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Summary

In this paper we compare the properties of four different general approaches for testing the ratio of two

Poisson rates. Asymptotically normal tests, tests based on approximatep-values, exact conditional tests,

and a likelihood ratio test are considered. The properties and power performance of these tests are studied

by a Monte Carlo simulation experiment. Sample size calculation formulae are given for each of the test

procedures and their validities are studied. Some recommendations favoring the likelihood ratio and certain

asymptotic tests are based on these simulation results. Finally, all of the test procedures are illustrated with

two real life medical examples.

Key words: Asymptotic tests, Conditional test, Constrained maximum likelihood estimation, Level of sig-
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1 Introduction

The Poisson Distribution, named after the famous French mathematician Simeon Denis Poisson who first

formulated it (Poisson, 1837), is a mathematical rule that assigns probabilities to the number of occurences.

It is most commonly used to model the number of random occurrences of some phenomenon in a specified

space or time interval. Sometimes the Poisson rate is of interest because it pertains to a unit of time or
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space. For example, the incidence rate of a disease (Rothman and Greenland, 1998) is defined as the

number of events observed divided by the time at risk during the observation period.

Biological, epidemiological, and medical research can produce data that follow a Poisson distribution.

It is sometimes called the law of rare events, for it describes the distribution of counts of such events. For

example, the number of cases of a rare disease or the frequency of single gene mutations may be modeled

by a Poisson distribution. In two-sample situations, researchers are likely to be interested in testing the

difference or ratio of the Poisson means. The comparison of the Poisson rates from two independent sam-

ples is clearly of medical interest. For instance, Stampfer and Willett (1985) conducted a prospective study

to examine the relationship of post-menopausal hormone use and coronary heart disease (CHD). With

postmenopausal hormone use in 54308.7 person-years, there are 30 CHD cases; without postmenopausal

hormone use in 51477.5 person-years, there are 60 CHD cases. The problem of interest is to test whether

the post-menopausal hormone using group has less coronary heart disease. Another example in epidemi-

ology is a breast cancer study reported in Rothman and Greenland (1998) and Graham, Mengersen, and

Morton (2003). Two groups of women were compared to determine whether those who had been examined

using x-ray fluoroscopy during treatment for tuberculosis had a higher rate of breast cancer than those who

had not been examined using x-ray fluoroscopy. Forty-one cases of breast cancer in 28,010 person-years

at risk are reported in the treatment group with women receiving x-ray fluoroscopy and 15 cases of breast

cancer in 19,017 person-years at risk in the control group with women not receiving x-ray fluoroscopy.

The problem of comparing two Poisson rates has been studied for a long time, however, most of the

early studies focused on the equal time frame situation. Przyborowski and Wilenski (1939) first proposed a

conditional test for the unity of the ratio of two Poisson rates based on a conditional binomial distribution.

Subsequently, Chapman (1952), Birnbaum (1953), Brownlee (1967) and Gail (1974) studied the properties

and some alternatives for testing the hypothesis or constructing confidence intervals based on the condi-

tional approach. On the other hand, Hald (1960), Ractliffe (1964), Cox and Lewis (1966), Haight (1967)
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Detre and White (1970) and Sichel (1973) investigated asymptotic tests based on normal approximations

for the equality of the two Poisson rates.

Development for unequal sampling frames has received more attention recently. Shiue and Bain (1982)

derived a uniformly most powerful unbiased (UMPU) test for equality of two Poisson rates and showed

that a test based on the normal approximation of the binomial distribution is nearly as powerful as the

UMPU test. Huffman (1984) proposed an improved asymptotic test statistic, which accelerated the rate

of convergence to normality by a variance stabilizing transformation. Along the same line, Thode (1997)

considered an alternative test statistic that is more powerful than Shiue and Bain statistic for large Poisson

rates. Recently, Ng and Tang (2005) provided systematic comparisons among these tests and presented the

associated sample size formulae. All these studies are devoted to the problem of testing the equality of the

two Poisson rates (or the unity of the ratio) only. Krishnamoorthy and Thomson (2004) considered tests

based on estimatedp-values and showed that these have uniformly better power than the conditional test.

Although many methods have been proposed to test the ratio of two Poisson rates, it is not clear when

techniques are more appropriate, or how their performances might vary. Moreover, most of the works focus

on testing the unity of the ratio. In the present article, we present an extensive and systematic comparative

study of different test procedures for testing the non-unity of the rate ratio of two Poisson processes under

unequal sampling frames. In Section 2, we review the problem of testing the general non-unity ratio of two

Poisson rates over unequal-size sampling frames. Asymptotic tests based on normal approximations, tests

based on approximatep-value methods, an exact conditional test, a mid-p conditional test, and a likelihood

ratio test are considered. In Section 3, we present the formulae for sample size calculation for each of the

test procedures. In Section 4, Monte Carlo simulations are used to study the properties of the different test

procedures, as well as the validity of the sample size calculation formulae. Two real life examples are used

to illustrate the test procedures in Section 5. Finally, a discussionof the results with some recommendations

are presented in Section 6.
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2 Test Procedures

2.1 Asymptotic tests based on normal approximations

For fixed sampling framest0 andt1, two independent Poisson processes (with parametersλ0 andλ1) are

observed. LetX0 andX1 be the corresponding number of outcomes, i.e.Xi ∼ Poisson(λi) with λi = tiγi

for i = 0, 1. Here,γi, i = 0, 1 are the Poisson rates. We denote the observed values ofX0 andX1 byx0 and

x1, respectively. We are interested in testing that the ratio of two Poisson rates is equal to a pre-specified

positive numberR versus greater thanR, i.e. we are testing the following one-sided hypotheses

H0 : γ0/γ1 = R againstH1 : γ0/γ1 > R. (1)

WhenR = 1, it is equivalent to testing the equality of the two Poisson rates, i.e.γ0 = γ1. The properties

of different test procedures forR = 1 under unequal sampling frames, i.e.t0 6= t1, were investigated in

Ng and Tang (2005).

