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ABSTRACT 

Motivation: Affymetrix GeneChip brand arrays require a summarization step in order to 

combine the information in a probe set into one value representing the expression level of the 

corresponding gene.  Here we present a new summarization method, Distribution Free 

Weighted (DFW) fold change, that uses the information of fold change but does not make any 

distributional assumptions for the data. 

Results:   Based on spikein data sets, we compare DFW with several popular methods, via 

both our own calculations and the ‘Affycomp II’ competition.  The results show that DFW 

outperforms other methods when sensitivity and specificity are considered simultaneously.  

In fact, the area under the Receiver Operating Characteristic (ROC) curve for DFW is nearly 

1.0 (a perfect value). Furthermore, DFW can obtain all the true positives with a small number 

of false positives. It is also computationally faster than most methods in current use. 

Availability:  The R package for DFW is available upon request. 

Contact:  mmcgee@mail.smu.edu 

 

1 INTRODUCTION  

                                                        
*To whom correspondence should be addressed.  



With the help of microarrays, researchers can measure the expression levels for tens of 

thousands genes simultaneously. This provides an opportunity for scientists to investigate 

the relationship between the functions of biological organisms and their genes at a 

genome-wide level.  Of the several types of microarrays, the Affymetrix GeneChip is 

the most widely used. 

An Affymetrix GeneChip can contain from six thousand to more than fifty thousand 

probe sets (genes), depending on the organism and platform. Each gene is interrogated by 

a set of probe pairs. Usually the number of probe pairs within a probe set is between 11 

and 20. For each probe pair, there are two probes. A perfect match (PM) probe is a 

segment of a gene with a length of 25 nucleotides, which is perfectly complementary to a 

subsequence for the target mRNA. A mismatch (MM) probe is identical to the 

corresponding PM probe except that the middle (13th) base is intentionally changed to its 

Watson-Crick complement. MM probes were originally designed to measure the 

background of the corresponding PM probes. 

The raw microarray data are usually highly “noisy”.  Consequently, before any high 

level analysis, such as gene selection, classification, or clustering, is executed, a series of 

preprocessing procedures must be performed. These preprocessing steps can profoundly 

affect the results of high-level analyses. A typical preprocessing procedure consists of 

three steps: background correction, normalization and summarization, not necessarily in 

this order.  The background correction step is typically done in an attempt to remove 



nonspecific binding; the normalization step reduces systematic variation between chips 

and the summarization step generates an expression value for each gene.  

In this paper, we focus on the summarization step. There are several summarization 

methods in common use. The earliest one is the Affymetrix Microarray Suite (MAS 4.0) 

and later replaced by MAS 5.0 (Affymetrix, 2002).  MAS 4.0 takes the average of the 

background corrected intensities of PMs within a probe set by removing the smallest and 

largest values (AvDiff). MAS 5.0 uses 1-step Tukey Biweight method to get a gene 

expression summary. Model Based Expression Index (MBEI, Li and Wong, 2001a, b) 

uses a model to estimate the signal based on the original scale. Robust Multi-chip 

Average (RMA, Irizarry et at., 2003a, b; Bolstad et al., 2003), uses median polish to 

obtain a single gene expression value for each probe set based on the 

logarithm-transformed intensities.  

A recently developed summarization procedure, Factor Analysis for Robust 

Microarray Summarization (FARMS, Hochreiter et al., 2006), is also a model-based 

method that uses logarithm-transformed data.  Model based methods are heavily 

dependent on model assumptions, and require estimation of model parameters in order to 

work. In practice, these assumptions may not be always appropriate for microarray data. 

Furthermore, parameter estimation is not an easy task for microarray data.  Maximum 

likelihood procedures are typically unstable, and EM-based algorithms too slow, due to 

the large amount of data generated by a typical microarray experiment (Bolstad, 2004).   



We propose a new nonparametric summarization technique, Distribution Free 

Weighted (DFW) fold change based method.  In its current implementation, no 

background correction is performed, and quantile normalization, as in RMA and FARMS, 

is employed for normalization purposes.  Furthermore, only the PM probes are used.  

