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SUMMARY 

Bandwidth selection is a critical issue in local linear regression.  A bandwidth can be chosen 
to remain constant or to vary with the predictor variable.  A constant bandwidth performs poorly 
whenever the unknown curve has complicated structure.  To capture the complexity of such curves a 
variable bandwidth is needed.  A fully variable bandwidth requires the estimation of the same number 
of bandwidths as the number of data points. A piecewise-constant bandwidth is recommended as a 
compromise.  Piecewise-constant bandwidth selection involves the partition of the predictor interval 
and the estimation of a bandwidth in each sub-interval.  Existing variable bandwidth selection 
methods all disregard the underlying structure and use equal-in-length partitions.  In this article, we 
develop a tree-based approach for local linear regression.  The new methodology recursively finds a 
partition of the predictor interval based on the structure of the unknown response mean and 
simultaneously estimates piecewise constant bandwidths.  The recursive partitioning is based on an 
improved version of the well-known Akaike information criterion (AIC).  A partition-adjusted 
version of the same criterion is used to determine the right-sized tree.  Simulation results show that 
this flexible method compares favorably with equal-in-length variable bandwidth selection 
techniques. 

 
1. INTRODUCTION 

 
Regression is one of the most widely used statistical methods to explore the association 

between dependent and independent variables.  More specifically, the goal of regression analysis is to 
estimate the conditional mean structure of a response Y for given values of a predictor X, 

 
m (x) = E (Y | X = x),         (1.1) 

 
where little is known about the underlying regression function m(.).  Classical regression, linear or 
nonlinear, requires the analyst to make a subjective choice of the global parametric form of the 
regression function, which in practice is almost never known.   

Nonparametric regression on the other hand is a set of methods that let the data produce a 
suitable curve to describe the relationship, instead of being limited to a certain functional form.  Fan 
and Gijbels (1996) call it the “data analytic approach” to emphasize its data-driven nature.  One 
popular class of nonparametric regression methods is known as kernel smoothers. They smooth 
scatter plots by estimating regression functions. Many useful techniques have been proposed for 
univariate smoothing. See Fan (2000) for a survey for example. Different techniques have their own 
different merits.  Chapter 2 of Fan and Gijbels (1996) gives a detailed overview of these techniques.  
There are several relevant chapters in Hastie, Tibshirani & Friedman (2001) as well. 

The focus of this paper is on univariate local polynomial regression and in particular on local 
linear regression.  Local polynomial regression applies regression techniques locally to a strip of data 



around each regression point.  Therefore it does not require knowledge of the global parametric form 
of the regression function.   

Let us now consider the estimation of m (x0) at a prediction point x0, given paired observations 
from an assumed model  

 
  Yi = m (xi) + εi,  i = 1, …, n,   εi ~ i.i.d.  F (0,σ

2
),       (1.2) 

 
where F (.) is some CDF with mean 0 and constant variance, σ

2
.  A polynomial of degree p is fit 

locally by a weighted-least-squares regression criterion  
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where K is the kernel function and h is the bandwidth.  For example fitting m (x0) with a local 
constant (p = 0) results in the weighted average estimate 
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where w (xi –x0) = K (xi –x0, h (xi)), and details of both K and h will be given in Section 2. 

Figure 1.1 demonstrates the local constant fit of a sample from a simulated function, m5, at 
prediction point x0=2/3, where , x ∈ [0, 1], is one of the six 
test functions that we use in our simulations, the details of which are in Section 4.1.  We use this 
example to illustrate two key concepts associated with the local polynomial regression. The weights 
are controlled by a selected kernel function K(.), centered at x

)34(26.4)( 25.295.1975.9
5
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0 as indicated by the red curve in the 
figure,  and the size of the neighborhood is determined by a bandwidth h,  and 2h is the width of the 
green band.  Any data points that fall in the green band contribute to the weighted average for m (x0).  
We will examine these two concepts further..   