Sinceγi, i = 0, 1 are the unknown parameters, two sample estimates forγi are considered as follows.

• Unconstrained Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate ofγi is given by

γ̂i =
Xi

ti
, i = 0, 1. (2)

• Constrained Maximum Likelihood Estimate (CMLE)

Under the null hypothesisH0: γ0/γ1 = R, the CMLEs ofγ0 andγ1 can be shown to be (see Appendix

A)

γ̃0 =
X0 + X1

t0(1 + 1/ρ)
andγ̃1 =

X0 + X1

t1(1 + ρ)
, (3)

whered = t1/t0 andρ = R/d. Note that the CMLEs ofγ0 andγ1 are the same as the method of

moment estimator under the null hypothesisH0 : γ0/γ1 = R. Specifically,E(X0+X1) = t0γ0+t1γ1

with γ0/γ1 = R yields the estimators in (3).
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Because we can re-express the null hypothesis in (1) asH0 : γ0 − Rγ1 = 0, we can develop the test

statistics based on the statisticW = γ̂0 − Rγ̂1. The variance of the statisticW is given by

σ2
W =

γ0

t0
+

R2γ1

t1

and it can be estimated by

s2
W =

γ∗
0

t0
+

R2γ∗
1

t1
,

whereγ∗
i is any reasonable estimate ofγi, i = 0, 1. Hence, we consider the test statisticW/sW for H0.

With MLEs γ∗
i = γ̂i, i = 0, 1, we get

W1(X0, X1) =
X0/t0 − RX1/t1√
X0/t0

2 + X1R2/t1
2

=
X0 − X1ρ√
X0 + X1ρ2

.

Similarly, with CMLEsγ∗
i = γ̃i, i = 0, 1, we obtain

W2(X0, X1) =
X0/t0 − RX1/t1√

(X0 + X1)(R2/d + R)/(R + d)
=

X0 − X1ρ√
(X0 + X1)ρ

.

Note that whenρ = 1, W1 is equivalent toW2 and is the test statistic studied by Shiue and Bain (1982)

and Thode (1997).

On the other hand, testing the null hypothesis in (1) is equivalent to testingln(γ0/γ1) − ln(R) = 0.

Hence, we consider the statisticU = ln(γ̂0/γ̂1)− ln(R) = ln(X0/t0)− ln(X1/t1)− ln(R). By the delta

method, the variance ofU can be approximated byσ2
U = 1/(t0γ0) + 1/(t1γ1) and it can be estimated by

s2
U = 1/(t0γ∗

0 ) + 1/(t1γ∗
1 ), whereγ∗

i is any reasonable estimate ofγi, i = 0, 1. Hence, we can consider

the test statisticU/sU to test (1).

For MLEsγ∗
i = γ̂i, i = 0, 1, we have the test statistic

W3(X0, X1) =
ln(X0/X1) + ln(d) − ln(R)√

1/X0 + 1/X1

=
ln(X0/X1) − ln(ρ)√

1/X0 + 1/X1

.

Similarly, for CMLEsγ∗
i = γ̃i, i = 0, 1, we obtain

W4(X0, X1) =
ln(X0/X1) + ln(d) − ln(R)√
(2 + d/R + R/d)/(X0 + X1)

=
ln(X0/X1) − ln(ρ)√

(2 + 1/ρ + ρ)/(X0 + X1)
.
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As the test statisticsW3 andW4 are not defined whenX0 = 0 and/orX1 = 0, we setXi = 0.5 whenever

Xi = 0, i = 0, 1.

We also construct a test statistic by considering a variance stabilizing transformation suggested by Huff-

man (1984) which can accelerate the rate of convergence to normality asλ = min(λ0, λ1) goes to infinity.

The test statistic is given by

W5(X0, X1) =
2

[√
X0 + 3/8−

√
ρ(X1 + 3/8)

]

√
1 + ρ

.

Huffman (1984) proposed to add the terms 3/8, motivated by the results in Anscombe (1984), in order to

reduce the variance of the test statisticW5 from 1 +O(λ−1) to 1 +O(λ−2).

By observing the forms of the test statistics, we notice that their performances depend on the value of

ρ = R/d but not onR or d individually. Let us denote the observed value of the test statisticsWj(X0, X1)

aswj(x0, x1) for j = 1, . . . , 5. Under the null hypothesis,Wj can be shown to be asymptotically dis-

tributed as a standard normal. Hence, thep-values of the asymptotic tests are given by

p
(A)
j = 1 − Φ(wj(x0, x1)), j = 1, . . . , 5,

whereΦ(·) is the cumulative distribution function of the standard normal. We rejectH0 whenp
(A)
j < α,

whereα is the prefixed level of significance of the test.

2.2 Tests based on numerical approximations to exactp-value

The right-tailed significance probabilities for testing (1) based on test statisticsWj underH0 are

Pr(Wj ≥ wj(x0, x1)|H0)

=
∞∑

y0=0

∞∑

y1=0

e−t0(γ1R)[t0(γ1R)]y0

y0!
e−t1γ1 (t1γ1)y1

y1!
I[Wj(y0, y1) ≥ wj(x0, x1)], (4)

j = 1, . . . , 5, whereI[·] denotes the indicator function. Since the right-tailed probability involves the

unknown parameterγ1, we can approximate thep-value by evaluating the right-tailed probability at a

reasonable value ofγ1. If we replaceγ1 by the CMLEγ̃1 in (3), thep-value can be estimated by

p
(P )
j =

∞∑

y0=0

∞∑

y1=0

e−t0(γ̃1R)[t0(γ̃1R)]y0

y0!
e−t1γ̃1 (t1γ̃1)y1

y1!
I[Wj(y0, y1) ≥ wj(x0, x1)], j = 1, . . . , 5.
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We rejectH0 in (1) whenp
(P )
j < α.