We compare our new method with MAS 5.0 and its later improved version Probe 

Logarithmic Intensity Error (PLIER, Affymetrix, 2005), MBEI, RMA, RMA-noBG, 

Gene Chip RMA (GCRMA, Wu et al., 2004) and FARMS.  We use two sets of 

Affymetrix Spikein data (available at: http://www.affymetrix.com) along with the 

“GoldenSpike” dataset (Choe et al., 2005), for comparison. There are two versions for 

FARMS: “l.farms” and “q.farms”. Cyclic loess normalization is used for l.farms, while 

q.farms uses quantile normalization (Hochreiter et al., 2006). For the spikein data sets, 

“q.frams” performs better; therefore, we use “q.farms” only for comparison throughout 

this paper.  The results show that DFW outperforms other methods when both of 

sensitivity and specificity are considered. 

DFW and the method comparisons are implemented in R (Ihaka and Gentleman, 1996) 

and Bioconductor (Gentleman, et al., 2004).   Both programs are available at 

http://www.bioconductor.org.  

2 METHODS 

It is known that approximately 30% of MM values are greater than PM values, and this 

has been found to be true for many Affymetrix platforms (Irizarry, et al., 2003b).  In 



addition, the PM and MM values for the same transcript are highly correlated with each 

other, indicating the presence of non-specific hybridization.  In other words, even if a 

target sequence is not perfectly complementary to a probe, it still can hybridize to that 

probe. Some small target sequences (for example, less than 13 nt), have the capability to 

hybridize to a PM and the corresponding MM.  Non-biological variations can also be 

introduced during the steps of sample preparation. Furthermore, Li and Wong (2001a, b) 

found that the hybridization capabilities for PM probes within a probe set are not the 

same. They termed this difference in behavior the “probe effect”. 

Since it is true that different probes within the same probe set hybridize with different 

strengths to the same target, a preprocessing method should take these differences into 

account. However, for most preprocessing methods, the probe effect for a probe is 

assumed to be a constant (Li and Wong, 2001a, b).  It is well accepted that there is a 

linear relationship between the specific hybridization intensity and the concentration of 

the target mRNA (Lockhart et al., 1996). Under this assumption, the fold changes (ratios) 

of the specific hybridization intensities under different conditions from all PM probes 

within a probe set should be the same. Therefore, by considering the fold changes instead 

of the intensities, we can avoid the difficulty that comes from the probe effects issue. The 

spikein data sets are based on this linear relationship assumption (at least we should 

accept the assumption that there is a linear relationship for log intensity and log 

concentration) (Lockhart et al., 1996).  



However, we can only estimate the fold changes between experiments based on the 

observed intensities that contain noise. There are several reasons why the estimated fold 

changes, even for probe-pairs that are part of the same probe set, are disparate from one 

another. First, no matter what methods we use, we cannot remove all the background 

noise. The background noise has a large effect on the estimated fold change, especially 

when the intensities are low. Second, the effect of nonspecific hybridization is different 

from probe to probe. Currently, we have no reasonable method to remove nonspecific 

binding from the observed intensities. Third, some PM probes are not really PM probes 

of the gene (probe set) assigned although they were thought to be so when the chip was 

designed (Harbig et al., 2005; Dai et al., 2005); this may be due to the lack of the 

knowledge for that gene at that time.  Therefore, each PM probe should not be treated 

equally. 

A good summarization method should not only utilize the information from multiple 

chips, as RMA, MBEI and FARMS do, but also consider the different qualities of PM 

probes within a probe set.  The new method, DFW, is a multi-chip method and takes 

advantage of information among arrays.  The “hybridization quality” of each PM probe 

within a probe set is estimated based on the fold change for that probe across all arrays. 

The final estimated fold changes are weighted averages by giving larger weights to high 

quality PM probes.  

More specifically, the observed intensities are first logarithm-transformed to obtain the 

estimated relative (relative to 0) fold changes (on log scale) for each PM probe across 



arrays. The range (maximum – minimum) of relative fold changes for each PM probe is 

taken, and  the median of the ranges of relative fold changes for PM probes within a 

probe set is calculated. We denote the median as M. The median-centered difference of 

the fold change range for PM probe i is denoted by .  We denote the maximum 

absolute value of ’s as Max. The weighting function has the following form:  
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If all the ranges are the same, then each PM probe has the same weight. By using this 

weighting procedure, we usually give small or zero weights to those PM probes with poor 

qualities. Here we assess the quality of PM probes across all arrays, as this avoids a 

common situation where a PM probe may perform well for some arrays or conditions (for 

example, when the concentrations are high), but has poor behavior for other arrays or 

conditions.  