For curve estimation a bandwidth can be chosen to remain constant or to vary with the 
predictor variable.  The global bandwidth approach uses the same bandwidth throughout the range of 
x..  This does not account for the structure of the relationship, e.g., for varying degrees of curvature. 
One hopes for a reasonable compromise to reveal enough of the mean structure without going to the 
extreme of interpolation.  But this compromise is often not realized when the underlying regression 
function has a complicated structure, as in Figure 1.2.  This global bandwidth results in 
oversmoothing for the steep curve to the left.  Oversmoothing under-parameterizes this part of the 
regression function and causes a large modeling bias, while wiggly estimates to the right indicate 
undersmoothing for the nearly linear part.  Undersmoothing over-parameterizes the unknown 
function and results in noisy estimates.   
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Figure 1.1.  Example: Fitting a local constant – weighted average 

n =100, x0 = 2/3, bandwidth h = 0.1, and using biweight kernel (in red) 
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Figure 1.2. Same Example as Figure 1.1: Local constants fit with global bandwidth. The 

windows and fits are displayed at values of x0 = (0.05, 0.27, 0.67) 
 

A variable bandwidth approach, on the other hand, allows the bandwidth to vary as a function 
of each predictor’s value, xi..  The purpose  is to account for changes in the structure or curvature of 
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the function. Hence local linear regression can handle spatially inhomogeneous curves.   However, a 
fully variable bandwidth requires the estimation of the same number of bandwidths as the number of 
data points. Thus a piecewise-constant bandwidth is recommended as a compromise.  Figure 1.3 
shows the results of local linear regression of the same function with piecewise constant bandwidths. 
The oversmoothing in the steep curve to the left is resolved by using smaller bandwidths and the 
undersmoothing of the linear trend to the right is resolved by using larger bandwidths. 

The notation used in Figure 1.3 deserves some explanation since it will be used throughout 
the rest of the paper.  The orange blocks at the base of the chart show the piecewise constant 
bandwidths corresponding to the locations of the predictor points.  The heights of the blocks above 
the x-axis represent the relative magnitudes of the bandwidths used in the local linear regression.  The 
true mean function m(x) is plotted as the green line and the estimated regression line is in red.   
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Figure 1.3. Example 1: Local Linear Regression of m5 with Variable Bandwidths 

 
Piecewise-constant bandwidth selection involves partitioning  the predictor interval and 

estimating bandwidths in each sub-interval of the partition.  Existing variable bandwidth selection 
methods all disregard the underlying structure and use equal-in-length partitions. See, for example, 
Fan & Gijbels (1996) and Pitblado (2000). 

In this article, we develop a tree-based approach for local linear regression.  The new 
methodology recursively partitions the predictor interval based on the structure of the data and 
simultaneously estimates the piecewise constant bandwidths.  Consider the recursive partitioning 
process as growing a binary tree.  Each tree node corresponds to a subinterval of the predictor 
variable.  Starting with a global bandwidth in the predictor interval (the root), the procedure first 
splits the predictor interval into two children nodes.  Instead of splitting the interval equally in length, 
the position of the split and the bandwidths in the two children intervals is selected to minimize an 
improved version of the Akaike information criterion (AICC), which is defined in Section 2.2.  The 
procedure then continues to grow the tree by recursively partitioning the two children intervals, and 
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then their children, and so forth.  When the tree is fully grown based on the stopping rule, a partition-
adjusted version of the AICC criterion is used as the cost-complexity measure to prune or recombine 
some of the tree nodes to produce the right-sized tree.  This new regression estimator may be denoted 
by RPVB, for Recursively Partitioned Variable Bandwidths.  

Simulation results show that this flexible method compares favorably to other fixed equal-in-
length variable bandwidth selection techniques.  Comparison of the performance of this method and 
the equal-in-length partition-based method introduced in Fan and Gijbels (1995) use six simulation 
functions.  A detailed description of RPVB is in Section 3.  The three main advantages of our 
proposed method are summarized below.  

Recursive partitioning based on the AICC criterion provides a data-driven algorithm to 
automatically decide the number of partitions, the location of the splits in the partitions, as well as the 
estimation of piecewise-constant bandwidths based on the structure of the underlying curve.  It 
consistently results in fewer partitions than the equal-length methods while achieving similar MSE.  
For exampleRPVB chooses a global bandwidth for function m1, which is a quadratic function with 
constant second derivative (curvature does not change).  This is quite consistent even when we 
introduce large additive error variance. 

Consequently, our method successfully captures some fine structure that some other variable 
bandwidth methods miss.  Simulation function m3 serves as a good example, 

, x ∈ [0, 1], another of the six test functions.  Our 
method successfully captures the sine wave in the middle, which is completely smoothed out by the 
Fully Variable Bandwidths (FVB) method of Fan & Gijbels (1995) (F&G). We will discuss these 
simulation results in more detail in Section 4. See for example Figure 4.2. 