2.3 Exact conditional tests

The classical method of testing the ratio of two Poisson rates is the conditional method, which was first

proposed by Przyborowski and Wilenski (1939). The conditional distribution ofX0 givenX0 + X1 = k

follows a binomial distribution with success probabilityq = (t0γ0)/(t0γ0 + t1γ1). UnderH0 : γ0/γ1 =

R, X0 given X0 + X1 = k is binomial with the number of trialsk and the success probabilityq0 =

ρ/(1 + ρ). The null hypothesisH0 is rejected if the exactp-value

p(C) = Pr(X0 ≥ x0 | x0 + x1 = k, H0) =
k∑

i=x0

(
k

i

)
qi
0(1 − q0)k−i < α. (5)

It is well known that the traditional conditional test is an exact method for which the actual level of

significance is always below the nominal level (i.e. conservative). To overcome the conservativeness of the

traditional conditional test, the mid-p adjusted version test first suggested by Lancaster (1952, 1961) can

be considered. The mid-p adjustment generally corrects the conservativeness of an exact method, while at

the same time its actual significance level is close to the pre-specified nominal level, as mentioned in Tang

(1998). Thep-value for the mid-p correction is given by

p(M) =
p(C) + p(C∗)

2
,

wherep(C∗) = Pr(X0 ≥ x0 + 1|x0 + x1 = k, H0) =
∑k

i=x0+1

(
k
i

)
qi
0(1 − q0)k−i. We reject the null

hypothesisH0 if p(M) < α.

2.4 Likelihood ratio test

A likelihood-ratio test (LRT) relies on a test statistic that is the ratio of the maximum value of the likelihood

function under the constraint of the null hypothesis to the maximum likelihood with that constraint being

relaxed. Here, the likelihood function is

L(γ0, γ1) =
e−t0γ0 (t0γ0)x0

x0!
e−t1γ1 (t1γ1)x1

x1!
.
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The maximum likelihood under the whole parameter spaceΩ = {γ0, γ1|γ0 > 0, γ1 > 0} is given by

Dykstra and Robertson (1982). Under the null hypothesis, the maximum likelihood under the restricted

parameter spaceΩ∗ = {γ0, γ1|γ0 > 0, γ1 > 0, γ0/γ1 = R} is L(γ̃0, γ̃1). Therefore, the likelihood ratio

test statistic

Λ =
sup(γ0,γ1)∈Ω∗ L(γ0, γ1)
sup(γ0,γ1)∈Ω L(γ0, γ1)

=





L(γ̃0,γ̃1)
L(γ̂0,γ̂1) , if γ̂0/γ̂1 > R

1, if γ̂0/γ̂1 ≤ R.

An equivalent LRT statistic is−2 ln Λ, which has a particularly handy asymptotic distribution. If the

null hypothesis is true, then asymptotically−2 lnΛ will be zero half of the time andχ2 distributed with

one degree of freedom the other half of the time (Robertson , Wright and Dykstra, 1988). Therefore, the

approximatep-value for the LRT is

p(L) = 0.5[1− χ2
1(−2 ln Λ)],

whereχ2
1(·) is the cumulative distribution function of the chi-square distribution with one degree of free-

dom. For a given level of significanceα, we rejectH0 in (1) whenp(L) < α.

3 Sample Size Calculation

In experimental design one is concerned about the experimental lengths (i.e.t0 andt1) required to achieve

a specified power. To attain a power1 − β underH1 : γ0/γ1 = R
′
> R at α level, givenα, β, d, R, and

R
′
, the criterion onλ1 for the test procedure based onp

(A)
1 is

λ1 = t1γ1 =
(c/ρ + c2)(z1−α + z1−β)2

(1 − c)2
, (6)

whereρ = R/d and c = R/R′. For any given value ofγ1 (usually based on prior information from

previous experiments/studies), we can compute the require experimental lengthst0 andt1 from (6) and

t1 = dt0. For the test procedure based onp
(A)
2 , the criterion onλ1 is

λ1 = γ1t1 =
(c/ρ + c2)

[
z1−α

√
(c + ρ)/(1 + cρ) + z1−β

]2

(1 − c)2
. (7)
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For the test procedure based onp
(A)
3 , the criterion onλ1 is

λ1 = t1γ1 =
(c/ρ + 1)(z1−α + z1−β)2

(ln c)2
. (8)

For the test procedure based onp
(A)
4 , the criterion onλ1 is

λ1 = t1γ1 =
(c/ρ + 1)

{
z1−α

[√
c(ρ2+2ρ+1)

c+ρ

]
+ z1−β

}2

(ln c)2
. (9)

Note that the formulae (6) - (9) will reduce to those provided in Ng and Tang (2005) whenR = 1.

For the test procedure based onp
(A)
5 , the criterion onλ1 is

λ1 = γ1t1 =

[
z1−α

√
c/ρ + c + z1−β

√
1 + c/ρ

2 (1 −
√

c)

]2

− 3
8
. (10)

WhenR = 1, (10) reduces to the formula provided in Huffman (1984). The derivations of formulae (6) -

(10) are presented in Appendix B.