  The expression values (log base 2) of a probe set across arrays are from the weighted 

relative fold changes that are calculated based on the relative fold changes for each probe 

and its weight within that probe set. Usually, the differentially expressed genes have 

larger ranges of fold changes than that of non-differentially expressed genes.  Therefore, 

the standard deviation (SD) of relative fold changes across arrays for a gene provides 

additional information. Differentially expressed genes would be expected to have larger 



SD of fold changes than that of non-differentially expressed genes. The DFW 

summarization method uses information from both the range and SD of fold change.   

First, the weighted relative fold changes (a vector with the length of the number of 

arrays) and the corresponding weighted range (WR, a scalar) are calculated based on the 

relative fold changes and the weight from each probe.  The weighted relative fold 

changes are linearly transformed to be between 0 and 1 to give the transformed fold 

changes (TFC). A weighted standard deviation (WSD) is calculated in the same way as 

the weighted range.  The final relative fold changes (expression values on log base 2 

scale) for a gene across arrays are given by the following formula:  

 

nm WSDWRTFCCC ×××+ 21 .             (3) 

 

Here m and n are positive numbers, and the default values are set to be m=3, n=1 in DFW.  

The constant  is the minimum value of the weighted relative fold changes before the 

linear transformation and constant  is 0.01 by default. Neither  nor C  affects 

the results of the comparisons in the next section. 
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3 RESULTS 
3.1 Data sets 

We compare our new method with others by using three publicly available spikein data 

sets (Dataset A, B and C).   Dataset A is the Affymetrix Latin Square spike-in 

experiment done on the HG-U95Av2 array.  For details on this experiment, see the 



Affymetrix website (http://www.affymetrix.com).  Our comparisons use 16 spikeins 

instead of the original 14, following the recommendations of Cope, et.al, 2004. Dataset B 

is the Affymetrix Latin Square spikein experiment performed on the HG-U133A array 

platform.   It was originally designed with 42 spikeins (14 spikein groups with each 

group of three).  McGee and Chen (2006) recently found that there are 22 additional 

spikeins in Dataset B.  Therefore, there are actually 64 spikeins for Dataset B.  We do 

our comparisons with both the original 42 spikeins, via the Affycomp II competition, and 

the 64 new spike-ins.  Dataset C consists of six DrosGenome1 chips (two conditions 

with three replicates for each) with 3860 probe sets that can be detected as presented 

(Choe, et al., 2005).  Among the 3860, 1309 have known fold changes from 1.2 to 4 and 

the remaining 2551 have the same concentrations under both conditions (spikein and 

control).  

3.2 Results 

The “Affycomp II” competition (http://affycomp.biostat.jhsph.edu; Cope et al, 2004; 

Irizarry et.al, 2006), allows comparisons among fifty-four and fifty-five (at the time this 

paper was prepared) public competition methods based on data sets A and B, respectively.  

The competition uses many comparison statistics, but only the various area under the 

ROC curve (AUC) statistics are not scale-dependent (Hochreiter et al., 2006).  

Furthermore, the AUC allows comparison based on sensitivity and specificity, which are 

the most important characteristics of a preprocessing method from the standpoint of a 

researcher. DFW outperforms all others with regard to sensitivity and specificity 

http://www.affymetrix.com
http://affycomp.biostat.jhsph.edu/


simultaneously.  Weighted AUC values, as calculated on the Affycomp II website, for 

DFW, RMA, MAS 5.0, MBEI, FARMS and GCRMA, for both Datasets A and B, are 

given in Table 1. The weighted AUC values for DFW are 1 from both datasets A and B. 

Note that this comparison uses 42 spikeins for Dataset B.  In Table 2, we show the 

results using all of the 64 spikeins for Dataset B (McGee and Chen, 2006).  In addition, 

we take into account the fact that some experiments are designed to demonstrate much 

larger differences between concentrations of the spike-in genes than are others. 
 
Table 1. Average AUC for datasets A and B different methods  
 

Dataset DFW FARMS GCRMA RMA RMA- 
noBG 

MAS5 MBEI PLIER

A 1.00 0.91 0.69 0.60 0.65 0.05 0.26 0.03 
B 1.00 0.95 0.57 0.65 0.63 0.06 0.40 0.20 

 

Table 2.  AUC comparison for Dataset A (#FP=5) 
 

d DFW FARMS GCRMA RMA RMA-noBG MAS 5 MBEI PLIER

1 1.000 0.692 0.566 0.453 0.587 0.063 0.063 0.046 
2 1.000 0.849 0.793 0.764 0.784 0.126 0.206 0.079 
3 1.000 0.865 0.865 0.882 0.864 0.188 0.448 0.066 
4 1.000 0.933 0.902 0.927 0.933 0.429 0.598 0.067 
5 1.000 0.936 0.982 0.992 0.975 0.746 0.708 0.040 
6 1.000 0.937 0.993 0.996 0.998 0.848 0.763 0.000 
7 1.000 0.937 0.996 0.998 0.997 0.862 0.801 0.000 

 

For the Latin Square data sets, we compared pairs of experiments that were separated 

by the same number of permutations (where d = number of permutations), of the Latin 

Square.  See McGee and Chen (2006) for a more complete explanation of d.  Usually, 

it is harder to detect the true positives for small d than for large d.   



