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Summary

In this paper we compare the properties of four different general approaches for testing the ratio of two
Poisson rates. Asymptotically normal tests, tests based on approxipvalees, exact conditional tests,

and a likelihood ratio test are considered. The properties and power performance of these tests are studied
by a Monte Carlo simulation experiment. Sample size calculation formulae are given for each of the test
procedures and their validities are studied. Some recommendations favoring the likelihood ratio and certain
asymptotic tests are based on these simulation results. Finally, all of the test procedures are illustrated with

two real life medical examples.
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1 Introduction

The Poisson Distribution, named after the famous French mathematician Simeon Denis Poisson who first
formulated it (Poisson, 1837), is a mathematical rule that assigns probabilities to the number of occurences.
It is most commonly used to model the number of random occurrences of some phenomenonin a specified

space or time interval. Sometimes the Poisson rate is of interest because it pertains to a unit of time or
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space. For example, the incidence rate of a disease (Rothman and Greenland, 1998) is defined as the

number of events observed divided by the time at risk during the observation period.

Biological, epidemiological, and medical research can produce data that follow a Poisson distribution.
It is sometimes called the law of rare events, for it describes the distribution of counts of such events. For
example, the number of cases of a rare disease or the frequency of single gene mutations may be modeled
by a Poisson distribution. In two-sample situations, researchers are likely to be interested in testing the
difference or ratio of the Poisson means. The comparison of the Poisson rates from two independent sam-
plesis clearly of medical interest. For instance, Stampfer and Willett (1985) conducted a prospective study
to examine the relationship of post-menopausal hormone use and coronary heart disease (CHD). With
postmenopausal hormone use in 54308.7 person-years, there are 30 CHD cases; without postmenopausal
hormone use in 51477.5 person-years, there are 60 CHD cases. The problem of interest is to test whether
the post-menopausal hormone using group has less coronary heart disease. Another example in epidemi-
ology is a breast cancer study reported in Rothman and Greenland (1998) and Graham, Mengersen, and
Morton (2003). Two groups of women were compared to determine whether those who had been examined
using x-ray fluoroscopy during treatment for tuberculosis had a higher rate of breast cancer than those who
had not been examined using x-ray fluoroscopy. Forty-one cases of breast cancer in 28,010 person-years
at risk are reported in the treatment group with women receiving x-ray fluoroscopy and 15 cases of breast

cancer in 19,017 person-years at risk in the control group with women not receiving x-ray fluoroscopy.

The problem of comparing two Poisson rates has been studied for a long time, however, most of the
early studies focused on the equal time frame situation. Przyborowski and Wilenski (1939) first proposed a
conditional test for the unity of the ratio of two Poisson rates based on a conditional binomial distribution.
Subsequently, Chapman (1952), Birnbaum (1953), Brownlee (1967) and Gail (1974) studied the properties
and some alternatives for testing the hypothesis or constructing confidence intervals based on the condi-

tional approach. On the other hand, Hald (1960), Ractliffe (1964), Cox and Lewis (1966), Haight (1967)
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Detre and White (1970) and Sichel (1973) investigated asymptotic tests based on normal approximations

for the equality of the two Poisson rates.

Development for unequal sampling frames has received more attention recently. Shiue and Bain (1982)
derived a uniformly most powerful unbiased (UMPU) test for equality of two Poisson rates and showed
that a test based on the normal approximation of the binomial distribution is nearly as powerful as the
UMPU test. Huffman (1984) proposed an improved asymptotic test statistic, which accelerated the rate
of convergence to normality by a variance stabilizing transformation. Along the same line, Thode (1997)
considered an alternative test statistic that is more powerful than Shiue and Bain statistic for large Poisson
rates. Recently, Ng and Tang (2005) provided systematic comparisons among these tests and presented the
associated sample size formulae. All these studies are devoted to the problem of testing the equality of the
two Poisson rates (or the unity of the ratio) only. Krishnamoorthy and Thomson (2004) considered tests

based on estimategtvalues and showed that these have uniformly better power than the conditional test.

Although many methods have been proposed to test the ratio of two Poisson rates, it is not clear when
techniques are more appropriate, or how their performances might vary. Moreover, most of the works focus
on testing the unity of the ratio. In the present article, we present an extensive and systematic comparative
study of different test procedures for testing the non-unity of the rate ratio of two Poisson processes under
unequal sampling frames. In Section 2, we review the problem of testing the general non-unity ratio of two
Poisson rates over unequal-size sampling frames. Asymptotic tests based on normal approximations, tests
based on approximatevalue methods, an exact conditional test, a mibnditional test, and a likelihood
ratio test are considered. In Section 3, we present the formulae for sample size calculation for each of the
test procedures. In Section 4, Monte Carlo simulations are used to study the properties of the different test
procedures, as well as the validity of the sample size calculation formulae. Two real life examples are used
to illustrate the test proceduresin Section 5. Finally, a discussion of the results with some recommendations

are presented in Section 6.
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2 Test Procedures