If tests based on numerically approximatep-values (i.e. test procedures based onp
(P )
j , j = 1, . . . , 5)

are used, the required experimental lengths (t0 andt1) can be computed by solving fort1 in the following

equation to attain the given power1 − β atα level of significance

1 − β =
∞∑

k0=0

∞∑

k1=0

e−t0γ0(t0γ0)k0

k0!
e−t1γ1 (t1γ1)k1

k1!

×I

[ ∞∑

x0=0

∞∑

x1=0

e−t0γ̃0 (t0γ̃0)x0

k0!
e−t1γ̃1(t1γ̃1)x1

k1!
I(Wj(x0, x1) ≤ Wj(k0, k1)) < α

]
.

(11)

Similarly, the required experimental lengths to attain the given power1 − β at α level of significance

for the exact conditional test, mid-p conditional test, and the LRT can be computed by solvingt1 in the

following equation

1 − β =
∞∑

k0=0

∞∑

k1=0

e−t0γ0(t0γ0)k0

k0!
e−t1γ1 (t1γ1)k1

k1!
I[p∗ < α], (12)

wherep∗ = p(C), p(M), andp(L), respectively.
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4 Monte Carlo Simulation Studies

Monte Carlo simulation is used to study the performance and properties of different test procedures as well

as the validity of the sample size calculation formulae. The Monte Carlo simulation was coded in Fortran.

We used the International Mathematical and Statistical Libraries (IMSL) subroutine RNPOI to generate

the Poisson samplesX0 andX1. For the study of type-I error rate, we considerd = t1/t0 = 0.5, 1.0, 1.5

and 2.0,γ1 = from 1 to 60 in increments of 1 (denote as 1(1)60),α = 0.05, andR = 0.5, 1.0, 1.5. These

d-values include the smalld-values (i.e.,d = 0.5), balanced (d = 1.0), and larged-values (1.5 and 2.0).

These settings giveρ-values = 1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/2, 2 and 3. Without loss of generality, we assume

t0 = 1. For eachX0 andX1, we compute the values ofp(A)
j , p

(P )
j , j = 1, 2, 3, 4,5 andp(C), p(M) and

p(L) and reject the null hypothesis if thep-value is less thanα. This process is repeated 10,000 times for

each combination ofd, R andγ1.

For the power calculation,X0 andX1 were independentlygenerated from Poisson(R′γ1) and Poisson(dγ1),

respectively. We examine the power under the alternative hypothesisγ0/γ1 = R
′
. HereR′ ranges from

1 to 15 for each combination ofR andd. The estimated power forp(A)
j , p

(P )
j , j = 1, 2, 3, 4, 5 andp(C),

p(M) and p(L) is computed by the number of rejections ofH0 divided by 10,000 with standard error

SE = 0.0022.

Moreover, we also examine the accuracy of the sample size formulae in (6) - (12). The required sample

sizes (sample time frames) computed from these formulae withα = 0.05, β = 0.10 are used to obtain the

estimated significance level and power again with10, 000 replications.

5 Results and Discussions

In this section we present the results of the Monte Carlo study and compare different test procedures in

terms of the level of significance and the power. Since the pattern of the simulated significance level and

power values are related to the ratio ofR andd (ρ = R/d), we present the results in terms ofρ which

ranges from 0.25 to 3.
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5.1 Level of significance

First, consider the levels of the significance of various test procedures. It is a desirable property of a test

procedure that its actual level of significance be close to pre-specified nominal level. To examine these

levels, we plot the simulated significance levels for all the test procedures considered here. For the sake

of saving space, we presented only the plots of the simulated significance levels atρ = 0.25 andρ = 2.0

for p
(A)
j , j = 1, . . . , 5 in Figure 1. The plots of the simulated levels for other test procedures show similar

patterns. From these plots, we observe that the pattern of the simulated significance levels are different for

small values ofγ1 (say,γ1 < 10) and large values ofγ1 (≥ 10). Forγ1 < 10, most of the test procedures

are conservative exceptp
(A)
2 andp

(A)
3 are liberal forρ < 1 andp

(A)
1 andp

(A)
4 are liberal forρ > 1. Based

on the plots, we observe that among all the test procedures, those based onp
(A)
5 , p

(P )
j , j = 1, . . . , 5 and

p(L) have simulated significance levels close to the nominal levels whenγ1 < 10.

Forγ1 ≥ 10, to scrutinize the levels of the test procedures, we compute the percentage of configurations

(based on 50 differentγ1 = 11(1)60) that are conservative (i.e., simulated significance level≤ 0.04), or

liberal (i.e., simulated significance level≥ 0.06) for all the test procedures and each given value ofρ.

These values are presented in Tables 1 and 2. We also present the percentages of configurations in the

intervals (0.04, 0.05), (0.05, 0.06) and0.05 ± SE = (0.0478, 0.0522). Among all five asymptotic tests,

the one based onp(A)
5 gives simulated significance levels closest to0.05 for all values ofρ. For ρ ≤ 2/3,

p
(A)
1 andp

(A)
4 are conservative whilep(A)

2 andp
(A)
3 are liberal. For2/3 < ρ ≤ 1, all asymptotic tests are

robust (i.e. simulated significance level being between0.04 and0.06). Forρ > 1, p(A)
1 andp

(A)
4 are liberal

while p
(A)
2 , p

(A)
3 andp

(A)
5 are robust.