)()}3/1(30sin{}1{5 ]3/2,3/1[
1)4.62.3(
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Another advantage of our method is that it leads to smoother estimated curves.  This is 
because our partition and bandwidths estimation are based on a bias corrected version of AIC that 
imposes a “roughness” penalty, while F&G is based solely on a residual squares criterion (RSC). 

Also, this method can be used directly for local polynomial fitting of any order and can be 
easily modified to estimate the derivatives.  It can also be extended to multiple covariate situations in 
the same way that the regression tree is used for handling multivariate cases.   

In Section 2 we discuss the bandwidth selection problem and the AICC criterion.  In Section 3 
we discuss the details of the recursive partition method and implementation.  The simulation 
experimental design and results will be presented in Section 4.  Conclusions and discussions are in 
Section 5.   

 
2. VARIABLE BANDWIDTH SELECTION USING AICC  

IN LOCAL LINEAR REGRESSION 
 
In this section we take a closer look at local linear regression (p = 1).  The local constant fit 

was discussed in Section 1 just as a simple illustration of local polynomial regression.  Fan & Gijbels 
(1996) argue that local linear regression (p = 1) is generally superior to a local constant fit.  Local 
linear regression solves for β0 and β1 to minimize 

 

SS = ∑ {y
i

i – β0(x0) – β1(x0) (xi – x0)}2K (xi – x0, h (xi)).            (2.1) 
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The estimated regression curve at a point x in the neighborhood of x0 is 
 

))((ˆ)(ˆ)(ˆ 00100 xxxxxm −+= ββ .         (2.2) 
 
In the previous section we briefly introduced two key concepts, kernel functions and 

bandwidths.  A kernel function is a unimodal, symmetric around 0, nonnegative function denoted by 
 

      K (t, h)  = h-1 K0(h-1 t),          (2.3) 
where K0 integrates to 1 and h > 0.  For example the biweight kernel is given by 
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A kernel function does not have to have compact support, as long as it decays to eliminate the 

influence of remote x values.  There are many choices of kernel functions.  Some commonly used 
kernel functions include biweight, Epanechnikov, cosine, Laplace, normal, triangular, and uniform.  
It has been shown that (see for example Theorem 3.4 in Fan & Gijbels (1996)), the Epanechnikov 
kernel  
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is the optimal kernel in the sense that it minimizes the asymptotic MSE and MISE over all 
nonnegative, symmetric, and Lipschitz continuous functions when theoretically optimal bandwidths 
are used.  The biweight kernel in (2.4) resolves the non-differentiability of the Epanechnikov kernel at 
u = ± 1 with little sacrifice to the optimality of the latter.  Therefore we use the biweight kernel in all 
our simulations.  In practice, the kernel function in local polynomial regression works by replacing t 
by (xi – x0), so that the weight of a data point xi is determined by its distance from the prediction 
point, x0.  

Most nonparametric techniques involve selection of smoothing parameters.  Bandwidth, 
commonly denoted by h, controls the size of the local neighborhood of the prediction point.  The 
selection of bandwidth is a bias and variance tradeoff.  Smaller h yields smaller bias, larger variance 
of estimates, and less smoothing; while larger h is associated with larger bias, smaller variance in 
estimates, and more smoothing.  For detailed derivations and discussion, please refer to Fan & 
Gijbels (1996).  Another issue in local polynomial fitting is the choice of the order of the local 
polynomial.  Since the modeling bias is primarily controlled by the bandwidth, this issue is less 
crucial and is not considered further in this paper..  

The choice of bandwidth determines the complexity of the model.  A bandwidth h = 0 results 
in interpolating the data and hence leads to the most complex model.  A bandwidth approaching +∞ 
corresponds to fitting classical linear regression, the simplest model.   