2.1 Asymptotic tests based on normal approximations

For fixed sampling frames, andt;, two independent Poisson processes (with parameigend ;) are
observed. LefX;, and X; be the corresponding number of outcomes, Xg.~ Poissond;) with \; = t;~;
fori = 0, 1. Here;y;,i = 0, 1 are the Poisson rates. We denote the observed valug€g afid X; by x, and
x1, respectively. We are interested in testing that the ratio of two Poisson rates is equal to a pre-specified

positive numbe? versus greater thaR, i.e. we are testing the following one-sided hypotheses
Hy : v/ = R against; : v/ > R. 1)

WhenR = 1, itis equivalent to testing the equality of the two Poisson ratesyi.e= 1. The properties
of different test procedures fdk = 1 under unequal sampling frames, if. # ¢1, were investigated in
Ng and Tang (2005).

Since~;, i = 0, 1 are the unknown parameters, two sample estimatesg, fare considered as follows.

e Unconstrained Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate of is given by

Vi =

X; .
?,'L:O,l. (2)

e Constrained Maximum Likelihood Estimate (CMLE)
Under the null hypothesi®(: v0/v1 = R, the CMLESs ofy, and~; can be shown to be (see Appendix

A)

Xo+ X1

- - Xo + X4
T W 1/p)

andyl = m, (3)

whered = t;/tp andp = R/d. Note that the CMLEs ofy, and~; are the same as the method of
moment estimator under the null hypotheSis: vo/v1 = R. Specifically,FE(Xo+X1) = toyo+tim

with 79 /71 = R yields the estimators in (3).



Testing of Poisson Rates 5

Because we can re-express the null hypothesis in (I¥@s v, — Ry1 = 0, we can develop the test

statistics based on the statistic = 4y — R4,. The variance of the statistid’ is given by

2

> _ N0, B°m

= — + _—
w3 t

and it can be estimated by

2

2 7 , B

W= to N ty

where~’ is any reasonable estimatenf i = 0, 1. Hence, we consider the test statigti¢/ sy for H.
With MLEs~} =4;,7 =0, 1, we get

Xo/to—RX1/t1  Xo—Xip

Wi (Xo, X1) = - .
1(Xo, X1) VXo/to? + XiR2 /12 /Xo + Xip?

Similarly, with CMLEs~; = 4;,¢ = 0, 1, we obtain

. Xo/to—RXl/tl . Xo—le
W0 ) = e B R D) X X0p

Note that wherp = 1, W is equivalent td¥, and is the test statistic studied by Shiue and Bain (1982)
and Thode (1997).

On the other hand, testing the null hypothesis in (1) is equivalent to tekting/v1) — In(R) = 0.
Hence, we consider the statisit = In(59/91) — In(R) = In(Xo/to) — In(X1/t1) — In(R). By the delta
method, the variance @&f can be approximated by?, = 1/(to70) + 1/(t171) and it can be estimated by
st = 1/(toyg) + 1/(t177), wherey; is any reasonable estimategf i = 0, 1. Hence, we can consider
the test statisti¢// sy to test (1).

For MLEs~; = 4;, ¢ = 0, 1, we have the test statistic

In(Xo/X1) + In(d) — In(R) _ In(Xo/X1) —In(p)

V1/Xo +1/X1 VI/Xo+1/X1

Similarly, for CMLEs~; = 4;,7 = 0, 1, we obtain

W3(Xo, X1) =

Wa(Xo, X1) = In(Xo/X1) + In(d) — In(R) _ In(Xo/X1) — In(p) |
| V@2+d/R+R/d)/(Xo+X1)  /(2+1/p+p)/(Xo+ X1)
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As the test statisticBl’s and1W, are not defined wheXy = 0 and/orX; = 0, we setX; = 0.5 whenever
X;=0,i=0,1.

We also construct a test statistic by considering a variance stabilizing transformation suggested by Huff-
man (1984) which can accelerate the rate of convergence to normality=asiin( A, A1) goes to infinity.

The test statistic is given by
2 [\/X0 F3/8— /p(X1 T 3/8)}
VIi+tp '

Huffman (1984) proposed to add the terms 3/8, motivated by the results in Anscombe (1984), in order to

Ws(Xo, X1) =

reduce the variance of the test statisfig from 1 +O(A~1) to 1 +O(A~2).

By observing the forms of the test statistics, we notice that their performances depend on the value of
p = R/d but notonR or d individually. Let us denote the observed value of the test stati8tipsX,, X )
asw;(xo, 1) for j = 1,...,5. Under the null hypothesid})’; can be shown to be asymptotically dis-

tributed as a standard normal. Hence,thealues of the asymptotic tests are given by

where®(-) is the cumulative distribution function of the standard normal. We rdj@ctvhenp( ) < a,

whereq is the prefixed level of significance of the test.

