type k are observed,

gives transmittance

∆k(s) = τpk

∫ ∞

0

esydFk(y).
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Summing from B to Dk but passing through censored states gives

Ξk(s) = τp0

∫ ∞

0

esy
{∫ y

0

dG(z)

S0+(z)

}
dF 0

k (y)

The Laplace-Stieltjes transform for subdistribution F 0
k is the sum over all trans-

mittances from B to Dk or Υk(s) + ∆k(s) + Ξk(s). Transform inversion leads to

dF 0
k (y) =

{∫ y

0

dE(t)

S0+(t)
− p0

∫ y

0

dG(z)

S0+(z)

}−1
pk dFk (y) (25)

for k = 1, . . . , K.

6.2 Empirical flowgraph

The data consist of nk observed events of type k and n0 censored with total sample

size n· = n0 +
∑K

k=1 nk. Suppose xki is the ith observed event time of type k with

associated truncation time tki < xki. The times {t0i : i = 1, . . . , n0} are the truncation

times for the censored data. Truncation distribution E is estimated using Ê, the

empirical distribution of {tkj : k = 0, . . . , K; j = 1, . . . , nk} while F̂k and Ĝ are the

empirical distributions of {xki : i = 1, . . . , nk} and censoring times {zj : j = 1, . . . , n0}

respectively. Estimate p̂k = nk/n· .

Figure 4 shows the empirical competing risk flowgraph with K = 2. Summing

over all paths from B to Dk leads to the self-consistency equations

Ĉ(y)dF̂ 0
k (y) = p̂kdF̂k(y) = 1/n· k = 1, . . . , K (26)

where

Ĉ(y) =

∫ y

0

dÊ(t)

Ŝ0+(t)
− p̂0

∫ y

0

dĜ(z)

Ŝ0+(z)
.

The solution to (26) is now summarized in Theorem 3.

Theorem 3 Suppose that Ê(t), {F̂k(t)}, and Ĝ(t) have no common jump points. Let

x∗ = min{xki} and x∗ = max({xki}, {zj}) and suppose, without any loss in generality,
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that censored values less than x∗ have already been deleted as uninformative. The

assumption that Nt > 0 for all t ∈ (x∗, x
∗), where Nt is the number of subjects at risk

at time t, assures that there is a unique self-consistent solution to the K equations in

(26) over (x∗, x
∗) and that the subdistribution solutions are those associated with the

Kaplan-Meier estimator.

Proof. The proof is the same inductive proof used for Theorem 2. Assumption

Nt > 0 assures that mass is only placed on event times. Order the N = n·−n0 event

times as x1 < · · · < xN and suppose the associated event types are i(1), . . . , i(N). The

l = 1 case of induction holds and states that dF̂ 0
i(1)(x1) = 1/N1 and Ŝ0+(x1) = 1−1/N1

where N1 is the number of subjects at risk at time x1 = x∗. Assuming the lth case,

1

dF̂ 0
i(l)(xl)

=
Nl

Ŝ0+(xl−1)
Ŝ0+(xl) = Ŝ0+(xl−1) (1− 1/Nl) ,

it can be shown through induction that the (l + 1)st case holds. �

Subdistribution estimate F̂ 0
k accumulates Kaplan-Meier probabilities dF̂ 0

k at event

times of type k where the Kaplan-Meier estimate Ŝ0+(x) = 1 −
∑K

k=1 F̂ 0
k (x) for the

survival of M0 has been computed by using the pooled set of event times. If x∗ is a

censored value, then Ŝ0+(x) and {F̂ 0
k (x)} are indeterminate for x > x∗.