There are many published methods for global bandwidth selection.  They are often referred in 
two categories, namely classical methods and plug-in methods.  Classical methods are based 
primarily on information criteria and cross validation, while plug-in techniques involve the estimation 
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and substitution of the unknown quantities in the theoretical expression that minimizes Asymptotic 
Mean Integrated Squared Error (AMISE).  See Loader (1999) for the comparisons of these two 
methods.  Ideal theoretical choices of this optimal bandwidth are easy to obtain as shown, for 
example, in Fan & Gijbels (1996).  However this theoretical choice is not directly usable in practice 
because it depends on unknown quantities.  Finding a practical procedure for selecting the bandwidth 
parameters is one of the most challenging tasks.  This is the main focus of this paper.  In the next 
section we address this issue in some detail. 

 
2.1 Variable Bandwidth Selection 
 A variable bandwidth is introduced to allow for different degrees of smoothing, 

resulting in a possible reduction of the bias in peaked regions and of the variance in flat regions.  This 
enhances the flexibility of the local polynomial fitting so that it can adapt to spatially inhomogeneous 
curves.   

A fully variable bandwidth requires the estimation of as many smoothing parameters as data 
points, which increases the model complexity.  Such estimates of the optimal bandwidth function are 
not very stable and may require smoothing themselves.  This extra step may reduce their adaptability 
to curvature.  Piecewise-constant bandwidths have proven to be a reasonable compromise.  Adams 
(1998) showed that piecewise constant bandwidths can capture the structure of reasonably complex 
mean functions with far fewer parameters than the fully variable bandwidths.   

For a variable bandwidth the distinction should be made between a local variable bandwidth 
versus a global variable bandwidth.  A local bandwidth h(x0) varies with the estimation point, 
whereas a global variable bandwidth changes with the data points, h (xi) as indicated in (2.1).  The 
distinction in the case of density estimation is well established by Jones (1990).  The theoretical 
choice of a global variable bandwidth is given in Fan and Gijbels (1992) and that for local variable 
bandwidth in Fan and Gijbels (1996).  Adams (1998) pointed out that the piecewise-constant local 
variable bandwidth results in discontinuous regression estimates.  This is a major flaw, because m(x) 
is assumed to be continuous.  On the other hand the piecewise-constant global variable bandwidth 
does not have this problem.  Therefore it is preferred and will be used in our method.  Subsequently, 
when we use the term “variable bandwidth”, we mean piecewise-constant global variable bandwidth. 

Piecewise-constant bandwidth selection involves the partition of the predictor interval and the 
estimation of a bandwidth in each sub-interval of the partition.  Suppose the interval of observed 

predictor, x ∈ I, is partitioned into J disjoint subintervals denoted by Ij, j =1, … J, i.e.,  and j

J

j
II

1=
= U

JkjkjII kj ,...,1,,, =≠= φI .  J is called the partition number, as described in Pitblado (2000).  
Given a fixed bandwidth hj within each subinterval Ij, the piecewise constant bandwidth function can 
then be represented as  

 

∑
=

=
J

j
Ij xhxh

j
1

)()( δ ,          (2.6) 

where δI  is the indicator function, which = 1 if x ∈ I and 0 otherwise. 
When piecewise constant bandwidths are used, the local linear (p=1) regression estimate of m 

(x0), the mean function at a given prediction point x0, involves calculating the intercept β0 and slope 
β1, which minimize a weighted sum of squared deviations, such as 
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It is convenient to use matrix and vector notation to show the calculations in solving for the 

intercept and slope in (2.7).  They are given in Pitblado (2000).  We include them here for 
completeness.   Let yt = (y1,…, yn) and xt = (x1,…, xn) be the vectors of the observed responses and 
corresponding predictors, where the superscript t denotes matrix transpose. The model in (1.5) can be 
rewritten as  

 
   y = m + ε,           (2.8) 
 

where mt = {m(x1),…, m(xn)}, E(ε) = 0, Var(ε) = σ2In, and In denotes the n-dimensional identity 
matrix.  The design matrix for local linear estimation of m(x0) is  

 

X(x0) =  = [1
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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−

−

0

01

1

1

xx

xx

n

MM n    x - x01n],       (2.9) 

where 1n denotes an n-dimensional vector of ones.  The weight matrix is denoted by  
 

W(x0, hp) = diag{K(x1 - x0, hp(x1)), … , K(xn - x0, hp (xn))}.    (2.10) 
 
The weighted sum of squares to minimize can be written  
 

SS = {y - X (x0) β} t W (x0, hp) {y - X (x0) β},     (2.11) 
 

where βt = (β0, β1).  The weighted-least-squares estimates of the local intercept and slope, denoted by 
(xβ̂ 0, hp),  are  