2.2 Tests based on numerical approximations to exagtvalue
The right-tailed significance probabilities for testing (1) based on test stati$tjasderH, are
PI‘(W Z ’LUj(SC(), $1)|H0)

to(’YlR) R)|Yo et (¢ u
= Z Z % : y(l'lm IW; (yo, 1) = wj(wo, x1)l,  (4)

y0=0y1=0
j = 1,...,5, whereI[-] denotes the indicator function. Since the right-tailed probability involves the

unknown parametet;;, we can approximate thg-value by evaluating the right-tailed probability at a

reasonable value of; . If we replacey; by the CMLE#; in (3), thep-value can be estimated by

O X —to(R) ~ Yo o—t171 (4, A, Y1
P & [to(’}/lR)] & (tl’}/l) .
p§ ) = E E y0| y1| I[[ j(yanl)ij('IOaxl)]a ]:1575
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We rejectH in (1) Whenp§-P) < a.

2.3 Exact conditional tests

The classical method of testing the ratio of two Poisson rates is the conditional method, which was first
proposed by Przyborowski and Wilenski (1939). The conditional distributioNgfjiven Xg + X; = k
follows a binomial distribution with success probability= (toy0)/(tovo + t1y1). UnderHy : y0/v1 =

R, Xy given Xy + X; = k is binomial with the number of trial& and the success probability

p/(1+ p). The null hypothesid], is rejected if the exagt-value

k
k\ . i
P =Pr(Xo > 20 | w0 + 21 = k, Ho) = Z (i)q(l)(l — )" < e ()

i:I[)

It is well known that the traditional conditional test is an exact method for which the actual level of
significance is always below the nominal level (i.e. conservative). To overcome the conservativeness of the
traditional conditional test, the midadjusted version test first suggested by Lancaster (1952, 1961) can
be considered. The mig-adjustment generally corrects the conservativeness of an exact method, while at
the same time its actual significance level is close to the pre-specified nominal level, as mentioned in Tang
(1998). Thep-value for the midp correction is given by

(M) _
p B )

wherep(©”) = Pr(Xo > xo + Lz + 21 = k, Ho) = S0 (¥)ai(1 — q0)"~*. We reject the null

hypothesisy, if p™) < a.

2.4 Likelihood ratio test

Alikelihood-ratiotest (LRT) relies on a test statistic that is the ratio of the maximum value of the likelihood
function under the constraint of the null hypothesis to the maximum likelihood with that constraint being

relaxed. Here, the likelihood function is

e—tovo (tO'YO)IO e~ tim (tl'Yl)ml

xo! xl!

L(%a%) =
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The maximum likelihood under the whole parameter sgace {vo, 1|y > 0,71 > 0} is given by
Dykstra and Robertson (1982). Under the null hypothesis, the maximum likelihood under the restricted
parameter spac®* = {vo, 7|7 > 0,7 > 0,7/m = R} is L(50,71). Therefore, the likelihood ratio

test statistic

L(AoA) i 2 /4
_ SUD (5,71 ) €0 L(VO,VI) _ L(;ng’?i)’ if '70/'71 >R
SUP (4,31 )e0 L(70,71)

L if %0/%1 < R.

An equivalent LRT statistic is-21n A, which has a particularly handy asymptotic distribution. If the
null hypothesis is true, then asymptoticaly2 In A will be zero half of the time ang? distributed with
one degree of freedom the other half of the time (Robertson , Wright and Dykstra, 1988). Therefore, the

approximatep-value for the LRT is
p® = 0501 - x3(~2InA)),

wherey?(-) is the cumulative distribution function of the chi-square distribution with one degree of free-

dom. For a given level of significanee we rejectH, in (1) whenp™) < a.

3 Sample Size Calculation

In experimental design one is concerned about the experimental lengthtg @mdt;) required to achieve
a specified power. To attain a powker 3 underH; : v /7 = R > Rata level, givene, 3, d, R, and

R, the criterion on\; for the test procedure based pif‘) is

(c/p+c)(z-a+2-5)°
(1—¢)? ’

)\1 = t1’71 = (6)

wherep = R/d andc = R/R’. For any given value ofy; (usually based on prior information from
previous experiments/studies), we can compute the require experimental lepgthd¢; from (6) and

t; = dty. For the test procedure basedp)ﬁ), the criterion om\; is

(e/p+ ) [21-an/ T DT T ep) +21g]

FEE

)\1 = ’71t1 = (7)
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For the test procedure basedp&‘f‘), the criterion om\; is

(c¢/p+ 1)512;; 21-5)° (8)

A =tim =

For the test procedure basedpfﬁ), the criterion om\; is

(c/p+1) {zla [@] + zlﬁ}Q

ct+p

AL =tim = (Incp? . )

Note that the formulae (6) - (9) will reduce to those provided in Ng and Tang (2005) wherl.

For the test procedure basedplg‘f‘), the criterion on\, is

2
\ ot lzlm/c/p—i-c—i-zlﬁ\/l—i-c/p
1=mt =

3
21— vo) E 1)

WhenR = 1, (10) reduces to the formula provided in Huffman (1984). The derivations of formulae (6) -
(10) are presented in Appendix B.