The tests based on numerical approximations (p
(P )
j , j = 1, . . . , 5), have simulated significance levels

close to each other and close to the nominal level for all values ofρ. In other words, they are robust for

all the settings considered here. As expected, the traditional conditional test (test based onp(C)) is always

conservative for all values ofρ. From these results, it is clear that the mid-p adjustment based onp(M)

does overcome the conservativeness of the traditional conditional test (i.e., with the simulated significance
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Table 1: Percentage of configurations (based onγ1 = 11(1)60) whose simulated significance levels are

inside the intervalI whenρ = 1/4, 1/3, 1/2,2/3,3/4

ρ I p
(A)
1 p

(A)
2 p

(A)
3 p

(A)
4 p

(A)
5 p

(P )
1 p

(P )
2 p

(P )
3 p

(P )
4 p

(P )
5 p(C) p(M) p(L)

1/4 ≤ 0.04 100 0 0 100 0 0 0 0 0 0 94 0 0

≥ 0.06 0 12 4 0 0 0 0 0 0 0 0 0 0

(0.04,0.05) 0 2 6 0 82 80 82 80 80 82 6 86 84

(0.05,0.06) 0 86 90 0 18 20 18 20 20 18 0 14 16

(0.0478,0.0522) 0 4 16 0 42 40 40 40 40 42 0 50 40

1/3 ≤ 0.04 98 0 0 94 0 0 0 0 0 0 92 0 0

≥ 0.06 0 2 2 0 0 0 0 0 0 0 0 0 0

(0.04,0.05) 2 2 14 6 48 52 66 66 50 58 8 80 76

(0.05,0.06) 0 96 84 0 52 48 34 34 50 42 0 20 24

(0.0478,0.0522) 0 18 24 0 62 56 56 58 56 50 0 50 44

1/2 ≤ 0.04 60 0 0 4 0 0 0 0 0 0 80 0 0

≥ 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0

(0.04,0.05) 40 20 42 96 60 66 68 68 68 64 20 60 56

(0.05,0.06) 0 80 58 0 40 34 32 32 32 36 0 40 44

(0.0478,0.0522) 0 42 62 2 66 56 60 58 58 64 0 64 58

2/3 ≤ 0.04 2 0 0 0 0 0 0 0 0 0 68 0 0

≥ 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0

(0.04,0.05) 98 28 64 84 74 70 70 70 70 74 32 78 68

(0.05,0.06) 0 72 36 16 26 30 30 30 30 26 0 22 32

(0.0478,0.0522) 10 60 46 28 50 44 44 44 44 50 0 56 52

3/4 ≤ 0.04 0 0 0 0 0 0 0 0 0 0 74 0 0

≥ 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0

(0.04,0.05) 94 26 44 60 44 56 54 56 54 50 26 62 44

(0.05,0.06) 6 74 56 40 56 44 46 44 46 50 0 38 56

(0.0478,0.0522) 32 62 60 54 62 58 56 58 54 64 0 60 62

levels being much closer to the pre-specified nominal level). The LRT is robust for all values ofρ but the

simulated significance levels are higher than the pre-specified nominal level a majority of the time when

ρ ≥ 1.0 (see Table 2).
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Table 2: Percentage of configurations (based onγ1 = 11(1)60) whose simulated significance levels are

inside the intervalI whenρ = 1.0, 1.5, 2.0, 3.0

ρ I p
(A)
1 p

(A)
2 p

(A)
3 p

(A)
4 p

(A)
5 p

(P )
1 p

(P )
2 p

(P )
3 p

(P )
4 p

(P )
5 p(C) p(M) p(L)

1.0 ≤ 0.04 0 0 0 0 0 0 0 0 0 0 66 0 0

≥ 0.06 0 0 0 4 0 0 0 0 0 0 0 0 0

(0.04,0.05) 52 52 72 20 50 54 54 54 54 52 34 64 38

(0.05,0.06) 48 48 28 76 50 46 46 46 46 48 0 36 62

(0.0478,0.0522) 56 56 50 40 58 52 52 52 52 58 0 62 72

1.5 ≤ 0.04 0 0 0 0 0 0 0 0 0 0 56 0 0

≥ 0.06 12 0 0 24 0 0 0 0 0 0 0 0 4

(0.04,0.05) 4 70 84 2 56 58 58 58 56 58 44 66 18

(0.05,0.06) 84 30 16 74 44 42 42 42 44 42 0 34 78

(0.0478,0.0522) 16 48 46 8 62 52 52 52 58 50 0 58 44

2.0 ≤ 0.04 0 0 2 0 0 0 0 0 0 0 54 0 0

≥ 0.06 30 0 0 50 0 0 0 0 0 0 0 0 0

(0.04,0.05) 0 80 88 0 40 52 48 48 54 48 46 62 30

(0.05,0.06) 70 20 10 50 60 48 52 52 46 52 0 38 70

(0.0478,0.0522) 4 48 38 2 62 60 60 60 60 60 0 72 64

3.0 ≤ 0.04 0 2 8 0 0 2 2 2 2 2 60 0 0

≥ 0.06 74 0 0 86 0 0 0 0 0 0 0 0 0

(0.04,0.05) 2 92 92 2 28 48 44 46 52 44 40 74 18

(0.05,0.06) 24 6 0 12 72 50 54 52 46 54 0 26 82

(0.0478,0.0522) 0 36 22 0 56 70 66 66 62 64 0 70 40

5.2 Power

In terms of power of the tests based on numerical approximations ofp-values (p(P )
j , j = 1, . . . , 5), the

tests based onp(P )
3 andp

(P )
5 outperformp

(P )
1 , p

(P )
2 , p(P )

4 most of the time.

One should view a rejection of the null hypothesis for a liberal test with caution. In this regard, conser-

vative tests are of less concern, for the type-I error rate is controlled below the nominal level. Therefore,

we consider only the robust and conservative test procedures in the power comparison. We present the
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power curves for test procedures based onp
(A)
5 , p

(P )
3 , p

(P )
5 , p(M), andp(L) in Figure 2 for values ofρ =

1/4, 1/2, 1.5 and 2.0.