 
),(ˆ

0 phxβ =  {X (x0)t W (x0, hp) X (x0)}-1 X (x0)t W (x0, hp) y.    (2.12) 
 
Hence the estimate of m(x0) is  
 

m̂ (x0, ph ) = = {X (x),(ˆ
01 p

t hxu β tu1 0) t W (x0, hp) X(x0)}-1 X(x0)t W(x0, hp) y,   (2.13) 
 

where ui is a unit vector along the ith coordinate axis.  Estimating m, the vector of  regression 
functions at each of the observed predictors, and denoting it by , we have )(ˆ phm
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where H( ) is a smoother (or hat) matrix.  This matrix will be used in Section 2.2 for the definition 
of the information criterion AIC

ph
C.  

Several data-driven methods have been developed.  Cross-validation (Allen 1974; Stone 
1974; Rudemo 1982) and generalized cross-validation (Wahba, 1977) are generally applicable 
methods.  Yet, their resulting bandwidths can vary substantially (Hall and Johnstone, 1992).  Plug-in 
methods tend to be more stable.  In addition to the methods surveyed in Jones, Marron and Sheather 
(1996), the pre-asymptotic substitution method by Fan and Gijbels (1995) and the empirical-bias 
method by Ruppert (1997) provide useful alternatives.  See also Marron and Padgett (1987). 

We focus on Fan and Gijbels (1995), who proposed a data-driven bandwidth selection 
procedure for both constant and variable bandwidths with a fixed equal-in-length partition of the 
predictor interval.  Their idea is based on a residual squares criterion (RSC) along with good 
approximations for the bias and variance of the estimators.  Through a wealth of test examples, they 
successfully demonstrate that local polynomial regression with their data-driven variable bandwidths 
has spatial adaptation properties that are similar to wavelets.  Therefore, we use their method for 
comparison and show that our method outperforms theirs.  Their method to be denoted by FVB stands 
for Fully Variable Bandwidths. 

More recently, Pitblado (2000) proposed a data-driven methodology for choosing variable 
bandwidths that uses an adjusted form of the Akaike Information Criterion (AICC).  This criterion, 
described in Section 2.2, yields promising estimates of piecewise constant bandwidths for fixed 
equal-in-length partitions.  It may also be able to choose a parsimonious partition number.   

However, both Fan & Gijbels (1995) and Pitblado (2000) are limited to equal-in-length 
partitions, thereby disregarding the underlying structure.  It is reasonable to argue that the bandwidth 
should remain constant unless the curvature changes noticeably.  This not only will lead to more 
consistent estimates in the area with homogeneous curvature, but also will result in fewer smoothing 
parameters and hence further reduces the model complexity.  A data-based technique to automatically 
find such a partition in accordance with the underlying structure given the random errors in the 
observed data is challenging but highly desirable.  We will show that a tree-based recursive 
partitioning method using adjusted forms of the AIC criterion satisfactorily resolves this problem.  
We first discuss the criterion in the next section and then how recursive partitioning is used to address 
this issue. 

 
2.2 Improved Akaike Information Criterion (AICC) 

As we mentioned, some of the classical bandwidth selection methods are based on information 
criteria.  The criterion that we are going to use is a bias-corrected version of the Akaike Information 
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Criterion (AIC).  The AIC was originally designed for parametric models as an approximately 
unbiased estimate of the expected Kullback-Leibler information.  When adopted for linear regression 
and time series models, Hurvich and Tsai (1989) showed that the bias of AIC could be quite large in 
small samples.  It leads to over-fitting, especially as the dimension of the candidate model approaches 
the sample size.  They proposed a corrected version, termed AICC, which was found to be less biased 
than AIC.  Hurvich, Simonoff, and Tsai (1998) investigated the use of AICC to choose smoothing 
parameters.  They showed that the use of AICC avoids the large variability and the tendency to 
undersmooth (compared to the actual minimizer of average squared error,) that are typical for other 
classical approaches such as generalized cross-validation or AIC.  For a more detailed derivation and 
discussion of this criterion, please refer to these papers and Pitblado (2000).   