If tests based on numerically approximatealues (i.e. test procedures based;xgvﬁ), j=1,...,5)
are used, the required experimental lengthsafdt;) can be computed by solving feg in the following

equation to attain the given power 3 at« level of significance

0o oo to'yo tOVO kU e tim (tl")/l) !
ok i
k[) Okl 0
00 e—tovo t IU —th(t
Z Z 070 < k( )" I(Wj(zo, 21) < Wj(ko, k1)) < x| .
xo=0 x1=0

(11)

Similarly, the required experimental lengths to attain the given pdwers at o level of significance
for the exact conditional test, mid-conditional test, and the LRT can be computed by solipgn the
following equation

—toYo0 t ko tim (¢
-y 3 Sl R )R (12)

k1!
ko=0 k=0

wherep* = p(©) p) andpX), respectively.



10 K. Gu, H.K.T. Ng, M.L. Tang, and W.R. Schucany: Testing of Poisson Rates

4 Monte Carlo Simulation Studies

Monte Carlo simulation is used to study the performance and properties of different test procedures as well
as the validity of the sample size calculation formulae. The Monte Carlo simulation was coded in Fortran.
We used the International Mathematical and Statistical Libraries (IMSL) subroutine RNPOI to generate
the Poisson sampleX, and X;. For the study of type-| error rate, we considet ¢, /to = 0.5,1.0,1.5
and 2.0,y; = from 1 to 60 in increments of 1 (denote as 1(1)6®)= 0.05, andR = 0.5, 1.0, 1.5. These
d-values include the smaidl-values (i.e.d = 0.5), balancedd = 1.0), and largei-values (1.5 and 2.0).
These settings give-values = 1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/2, 2 and 3. Without loss of generality, we assume
to = 1. For eachX, and X, we compute the values qnﬁ.A), p§P), j=1,2,3,4,5andp©), p™) and
p) and reject the null hypothesis if thevalue is less tham. This process is repeated 10,000 times for
each combination of, R and-~; .

For the power calculatior¥, andX; were independently generated from Poisd®r{ ) and Poisson{y;),
respectively. We examine the power under the alternative hypothgsis = R'. HereR' ranges from
1 to 15 for each combination oR andd. The estimated power fqrgA), p§P), j=1,2,3,4,5andp(),
p™M) and p(") is computed by the number of rejections &, divided by 10,000 with standard error
SE = 0.0022.

Moreover, we also examine the accuracy of the sample size formulae in (6) - (12). The required sample
sizes (sample time frames) computed from these formulaewith0.05, 5 = 0.10 are used to obtain the

estimated significance level and power again with000 replications.

5 Results and Discussions

In this section we present the results of the Monte Carlo study and compare different test procedures in
terms of the level of significance and the power. Since the pattern of the simulated significance level and
power values are related to the ratio®fandd (p = R/d), we present the results in terms @fwhich

ranges from 0.25 to 3.
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5.1 Level of significance

First, consider the levels of the significance of various test procedures. It is a desirable property of a test
procedure that its actual level of significance be close to pre-specified nominal level. To examine these
levels, we plot the simulated significance levels for all the test procedures considered here. For the sake
of saving space, we presented only the plots of the simulated significance leyels at25 andp = 2.0

for pg-A)

,j=1,....5in Figure 1. The plots of the simulated levels for other test procedures show similar
patterns. From these plots, we observe that the pattern of the simulated significance levels are different for
small values ofy; (say,y:1 < 10) and large values of; (> 10). For~; < 10, most of the test procedures

are conservative excepgA) andpgA) are liberal forp < 1 andpgA) andpflA) are liberal forp > 1. Based

on the plots, we observe that among all the test procedures, those baﬁgﬁ ppgp), j=1,...,5and

p) have simulated significance levels close to the nominal levels when 10.

For~; > 10, to scrutinize the levels of the test procedures, we compute the percentage of configurations
(based on 50 different; = 11(1)60) that are conservative (i.e., simulated significance lgvel04), or
liberal (i.e., simulated significance level 0.06) for all the test procedures and each given valug.of
These values are presented in Tables 1 and 2. We also present the percentages of configurations in the
intervals (0.04, 0.05), (0.05, 0.06) and)5 + SE = (0.0478,0.0522). Among all five asymptotic tests,
the one based opéA) gives simulated significance levels closesdto5 for all values ofp. Forp < 2/3,
p§A> andpflA) are conservative Whi|ﬁ§A) andpgA) are liberal. FoR/3 < p < 1, all asymptotic tests are
robust (i.e. simulated significance level being betwe®d and0.06). Forp > 1, pY‘) andpflA) are liberal
while pgA), p;A) andpéA) are robust.