 

Figure 1. ROC plots based on Dataset A when d=1 and number of false positives is 5. DFW 
obtains all the true positives without any false positive. 
 

The AUC was calculated for a cutoff of various numbers of false positives (e.g. the 

number of false positives is 5 for Table 2).  The values are then standardized so that the 

area is between 0 and 1. For Dataset C no cutoffs were set since the fold changes for this 

dataset are usually very small and many spikeins can not be detected as differentially 

expressed genes for a small number of false positives.  

Figure 1 is the ROC curve plot of Dataset A for d=1 when the number of false positives 

is 5. The DFW method can obtain all of the true positives without any false positives and 

the curve is above any other curves from other methods. For d = 2, 3, … , 7, we obtain 

the similar plots for ROC curves.  In other words, in all situations, DFW outperforms 

the other methods.  



 
Table 3. AUC from Dataset A for given numbers of false positives when d=1 
 

# FP DFW FARMS GCRMA RMA RMA-noBG MAS 5 MBEI PLIER

2 1.000 0.626 0.362 0.320 0.530 0.063 0.063 0.000 
5 1.000 0.692 0.566 0.453 0.587 0.063 0.063 0.046 

10 1.000 0.754 0.658 0.529 0.638 0.063 0.103 0.054 
20 1.000 0.819 0.729 0.606 0.663 0.063 0.253 0.058 
40 1.000 0.872 0.788 0.646 0.675 0.063 0.416 0.060 

 

Table 2 gives the values for the AUC based on Dataset A when the number of false 

positives is 5. For all d, the AUC from DFW is 1 while some of the other methods have 

very small values, especially for small d.  Table 3 gives AUC values for d=1 of all 

methods when the false positives are 2, 5, 10, 20 and 40.  The AUC from DFW 

consistently obtains the best value of 1. Based on Table 2 and 3, it is clear that our new 

summarization method, DFW, outperforms all other methods for all d. 

Figure 2 is the ROC curve plot of Dataset B for d=1 when the number of false 

positives is 10.  Sixty-four spikeins are used, instead of the original 42 (McGee and 

Chen, 2006).  From the plot, the DFW method can obtain all of the true positives with a 

few false positive (less than 2 on average) and the curve from this method is above any 

other curves of others. For d equals to 2, 3, … , 7, we get almost similar plots for ROC 

curves (not shown here). In other words, in all situations, our new method, DFW 

outperforms others. 

Table 4 gives the comparison results based on Dataset B when the number of false 

positives is set to be 20. Again, our new method DFW, can obtain all the true positives 

with a small number of false positives. For d = 2,3,…,7, DFW gives similar results. Table 



5 gives the average AUC when d=1 and the numbers of false positives are 5, 10, 20, 50, 

100.   DFW always obtains a value of AUC close to 1 while some of the other methods 

obtain very small AUC values.  

 
Figure 2. ROC plots based on Dataset B (with 64 spike-ins) when d=1 and number of false 
positives is 10.  DFW obtains all the true positives with a few false positives. 

Table 4  AUC comparison for Dataset B (#FP=10) 

d DFW FARMS GCRMA RMA RMA-noBG MAS 5 MBEI PLIER

1 0.986 0.841 0.514 0.550 0.607 0.047 0.155 0.070 
2 0.987 0.864 0.589 0.674 0.635 0.106 0.363 0.197 
3 0.993 0.932 0.658 0.806 0.815 0.276 0.484 0.434 
4 0.997 0.947 0.783 0.884 0.915 0.514 0.649 0.658 
5 0.999 0.970 0.934 0.948 0.961 0.760 0.762 0.822 
6 1.000 0.978 0.955 0.965 0.969 0.9849 0.810 0.887 
7 1.000 0.982 0.976 0.982 0.983 0.907 0.836 0.912 

 

 

 