From the figures, we can see that the LRT is the most powerful among all the procedures. Although

the LRT is robust in most situations and it is the most powerful for all the values ofρ, it has a higher

percentage of simulated significance levels lying in (0.05, 0.06). We advise the use of LRT with caution.

Among the test procedures based onp
(A)
5 , p

(P )
3 andp

(P )
5 , the latter two appear to generally have type-I

error rates closer to the desired level compared top
(A)
5 . If one always wants the significance level of a test

well controlled below the nominal level, thenp(P )
3 andp

(P )
5 are the desirable candidates. Otherwise,p

(A)
5

provides a reliable alternative with the significance levels being greater than the nominal level occasionally.

It is noteworthy thatp(A)
5 can be carried out easily using a pocket calculator whilep

(P )
3 andp

(P )
5 require the

evaluation of an infinite sum of probabilities, requiring a computer program. As the test procedure based

on p
(A)
5 has better power performance forρ > 1, we recommend the use of the asymptotic testsp

(A)
5 for

ρ > 1 and the tests based onp(P )
3 andp

(P )
5 for ρ ≤ 1 in practice.

5.3 Accuracy of sample size calculation formulae

In this subsection, we examine the accuracy of the sample size formulae in (6) - (12). For fifteen combina-

tions ofρ = (1/4, 1/2, 1, 1.5,2) andc = (0.25, 0.50, 0.75) the required sample sizes (sample time frames

λ1) computed from formulae (6) - (10) withα = 0.05, β = 0.10 for the asymptotic test procedures are

presented in Table 3 and (11) and (12) in Table 4. The simulated significance levels and the power values

based on these sample sizes are also presented. One should be concerned about the cases for which the

simulated significance level is significantly higher than the pre-specified level (α = 0.05) or the simulated

power is significantly lower than the pre-specified value (1 − β = 0.90).

From Table 3, our only concerns are that the simulated significance levels of tests based onp
(A)
1 and

p
(A)
4 are higher than the pre-specifiedα = 0.05 whenρ = 2.0 andc = 0.25, while the simulated levels

based onp(A)
2 andp

(A)
3 are lower than that level whenρ = 2.0, c = 0.25. These observations agree with
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Table 3: Sample size for asymptotic test procedures using formulae(6) − (10)

p
(A)
1 p

(A)
2 p

(A)
3 p

(A)
4 p

(A)
5

ρ c λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂

0.25 0.25 16 .0213 .9512 11 .0621 .9178 9 .0547 .8576 12 .0221 .9159 13 .0466 .9389

0.5 0.25 9 .0297 .9391 7 .0543 .9207 7 .0487 .9096 7 .0376 .8889 9 .0505 .9586

1.0 0.25 5 .0485 .9197 5 .0485 .9197 6 .0373 .9463 4 .0581 .9146 6 .0463 .9710

1.5 0.25 3 .0602 .9021 4 .0422 .9180 5 .0301 .9632 4 .0802 .9252 6 .0452 .9762

2.0 0.25 3 .0886 .8906 4 .0373 .9150 5 .0245 .9718 3 .0988 .9313 5 .0467 .9822

0.25 0.5 77 .0350 .9264 62 .0529 .9040 53 .0523 .8673 64 .0347 .8837 68 .0479 .9206

0.5 0.5 43 .0393 .9182 38 .0501 .9055 35 .0486 .8855 38 .0425 .8922 42 .0466 .9260

1.0 0.5 26 .0457 .9054 26 .0457 .9054 27 .0460 .9115 25 .0501 .9021 29 .0462 .9374

1.5 0.5 20 .0490 .8929 21 .0439 .9023 24 .0437 .9253 21 .0533 .9070 26 .0457 .9418

2.0 0.5 17 .0572 .8878 19 .0423 .9006 22 .0416 .9311 19 .0576 .9102 24 .0446 .9477

0.25 0.75 486 .0449 .9079 442 .0479 .8988 412 .0503 .8795 451 .0520 .8880 461 .0507 .9097

0.5 0.75 281 .0485 .9096 267 .0501 .9068 258 .0489 .8929 269 .0420 .8951 282 .0515 .9122

1.0 0.75 179 .0485 .9016 179 .0494 .9001 180 .0509 .8992 178 .0481 .9014 192 .0439 .9157

1.5 0.75 145 .0511 .8924 150 .0480 .8978 155 .0493 .9098 148 .0528 .9004 162 .0485 .9192

2.0 0.75 128 .0549 .8918 135 .0472 .8981 142 .0491 .9090 133 .0555 .9002 147 .0519 .9247

the findings in Section 5.1. Whenρ = 1.0, the simulated significance levels of all asymptotic tests are

close to the nominal level. From Table 4, we can see that the simulated significance values are much lower

than the desired nominal level whenc = 0.25 for p(C) andp(M) and somewhat low forp(C) whenc = 0.5.

This may be due to the small sample sizes atc = 0.25. Otherwise, most of the sample size formulae

provide satisfactory results. The concerns about power< 0.90 are confined top(A)
1 , p(A)

3 , andp
(A)
4 .