The tests based on numerical approximatiqnﬂg)(,j = 1,...,5), have simulated significance levels
close to each other and close to the nominal level for all valugs d¢fi other words, they are robust for
all the settings considered here. As expected, the traditional conditional test (test baged) imalways

conservative for all values gf. From these results, it is clear that the mi@djustment based opi*)

does overcome the conservativeness of the traditional conditional test (i.e., with the simulated significance
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Table 1: Percentage of configurations (basedypr= 11(1)60) whose simulated significance levels are

inside the interval whenp =1/4,1/3,1/2,2/3,3/4

P I it Y P M pi piF i p( i plP p@ ph p)
1/4 < 0.04 100 0 0 100 0 0 0 0 0 0 94 0 0

> 0.06 0 12 4 0 0 0 0 0 0 0 0 0 0
(0.04,0.05) 0 2 6 0 82 80 8 80 80 8 6 86 84
(0.05,0.06) 0 86 90 0 18 20 18 20 20 18 0 14 16
(0.0478,0.0522) 0 4 16 0 42 40 40 40 40 42 0 50 40

13 < 0.04 98 0 0 94 0 0 0 0 0 0 92 0 0

> 0.06 0 2 2 0 0 0 0 0 0 0 0 0 0
(0.04,0.05) 2 2 14 6 48 52 66 66 50 58 8 80 76
(0.05,0.06) 0 9% 84 0 52 48 34 34 50 42 0 20 24
(0.0478,0.0522) 0 18 24 0 62 5 56 58 56 50 0 50 44

172 < 0.04 60 0 0 4 0 0 0 0 0 0 80 0 0

> 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
(0.04,0.05) 40 20 42 9% 60 66 68 68 68 64 20 60 56
(0.05,0.06) 0 80 58 0 0 34 32 32 32 36 0 40 44
(0.0478,0.0522) 0 2 e 2 66 56 60 58 58 64 0 64 58

213 < 0.04 2 0 0 0 0 0 0 0 0 0 68 0 0

> 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
(0.04,0.05) 8 28 64 8 74 70 70 70 70 74 32 78 68
(0.05,0.06) 0 72 3% 16 26 30 30 30 30 26 0 22 32
(0.0478,0.0522) 10 60 46 28 50 44 44 44 44 50 0 56 52

ala < 0.04 0 0 0 0 0 0 0 0 0 0 74 0 0

> 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
(0.04,0.05) 94 26 44 60 44 56 54 56 54 50 26 62 44
(0.05,0.06) 6 74 56 40 56 44 46 44 46 50 0 38 56
(0.0478,0.0522) 32 62 60 54 62 58 56 58 54 64 0 60 62

levels being much closer to the pre-specified nominal level). The LRT is robust for all valyelsutfthe
simulated significance levels are higher than the pre-specified nhominal level a majority of the time when

p > 1.0 (see Table 2).



Testing of Poisson Rates 13

Table 2: Percentage of configurations (basedyprn= 11(1)60) whose simulated significance levels are

inside the interval whenp =1.0,1.5,2.0, 3.0

p I pgA) pgA) pgA) piA) péAJ ng) ng) ng) piP) péP) p(c) p(M) p(L)

1.0 < 0.04 0 0 0 0 0 0 0 0 0 0 66 0 0

> 0.06 0 0 0 4 0 0 0 0 0 0 0 0 0
(0.04,0.05) 52 52 72 20 50 54 54 54 54 52 34 64 38
(0.05,0.06) 48 48 28 76 50 46 46 46 46 48 0 36 62
(0.0478,0.0522) 56 56 50 40 58 52 52 52 52 58 0 62 72

15 < 0.04 0 0 0 0 0 0 0 0 0 0 56 0 0

> 0.06 12 0 0 24 0 0 0 0 0 0 0 0 4
(0.04,0.05) 4 70 84 2 56 58 58 58 56 58 44 66 18
(0.05,0.06) 84 30 16 74 44 42 42 42 44 42 0 34 78
(0.0478,0.0522) 16 48 46 8 62 52 52 52 58 50 0 58 44

2.0 < 0.04 0 0 2 0 0 0 0 0 0 0 54 0 0

> 0.06 30 0 0 50 0 0 0 0 0 0 0 0 0
(0.04,0.05) 0 80 88 0 40 52 48 48 54 48 46 62 30
(0.05,0.06) 70 20 10 50 60 48 52 52 46 52 0 38 70
(0.0478,0.0522) 4 48 38 2 62 60 60 60 60 60 0 72 64

3.0 < 0.04 0 2 8 0 0 2 2 2 2 2 60 0 0

> 0.06 74 0 0 86 0 0 0 0 0 0 0 0 0
(0.04,0.05) 2 92 92 2 28 48 44 46 52 44 40 74 18
(0.05,0.06) 24 6 0 12 72 50 54 52 46 54 0 26 82
(0.0478,0.0522) 0 36 22 0 56 70 66 66 62 64 0 70 40

5.2 Power
In terms of power of the tests based on numerical approximatiopsvalues @§-P), j=1,...,5), the

tests based ong> andpép) outperformpgp), p§P>,p§P> most of the time.