These subdistribution estimates may also be expressed in terms of the individ-

ual Kaplan-Meier estimates for the marginal distributions of {X0
k} in the indepen-

dent competing risk setting. This setting supposes {X0
k} are independent so that

F 0(x1, . . . , xK) =
∏K
k=1 F 0(xk). Let F̃ 0

k (x) denote the Kaplan-Meier estimator of

F 0
k (x) computed with non-k event times treated as censored along with data that

are truly censored. It is a simple derivation to show the subdistribution estimate

dF̂ 0
k (x) = dF̃ 0

k (x)
K∏

1=i	=k

{
1− F̃ 0

i (x)
}

.
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That the independent competing risk model should happen to lead to the same esti-

mate reflects the well-known fact that competing risks data contain no information

about the dependence structure of the joint distribution of X0
1 , . . . , X

0
K.

7 Proportional hazards extensions in competing

risk settings

Prentice et al (1978) review the options proposed by Holt (1978) for including covari-

ates in the Cox model and offer two models for this setting. In the first, regression

coefficients are cause-specific so that a subject with covariate u would have the cause-

specific hazard θkλ0k(t) where θk = exp(βTk u) and the baseline hazard is λ0k(t) =

dF 0
k (t)/S

0
+(t). For this model, the K cause-specific parameter sets {θ1, λ01(·)}, . . . ,

{θK , λ0K(·)} are L-independent (Barndorff-Nielsen, 1978, §3.3) in the sense that the

likelihood is completely separable into such groups of parameters. Accordingly, cause

specific baseline hazards, subdistributions, and regressions are estimated separately

by using the methods of section 5.

Under the second model, the cause specific baseline hazards are proportional so

the kth event type hazard is θkλ0(t) with θk = exp(αk + βTk u). In this model, the

subject’s hazard is the same as that of
∑K

i=1 θk independent virtual baseline subjects

and can be treated as such for purposes of estimation. In regression estimation, this

leads to the partial likelihood given in Prentice et al (1978, Pg. 547) as well as a

logistic model for event type. Correspondingly, estimates of λ0(t) have support over

the pooled collection of event times and for each event time are based on the subjects

at risk at that time from among the
∑K

i=1 θk virtual baseline subjects.
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8 Appendix

Proof of (13): Substituting (1), (2), and (3) into (11) gives

∆(s) = τ

∫ t=∞

t=0

estdE(t)

∫ y=∞

y=t

es(y−t)dBt(y)

= τ

∫ y=∞

y=0

esy
∫ t=y

t=0

pr
{
X0 ∈ [y, y + dy), Z0 > y, T 0 ∈ [t, t+ dt) |T 0 < X0

}

= τ

∫ ∞

0

esy pr{X0 ∈ [y, y + dy), Z0 > X0 |T 0 < X0} = τp1

∫ ∞

0

esydF (y).

Proof of (14): Substituting (1) and (5) into (12) gives

Ξ(s) = τ

∫ t=∞

t=0

dE(t)

∫ z=∞

z=t

dQt(z)

S0(z)

∫ ∞

z

esydF 0(y) =

∫ ∞

0

esydB(y)

where

dB(y) = τdF 0(y)

∫ z=y

z=0

1

S0(z)

∫ t=z

t=0

dQt(z)dE(t). (27)

Substituting (4) into (27), the integral in t is

∫ t=z

t=0

pr{Z0 ∈ [z, z + dz), X0 > Z0, T 0 ∈ [t, t+ dt) |T 0 < X0}

= pr{Z0 ∈ [z, z + dz), X0 > Z0 |T 0 < X0}

= pr{Z0 ∈ [z, z + dz) |T 0 < Z0 < X0} pr{X0 > Z0 |T 0 < X0}

= dG(z)p0. (28)

Substitution of (28) into (27) gives (14).
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Fig. 1: Semi-Markov flowgraph for a virtual patient’s lifetime subject to a single
risk.
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Fig. 2: Empirical semi-Markov flowgraph providing an approximation for the
single-risk flowgraph of Figure 1.
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Fig. 3: Semi-Markov flowgraph for a virtual patient’s lifetime subject to two
competing risks.
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Fig. 4: Empirical flowgraph providing a semi-Markov approximation for the
competing-risks flowgraph in Figure 3.
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