6 Illustrative Examples

In this section, we revisit the two examples described in Section 1 to illustrate the test procedures consid-

ered in this paper.
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Table 4: Sample size for test procedures based onp
(P )
5 , p(C), p(M) andp(L)

p
(P )
5 p(C) p(M) p(L)

ρ c λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂ λ1 α̂ 1 -β̂

0.25 0.25 11 .0469 .9040 12 .0269 .8970 11 .0448 .9044 11 .0468 .9040

0.5 0.25 7 .0477 .9142 8 .0289 .9250 7 .0450 .9105 6 .0592 .8828

1.0 0.25 5 .0403 .9309 5 .0226 .9096 4 .0381 .8745 4 .0580 .8767

1.5 0.25 4 .0452 .9184 4 .0236 .8896 3 .0386 .8364 4 .0569 .9304

2.0 0.25 3 .0462 .8579 4 .0194 .9224 3 .0419 .8673 3 .0547 .8797

0.25 0.5 62 .0476 .8974 65 .0385 .8932 62 .0476 .8974 76 .0506 .8984

0.5 0.5 38 .0479 .9015 40 .0369 .8963 37 .0492 .8956 46 .0503 .8981

1.0 0.5 25 .0452 .8990 27 .0400 .8991 25 .0452 .8972 31 .0513 .9021

1.5 0.5 21 .0459 .8974 22 .0351 .8977 21 .0500 .8995 21 .0477 .9020

2.0 0.5 19 .0436 .8994 20 .0347 .8949 19 .0436 .8977 23 .0490 .8977

0.25 0.75 445 .0546 .8923 460 .0458 .9039 448 .0519 .9017 450 .0478 .9041

0.5 0.75 267 .0516 .8977 277 .0470 .9025 268 .0552 .9012 269 .0465 .9049

1.0 0.75 178 .0487 .8937 185 .0431 .9040 179 .0476 .8957 179 .0507 .9033

1.5 0.75 149 .0498 .9004 154 .0471 .8995 150 .0476 .9027 149 .0550 .8970

2.0 0.75 135 .0474 .9035 139 .0461 .9021 135 .0522 .8991 134 .0482 .9010

6.1 Example 1: Coronary Heart Disease

Referring to the first example in Section 1,x0 = 60 CHD cases witht0 = 51477.5 for the group not using

postmenopausal hormone andx1 = 30 CHD cases witht1 = 54308.7 for the group using postmenopausal

hormone. This impliesd = 1.055, R = 1 andρ = 0.94787. We obtain thatW1 = 3.3849, W2 = 3.4174,

W3 = 3.3393, W4 = 3.5406, andW5 = 3.4455 and the correspondingp-values are presented in Table 5.

There is strong evidence to support the conclusion that the incidence rate of CHD in the non-hormone-use

group is higher than that in post-menopausal hormone-use group.

Next suppose that an epidemiologist wants to plan another study of the research question that the in-

cidence rate of CHD for those using the hormone is no different for those not using the hormone. The

epidemiologist would like to know the required sample size for the two groups when the ratio of sampling

frames is2 (d = 2). Suppose also that the observation time domain is 2 years, from the previous study
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Table 5: Summary of the results for Example 1: TestingH0 : γ0/γ1 = 1 vs. H1 : γ0/γ1 > 1.

Test Procedure p-value Test Procedure p-value

p
(A)
1 0.000356 p

(P )
1 0.000298

p
(A)
2 0.000316 p

(P )
2 0.000298

p
(A)
3 0.000420 p

(P )
3 0.000307

p
(A)
4 0.000200 p

(P )
4 0.000306

p
(A)
5 0.000285 p

(P )
5 0.000298

p(C) 0.000310 p(L) 0.000286

p(M) 0.000428

that the incidence rate of CHD for those using the hormone is0.0005 (γ1 = 0.0005), andR
′

is 4. From

formulae (6) - (12), the values ofλ1 = t1γ1 and the required sample sizes for the hormone using group to

achieve 90% power atα = 0.05 for different test procedures are presented in Table 6. The smallest are for

p
(A)
3 andp

(A)
4 .

6.2 Example 2: Breast Cancer

There werex0 = 41 cases of breast cancer witht0 = 28010 in the treatment group of women receiving

x-ray fluoroscopy andx1 = 15 cases of breast cancer witht1 = 19017 in the control group of women not

receiving x-ray fluoroscopy. Hence,d = 0.679 and one might be interested in testing the hypotheses that

H0 : γ0/γ1 = 1.5 againstH1 : γ0/γ1 > 1.5. We obtain the test statisticsW1 = 0.7358, W2 = 0.7069,

W3 = 0.7056, W4 = 0.7380, andW5 = 0.6747 and theirp-values based on different procedures are

presented in Table 7. There is not enough evidence that the incidence rate of breast cancer in the X-ray

fluoroscopy group is1.5 times to the incidence rate of breast cancer in control group.
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Table 6: The values ofλ1 = t1γ1 and the required sample sizes for the example with1 − β = 0.9,

α = 0.05, R = 1, R′ = 4, γ1 = 0.0005.

Test Procedure λ1 Required sample size

p
(A)
1 8.53 8527

p
(A)
2 6.86 6860

p
(A)
3 6.66 6655

p
(A)
4 6.66 6655

p
(A)
5 8.63 8627

p
(P )
j , j = 1, . . . , 5 6.59 6590

p(C) 7.26 7260

p(M) 6.58 6580

p(L) 6.37 6370

Table 7: Summary of the results for Example 2: TestingH0 : γ0/γ1 = 1.5 vs. H1 : γ0/γ1 > 1.5.