Table 5. AUC from Dataset B for given numbers of false positives when d=1 
 

# FP DFW FARMS GC- 
RMA 

RMA RMA- 
noBG 

MAS 5 MBEI PLIER

5 0.971 0.749 0.453 0.493 0.555 0.047 0.079 0.060 
10 0.986 0.841 0.514 0.550 0.607 0.047 0.155 0.070 
20 0.993 0.901 0.554 0.600 0.640 0.047 0.286 0.085 
50 0.997 0.950 0.589 0.657 0.675 0.047 0.451 0.154 

100 0.999 0.976 0.613 0.702 0.698 0.057 0.536 0.248 
 

Table 6.  AUC comparison for Dataset C 
 

FC Spike- 
ins 

DFW FARMS GCRMA RMA RMA-
noBG 

MAS 5 MBEI PLIER

1.2 172 
(167) 

0.900 0.878 0.860 0.863 0.888 0.534 0.814 0.115

1.5 182 
(169) 

0.682 0.659 0.743 0.486 0.595 0.307 0.406 0.100

1.7 181 
(179) 

0.623 0.640 0.786 0.449 0.567 0.153 0.459 .0321

2 146 
(139) 

0.832 0.783 0.886 0.746 0.799 0.213 0.761 0.524

2.5 192 
(182) 

0.902 0.879 0.920 0.848 0.880 0.306 0.872 0.619

3 97 
(93) 

0.965 0.948 0.962 0.928 0.947 0.423 0.946 0.734

3.5 184 
(184) 

0.948 0.941 0.961 0.940 0.944 0.596 0.942 0.850

4.0 177 
(177) 

0.986 0.975 0.985 0.978 0.982 0.633 0.988 0.878

all 1331 0.846 0.829 0.882 0.768 0.816 0.394 0.761 0.504
 

Table 6 is the comparison result based on GoldenSpike dataset (Dataset C).  To 

calculate the AUC, we use the number of false positives necessary to obtain all of the true 

positives.  The AUC values are then normalized so that the numbers are comparable 

among methods.  The first column is the values of fold changes (spikein group vs. 

control group) and the second column gives the number of spikeins that have 

corresponding fold changes given in column 1.  Some of the spikeins do not have the 

exact fold changes listed.  For example, there are 167 out of 172 spikeins that have exact 



fold change of 1.2 but 5 of the 172 have fold changes greater than 1 but less than 1.2.  

Choe et al. (2005) explain this phenomenon in their paper.  The values in the parenthesis 

of column 2 are the numbers of spikeins that have the exact fold changes indicated in 

column 1.  

The first two largest values of AUC for each category of spikeins are highlighted in 

Table 6.  We see that DFW and GCRMA almost always give the highest AUC values.  

Usually GCRMA has slightly larger values of the AUC than does DFW.  This may be 

due to the fact that there is no background correction employed in the current 

implementation of DFW.  Dataset C was created to mimic real data as closely as 

possible; therefore, it is noisier than the Latin Square data sets, and probably requires 

more background correction and normalization.  Only minimal background correction 

and normalization is required for the Latin Square spikein data sets since they are 

designed to have little background noise. 

 
Table 7: CPU time (in seconds) for various methods on the three spike-in data sets (the best 
times for each method are marked with *) 

 
Method Dataset A Dataset B  Dataset C  

RMA 361 400 152 

RMA-noBG 365 366 148 

GCRMA 240 221 76 

MAS 5.0 1118 1116 131 

PLIER 324 241 17* 

MBEI 847 272 272 

FARMS 153 205 283 

DFW 121* 150* 69 
  



CPU time for each method, as given on a PowerMac G5 running R Cocoa GUI (Iacus 

and Urbanek, 2005) with R version 2.2.0, is given in Table 7. The computational time for 

DFW is much less than the other methods, such as RMA, MBEI, FARMS and PLIER. 

This is because DFW is not an iterative method.  MBEI and FARMS, for example, 

require iterative algorithms to estimate the necessary model parameters.  In the case of 

the GoldenSpike data, PLIER is faster than DFW.  However, DFW is the second-fastest 

method, and it gives much more accurate results.  In addition, it should be noted that 

MBEI does not always converge, even for the Latin Square data sets, and is particularly 

unsuitable for the GoldenSpike data set due to the small number of arrays. 

4 CONCLUSION 

We have proposed a new nonparametric summarization technique, distribution free 

weighted fold change based method (DFW).  This method is compared with currently 

commonly used methods, based on the publicly available spikein data sets. Our new 

method outperforms others when sensitivity and specificity are considered 

simultaneously. In addition, DFW requires less computational time compared with 

others. 
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