One should view a rejection of the null hypothesis for a liberal test with caution. In this regard, conser-
vative tests are of less concern, for the type-I error rate is controlled below the nominal level. Therefore,

we consider only the robust and conservative test procedures in the power comparison. We present the
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power curves for test procedures basedp§?, p{”’, p”, p*), andp®X) in Figure 2 for values of =
1/4,1/2,1.5and 2.0.

From the figures, we can see that the LRT is the most powerful among all the procedures. Although
the LRT is robust in most situations and it is the most powerful for all the valugs @fhas a higher
percentage of simulated significance levels lying in (0.05, 0.06). We advise the use of LRT with caution.

gP ) and péP ), the latter two appear to generally have type-I

Among the test procedures basedpéﬁ‘), D
error rates closer to the desired level comparepéf‘(%. If one always wants the significance level of a test
well controlled below the nominal level, th@lﬁp) andpép) are the desirable candidates. Otherwjéé,)
provides a reliable alternative with the significance levels being greater than the nominal level occasionally.
It is noteworthy thapéA) can be carried out easily using a pocket calculator V\Mé andpép) require the
evaluation of an infinite sum of probabilities, requiring a computer program. As the test procedure based

on péA) has better power performance for> 1, we recommend the use of the asymptotic t@f‘g for

p > 1 and the tests based @ép) andpép) for p < 1in practice.

5.3 Accuracy of sample size calculation formulae

In this subsection, we examine the accuracy of the sample size formulae in (6) - (12). For fifteen combina-
tions ofp = (1/4,1/2,1,1.5,2)andc = (0.25, 0.50, 0.75) the required sample sizes (sample time frames
A1) computed from formulae (6) - (10) with = 0.05, 5 = 0.10 for the asymptotic test procedures are
presented in Table 3 and (11) and (12) in Table 4. The simulated significance levels and the power values
based on these sample sizes are also presented. One should be concerned about the cases for which the
simulated significance level is significantly higher than the pre-specified leve! (.05) or the simulated
power is significantly lower than the pre-specified valie-(5 = 0.90).

From Table 3, our only concerns are that the simulated significance levels of tests beysﬁé‘d and
pflA) are higher than the pre-specifiad= 0.05 whenp = 2.0 andc = 0.25, while the simulated levels

based orpgA) andpgA) are lower than that level when= 2.0, ¢ = 0.25. These observations agree with
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Table 3: Sample size for asymptotic test procedures using fornjdlae (10)
P& P P P P
P c AL & 1-8 A & 1-8 A & 1-8 A & 18 A & 1-8
025 025 16 .0213 9512 11 .0621 .9178 9  .0547 .8576 12 0221 9159 13  .0466 .9389
05 025 9 0297 9391 7 0543 9207 7  .0487 9096 7 0376 .8889 9  .0505 .9586
10 025 5 0485 9197 5 0485 9197 6 0373 9463 4 0581 9146 6  .0463 .9710
15 025 3 0602 9021 4  .0422 9180 5  .0301 .9632 4 0802 9252 6  .0452 .9762
20 025 3 088 .8906 4 0373 9150 5  .0245 9718 3 0988 9313 5  .0467 .9822
025 05 77 0350 9264 62 0529 .9040 53 0523 .8673 64 0347 .8837 68  .0479  .9206
05 05 43 0393 9182 38 .0501 .9055 35 0486 .8855 38  .0425 8922 42 0466 .9260
10 05 26 .0457 9054 26 0457 9054 27 .0460 9115 25 0501 .9021 29  .0462 .9374
15 05 20 .0490 .8929 21 0439 9023 24 0437 9253 21 0533 9070 26 .0457 .9418
20 05 17 0572 8878 19  .0423 9006 22 0416 .9311 19 .0576 9102 24  .0446 .9477
025 075 486 .0449 9079 442 0479 .8988 412 0503 .8795 451 0520 .8880 461 .0507  .9097
05 075 281 .0485 .9096 267 .0501 .9068 258 .0489 .8929 269 .0420 8951 282 0515  .9122
10 075 179 0485 9016 179 .0494 9001 180 .0509 .8992 178 .0481 .9014 192 .0439  .9157
15 075 145 0511 .8924 150 .0480 .8978 155 .0493 9098 148 0528 .9004 162 .0485 .9192
20 075 128 .0549 8918 135 .0472 .8981 142 0491 .9090 133 0555 .9002 147 0519  .9247

the findings in Section 5.1. Whem = 1.0, the simulated significance levels of all asymptotic tests are

close to the nominal level. From Table 4, we can see that the simulated significance values are much lower

than the desired nominal level whenr= 0.25 for p(©) andp™) and somewhat low fop(“) whenc = 0.5.

This may be due to the small sample sizes:at 0.25. Otherwise, most of the sample size formulae

provide satisfactory results. The concerns about powér90 are confined t(pgA), pgA), andpflA).