In local linear regression, we estimate mt = (m(x1), …, m(xn)), the regression function at each 
of the observed predictors xt = (x1, …, xn), with weighted least squares.  It has been shown, see for 
example Hurvich, Simonoff and Tsai (1998), that local linear regression is a linear smoother, which 
means that , where yyhHhm pp )()(ˆ = t = (y1, …, yn) is the response vector and  is the smoother 
(or hat) matrix defined in (2.14). For simplicity, we denote  by H.  With the above notation 

)( phH
)( phH

)},({)ˆlog( 2 HtrAIC nC ψσ +=       (2.15) 
where is the mean squared error (MSE) of the residuals at the observed predictors and  2σ̂
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is the penalty function applied to the trace of the smoother matrix.  The estimate tr(H) can be 
interpreted as an effective number of parameters used in the smoothing, a measure of model 
complexity.  It reflects the “roughness” of the estimated curve.  Since the regression function is 
assumed to be smooth, there is a penalty to be imposed on the “roughness”.  As the global bandwidth 
decreases, decreases and we have less bias in the estimates, whereas the tr(H) and 2σ̂ )}({ Htrnψ  
increase as the estimated curve becomes less smooth. Pitblado (2000) demonstrated this behavior of 
AICC  with respect to the choice of the global bandwidth.  This is also the case for a variable 
bandwidth. 
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Figure 2.1. The true regression function of m2 and the local linear fit with global bandwidth 
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Figure 2.2. The true regression function of m2 and the local linear fit with variable bandwidths 
 
How do variable bandwidths, in particular piecewise constant bandwidths, help us in this 

respect?  Consider estimates using n=100 equally spaced evaluations (plus noise) of the function m2, 
which is another of the six test functions that we use in our simulations. Function 
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2 7.03.0 −−−− += xx eem , x ∈ [0, 1], is a linear combination of two normal density 

functions with different curvature.  Figure 2.1 shows the true regression function and the local linear 
fit with a global bandwidth.  The estimated curve with a global bandwidth exhibits undersmoothing 
of the left mode and oversmoothing of the right mode.  Improvement is obvious in the estimated 
curve with variable bandwidths in Figure 2.2. 

Our new method found a partition with a split at x = 0.66 and variable bandwidths hp = (h1, 
h2), where h1 = 0.074 is for the left subinterval and h2 = 0.038 is for the right subinterval.  Figure 2.3 
(i) shows AICC as a function of log(h1) and log(h2).  Apparently the criterion favors a relatively larger 
h1 and smaller h2, which reflects the higher degree of curvature to the right. Notice that AICC reaches 
its minimum at (0.074, 0.038), or (-2.6, -3.27) on the log scale, as marked by the red dot.  The trend is 
not seen in the top right panel,Figure 2.3 (ii), plot of MSE against the variable bandwidths.   

Recall that there are two components in AICC;   is the penalty for bias and )ˆlog( 2σ
)}({ Htrnψ is the penalty for “roughness”.  The bias term decreases when bandwidths get smaller  and 

reaches its minimum when both bandwidths equal zero, in which case local linear regression becomes 
interpolation. This is obvious in Figure 2.3 (ii)  On the other hand, tr(H) and )}({ Htrnψ are plotted in 
Figure 2.3 (iii) and  (iv), respectively.  Obviously, they both decrease as bandwidths get larger, where 
the estimated curve becomes smoother.   

When bandwidths are chosen to minimize AICC, it allows one to strike a balance between the 
bias and the smoothness of the regression estimates.  Therefore, it is used as the information criterion 
in our search for variable bandwidths.  For a given partition, we select the variable bandwidths that 
minimize the AICC.  Moreover, we will show how recursive partitioning is used to resolve the 
challenging problem of finding the best partition tree for the variable bandwidth.  Here AICC is used 
as the cost function and a partition size adjusted version of AICC is used for minimum cost-
complexity pruning.  This will be the topic of Section 3. 
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Figure 2.3. (i) AICC, (ii) MSE, (iii) tr(H), and (iv) )}({ Htrnψ  

as functions of the variable bandwidths 
 

3. RECURSIVE PARTITIONING FOR VARIABLE BANDWIDTHS 
 

A tree–based approach is proposed here to find an appropriate partition for a piecewise-
constant bandwidth.  The predictor interval is recursively partitioned into subintervals using binary 
splits.  The resulting partition can be represented as a binary tree.  Each node of the tree represents a 
subinterval with a bandwidth to be used for the x values in that subinterval.  The bandwidths are 
estimated concurrently in the recursive partitioning process.  This procedure is not limited to equal-
in-length partitions as in Fan and Gijbels (1995) and Pitblado (2000).  Furthermore it imposes a 
penalty for too many partitions. 