Test Procedure p-value Test Procedure p-value

p
(A)
1 0.2309 p

(P )
1 0.2453

p
(A)
2 0.2398 p

(P )
2 0.2453

p
(A)
3 0.2402 p

(P )
3 0.2453

p
(A)
4 0.2303 p

(P )
4 0.2453

p
(A)
5 0.2499 p

(P )
5 0.2453

p(C) 0.2913 p(L) 0.2367

p(M) 0.2450

7 Conclusion

In this paper, we study four different approaches for testing the ratio of two Poisson rates and derive their

sample size formulae. Based on our Monte Carlo simulation studies of the significance levels and powers,
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we find that the asymptotic test derived from variance stabilizing transformation (W5) is the most reliable

asymptotic test (i.e., conservative but high power), and the test statistics derived from log-transformation

with unconstrained MLE (W3) and variance stabilizing transformation (W5) are the best among all the five

tests based on numerical approximations of exactp-values. The likelihood ratio test is the most power-

ful compared with other procedures; however, its simulated significance level can be liberal. The exact

conditional tests are found to be conservative even with the mid-p correction for small values ofγ.
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Appendix A. Derivation of Constrained Maximum Likelihood Estimators

The log-likelihood function is

ln L(γ0, γ1) = − ln(X0!X1!) − t0γ0 − t1γ1 + X0 ln t0 + X0 ln γ0 + X1 ln t1 + X1 ln γ1.(A.1)

Under the null hypothesis,H0 : γ0/γ1 = R, (A.1) can be written

lnL(γ1) = − ln(X0!X1!) − t0(γ1R) − t1γ1 + X0 ln t0 + X0 ln(γ1R) + X1 ln t1 + X1 ln γ1.(A.2)

To obtain the maximum likelihood estimator ofγ1 (for any fixedR) we take the first derivative of (A.2)

and set it to zero, which yields

d lnL(γ1)
dγ1

= −t0R − t1 +
X0

γ1
+

X1

γ1
= 0

=⇒ γ̃1 =
X0 + X1

Rt0 + t1
which impliesγ̃0 = Rγ̃1 =

X0 + X1

t0 + t1/R
.

Substitutingd = t1/t0 andρ = R/d yields

γ̃0 =
X0 + X1

t0(1 + 1/ρ)
andγ̃1 =

X0 + X1

t1(1 + ρ)
.
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Appendix B. Derivation of Sample Size Formulae

The critical region forW1 at theα significance level consists of those points(X0, X1) that satisfy the

inequalityX0 − ρX1 ≥ z1−α

√
X0 + X1ρ2. UnderH1 : γ0/γ1 = R′ > R, (X0 − ρX1) is asymptotically

normal with mean(ρ/c − ρ)t1γ1 and variance(ρ/c + ρ2)t1γ1, wherec = R/R′ and
√

X0 + X1ρ2

converges in probability to
√

(ρ/c + ρ2)t1γ1. Hence, the approximate power,P , can be expressed in

terms of the cumulative normal distribution as

P = Φ

[
z1−α

√
(ρ/c + ρ2)t1γ1 − (ρ/c − ρ)t1γ1√

(ρ/c + ρ2)t1γ1

]
, (B.1)

whereΦ(.) is the standard normal distribution function. SettingP = 1−β and solving (B.1), we can show

that the sample size formula for the test procedure based onp
(A)
1 is

λ1 = t1γ1 =
(c/ρ + c2)(z1−α + z1−β)2

(1 − c)2
.

Similarly,
√

(X0 + X1)ρ has limit
√

t1γ1(ρ2/c + ρ) and the sample size formula for the test procedure

based onp(A)
2 is

λ1 = t1γ1 =
(c/ρ + c2)

[
z1−α

√
(c + ρ)/(1 + cρ) + z1−β

]2

(1 − c)2
.

For the test procedure based onp
(A)
3 at theα significance level consists of those points(X0, X1) that

satisfy the inequalityln(X0/X1) − ln(ρ) ≥ z1−α

√
1/X0 + 1/X1. UnderH1 : ρ0/ρ1 = R′ > R,

ln(X0/X1) − ln(ρ) is asymptotically normal with meanln(1/c) and variance(c/ρ + 1)/(t1γ1). Here

√
1/X0 + 1/X1 converges in probability to

√
(c/ρ + 1)/(t1γ1). Hence the approximate power may be

expressed in terms of the cumulative normal as

P = Φ

[
z1−α

√
(c/ρ + 1)/(t1γ1) − ln (1/c)√

(c/ρ + 1)/(t1γ1)

]
. (B.2)

SettingP = 1 − β and solving (B.2), the sample size formula for the test procedurep
(A)
3 is

λ1 = t1γ1 =
(c/ρ + 1)(z1−α + z1−β)2

(ln c)2
.
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Following the same procedure,
√

(2 + 1/ρ + ρ)/(X0 + X1) has limit

√
(2 + 1/ρ + ρ)/((ρ/c + 1)(t1γ1)) and the sample size for the test procedurep

(A)
4 is

λ1 = t1γ1 =
(c/ρ + 1)

{
z1−α

[√
c(ρ2+2ρ+1)

c+ρ

]
+ z1−β

}2

(ln c)2
.

For the test procedure based onp
(A)
5 , the critical region of the test is

2
(√

X0 + 3/8−
√

ρ(X1 + 3/8)
)

√
1 + ρ

≥ z1−α.

After some simple algebra, we can show that

2
(√

X0 + 3/8−
√

ρ/c(X1 + 3/8)
)

√
1 + ρ/c

≥
z1−α

√
1 + ρ − 2(

√
ρ/c −√

ρ)
√

X1 + 3/8√
1 + ρ/c

.

Under the alternative hypothesis, the left-hand side of the equation is asymptotically normal distributed.

By setting the type-II error rate toβ, we can get the sample size for the test procedure based onp
(A)
5 as

λ1 = γ1t1 =

[
z1−α

√
c/ρ + c + z1−β

√
1 + c/ρ

2 (1 −
√

c)

]2

− 3
8
.
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