6

lllustrative Examples

In this section, we revisit the two examples described in Section 1 to illustrate the test procedures consid-

ered in this paper.
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Table 4: Sample size for test procedures baseg\6h, p(©), p*) andp(X)

P y
Pé ) p(©) pM)

P c AL & 1-8 A\ & 1-8 A & 1-8 A & 1-8

0.25 0.25 11 .0469  .9040 12 .0269  .8970 11 .0448  .9044 11 .0468  .9040
0.5 0.25 7 .0477 9142 8 .0289  .9250 7 .0450 .9105 6 .0592  .8828
1.0 0.25 5 .0403  .9309 5 .0226  .9096 4 .0381  .8745 4 .0580  .8767
15 0.25 4 .0452  .9184 4 .0236  .8896 3 .0386  .8364 4 .0569  .9304
2.0 0.25 3 .0462  .8579 4 .0194 9224 3 .0419  .8673 3 .0547 8797
025 05 62 .0476  .8974 65 .0385  .8932 62 .0476  .8974 76 .0506  .8984
0.5 0.5 38 .0479  .9015 40 .0369  .8963 37 .0492  .8956 46 .0503  .8981
1.0 0.5 25 .0452  .8990 27 .0400  .8991 25 .0452 8972 31 .0513  .9021
15 0.5 21 .0459  .8974 22 .0351  .8977 21 .0500 .8995 21 .0477  .9020
2.0 0.5 19 .0436  .8994 20 .0347  .8949 19 .0436  .8977 23 .0490  .8977
0.25 0.75 445 0546 .8923 460 .0458 .9039 448 .0519 .9017 450 .0478 .9041
0.5 0.75 267 .0516 .8977 277 .0470 .9025 268 .0552 .9012 269 .0465 .9049
1.0 0.75 178 .0487 .8937 185 .0431 .9040 179 .0476 .8957 179 .0507 .9033
15 0.75 149 .0498 .9004 154 .0471 .8995 150 .0476 .9027 149 .0550 .8970

2.0 0.75 135 .0474 9035 139 .0461 .9021 135 .0522 .8991 134 .0482 .9010

6.1 Example 1: Coronary Heart Disease

Referring to the first example in Sectionad, = 60 CHD cases witht, = 51477.5 for the group not using
postmenopausal hormone and = 30 CHD cases witht; = 54308.7 for the group using postmenopausal
hormone. This implieg = 1.055, R = 1 andp = 0.94787. We obtain thall’; = 3.3849, W, = 3.4174,

Wi = 3.3393, Wy = 3.5406, andW; = 3.4455 and the correspondingvalues are presented in Table 5.
There is strong evidence to support the conclusion that the incidence rate of CHD in the non-hormone-use

group is higher than that in post-menopausal hormone-use group.

Next suppose that an epidemiologist wants to plan another study of the research question that the in-
cidence rate of CHD for those using the hormone is no different for those not using the hormone. The
epidemiologist would like to know the required sample size for the two groups when the ratio of sampling

frames is2 (d = 2). Suppose also that the observation time domain is 2 years, from the previous study
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Table 5: Summary of the results for Example 1: Testtg: vo/v1 = 1 vs. Hy : v /71 > 1.

Test Procedure p-value Test Procedure p-value
Y 0.000356 PP 0.000298
Y 0.000316 P 0.000298
Y 0.000420 PSP 0.000307
Y 0.000200 PP 0.000306
Y 0.000285 PP 0.000298
p© 0.000310 L) 0.000286
pM) 0.000428

that the incidence rate of CHD for those using the hormorte(805 (v; = 0.0005), andR' is 4. From
formulae (6) - (12), the values of; = ¢;y; and the required sample sizes for the hormone using group to
achieve 90% power at = 0.05 for different test procedures are presented in Table 6. The smallest are for

(4)

A
Ds andpfl ),

6.2 Example 2: Breast Cancer

There werery = 41 cases of breast cancer with = 28010 in the treatment group of women receiving

x-ray fluoroscopy and:;; = 15 cases of breast cancer with= 19017 in the control group of women not
receiving x-ray fluoroscopy. Hencé,= 0.679 and one might be interested in testing the hypotheses that

Hy : v0/v1 = 1.5 againstH; : v /7 > 1.5. We obtain the test statistid®; = 0.7358, W, = 0.7069,

W3 = 0.7056, Wy = 0.7380, andW; = 0.6747 and theirp-values based on different procedures are
presented in Table 7. There is not enough evidence that the incidence rate of breast cancer in the X-ray

fluoroscopy group i4.5 times to the incidence rate of breast cancer in control group.
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Table 6: The values oA, = t;y1 and the required sample sizes for the example with 3 = 0.9,

a=0.05,R=1, R =4,y = 0.0005.

Test Procedure )\  Required sample size

P 8.53 8527
psY 6.86 6860
ps 6.66 6655
P 6.66 6655
psY 8.63 8627
¥ i=1,....,5 659 6590
Pl 7.26 7260
pM) 6.58 6580
p& 6.37 6370

Table 7: Summary of the results for Example 2: Testthg: vo/v1 = 1.5 vs. Hy : v /71 > 1.5.

Test Procedure p-value Test Procedure p-value
Y 0.2309 PP 0.2453
o 0.2398 PP 0.2453
pyY 0.2402 P 0.2453
Y 0.2303 i) 0.2453
psY 0.2499 P 0.2453
p© 0.2913 p&) 0.2367
pM) 0.2450

7 Conclusion

In this paper, we study four different approaches for testing the ratio of two Poisson rates and derive their

sample size formulae. Based on our Monte Carlo simulation studies of the significance levels and powers,
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we find that the asymptotic test derived from variance stabilizing transformafighi¢ the most reliable
asymptotic test (i.e., conservative but high power), and the test statistics derived from log-transformation
with unconstrained MLEI{/5) and variance stabilizing transformatidiv{) are the best among all the five
tests based on numerical approximations of exacalues. The likelihood ratio test is the most power-

ful compared with other procedures; however, its simulated significance level can be liberal. The exact

conditional tests are found to be conservative even with thepddrrection for small values of.
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Appendix A. Derivation of Constrained Maximum Likelihood Estimators

The log-likelihood function is
In L(vp,71) = — In(Xo!' X1!) — tovo — t171 + XoIntg + Xolny + X1 Inty + Xq Inv. (A1)
Under the null hypothesid]y : 70/71 = R, (A.1) can be written
InL(y) = —In(Xo!X1!) —to(m1R) — tim1 + Xolntg + XoIn(11 R) + X1 Inty + X7 Invy; (A.2)

To obtain the maximum likelihood estimator of (for any fixed R) we take the first derivative of (A.2)

and set it to zero, which yields

M:—toR—tl‘i‘&‘f‘ﬁ:O
d”Yl 71 71
- XO +X1 . . . ~ ~ XO +X1
E = ———— which impliesyg = Ry = ——.
T Rty + PIeSYo = B = 3 = TR

Substitutingd = ¢, /to andp = R/d yields

Yo = —————— andj; = ———.
T S V) R Y )
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Appendix B. Derivation of Sample Size Formulae

The critical region forl¥; at thea significance level consists of those poir{t&y, X;) that satisfy the
inequality Xo — pX1 > 21_o+/Xo + X1p2. UnderH, : vo/71 = R’ > R, (X, — pX, ) is asymptotically
normal with mean(p/c — p)t;~: and variancep/c + p*)t171, wherec = R/R’ and /X, + X1p?
converges in probability ta/(p/c + p2)t171. Hence, the approximate poweR, can be expressed in

terms of the cumulative normal distribution as

p_g|AaV (p/c+p*)tim — (p/c— p)tim

(p/c+ p*)tim

5 (B.1)
where®(.) is the standard normal distribution function. Settifg= 1 — 5 and solving (B.1), we can show
that the sample size formula for the test procedure basejé“@hs

(c¢/p+ ) (z1-a + 21-5)?
1-oc2 '

A =tim =

Similarly, /(X0 + X1)p has limit \/t1v1(p?/c + p) and the sample size formula for the test procedure

based orpgA) is

(e/p+ ) [21-an/ T DT T ep) +21g]

FEE

A =tim =

For the test procedure based pﬁ" at thea significance level consists of those poir(t¥y, X;) that

satisfy the inequalityn(Xo/X1) — In(p) > z1-av/1/Xo+1/X;. UnderH; : py/p1 = R’ > R,

In(Xo/X;) — In(p) is asymptotically normal with meam(1/c) and variancc/p + 1)/(t17y1). Here

v/1/Xo + 1/X; converges in probability tq/(c/p + 1)/(t171). Hence the approximate power may be

expressed in terms of the cumulative normal as

(¢/p+1)/(ti71) —In(1/c)
(¢/p+1)/(ti)

P—a Zl—a

(B.2)

SettingP = 1 — § and solving (B.2), the sample size formula for the test proceﬁgﬂ')eis

(c/p+1)(z1-a+21-5)°
(In¢)? '

A =tim =
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Following the same procedure, V@+1/p+p)/(Xo + X1) has limit

V2+1/p+p)/((p/c+1)(ti11)) and the sample size for the test proce@nff@ is

(¢/p+1) {Zla [@] . zlﬁ}Q

ct+p
(In¢)?

A =tim =

For the test procedure basedplg‘f‘), the critical region of the test is

2(\/)(0 +3/8 —\/p(X1 + 3/8))
VIi+p

Z Zl—a-

After some simple algebra, we can show that

2(\/X0+3/8— Vp/e(X +3/8)) - a-aVTHp =20/ — yOVEL + 38
1+ pjc - 1+p/c

Under the alternative hypothesis, the left-hand side of the equation is asymptotically normal distributed.

By setting the type-Il error rate 1@, we can get the sample size for the test procedure baspéf%ras

Zi—an/c/p+ec+z1\/1+¢c/p
e 20— %)

2

3
-
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