Breiman et al (1984) contains a detailed introduction to tree-based methodologies for 
classification and regression. The same approach is used to estimate a piecewise-constant bandwidth, 
where the independent variable is recursively partitioned into a tree of subintervals and a different 
constant bandwidth is used in each subinterval. We grow a large tree first and then selectively prune 
(recombine) upward.  The reason is that some intermediate nodes themselves may fail to minimize 
AICC, but they provide a basis for important subsequent splits that do reduce AICC greatly because of 
adaptation to curvature change.  

Our goodness-of-split criterion is AICC .. In Figure 1.3 why should the interval [0, 1] be split 
at x = 0.19 rather than anywhere else? Similar questions arise for subsequent splits.  This is done by 
exhausting every possible split at each of the observed x values.  For example, given (xi, yi), i = 1, …, 
n.  Suppose that 5 is the minimum node size, i.e., each sub interval must have at least five 
observations.  The recursive algorithm must then evaluate the values of the goodness-of-split 
criterion at x6, x7, x8, … ,  xn-5,  and select the position where the goodness-of-split criterion is 
maximized.   

In our method the partitioning process stops when AICC cannot be improved.  There are a 
couple of differences between AICC and the common risk measures like Gini and SSE.  One is that 
AICC is not additive.  SSE is additive because the total SSE in an interval is the sum of the SSE’s in 
its subintervals, i.e.,  
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∆SSE = SSE (t) – SSE (Tt) = SSE(t)  – SSEleft(Tt) - SSEright(Tt).     (3.1) 
 
This is also the case for Gini.  In both cases the change in risk, ∆R, is always positive.  But 

this is not the case for ∆AICC, which could be negative.  This is because that AICC is not only a 
function of SSE, but also the penalty for “roughness”.  This results in ∆R possibly being negative, 
which means that a split fails to improve AICC.  So further partitioning of this node would not appear 
to be helpful. 

Another difference is that the choice of a bandwidth in a subinterval may contribute to the 
SSE throughout the entire data range.  This is because we are using a global variable bandwidth to 
eliminate the discontinuity of local variable bandwidth (recall Subsection 2.1).  Therefore, we need to 
impose a restriction on the magnitude of any bandwidth to control the influence of the bandwidth in 
distant subintervals.  We address this issue in Section 4 in discussing the implementation of this new 
RP 
VB.   

In the minimum cost-complexity pruning used in CART, the cost-complexity is defined as  
  

Rα = R(T) + α ||T||, 
 

where R(T) is the risk of a tree or a branch of a tree T, ||T|| is the size of the branch, i.e., the number of 
descendent nodes (or equivalently the number of splits), and α is the penalty imposed for each tree 
node.  CART contains a procedure to seek the smallest subtree that minimizes Rα by recursively 
cutting the weakest links.  For a detailed discussion of the procedure see Chapter 3 of Breiman et al 
(1984).   

AICC is a compact cost-complexity measure in its own right.  Recall (2.15) 
where a penalty is imposed on the roughness of the local linear regression based on the variable 
bandwidths selected.   Our new stopping rule requires a split to improve AICC at least 100C0 percent, 
i.e., 

 
   C0 > {AICC(t) – AICC(T)} / AICC(t),          (3.2) 
 

where  AICC(t)  is the AICC value calculated after a split is introduced.  Preliminary simulations show 
that the cutoff value of C0 = 0.05 is sufficient for most samples that we tested, but there are cases 
where it failed in adjusting to some of the curvature changes.  On the other hand, by choosing a 
smaller cutoff value, one grows a large tree, which tends to pick up random patterns as well.  But as 
we discussed in the previous section, it has been proven that growing a large tree at first, and then 
selectively pruning back, or recombining those unnecessary nodes can overcome this problem. 
Therefore, it is appropriate to choose a small cutoff value for C0 so as not to miss any critical splits 
and C0 = 0.01 is used in our simulation.   

However, AICC is not directly related to the size of the partition.  Hence it does not allow the 
minimum cost-complexity pruning that is recommended for the right-sized tree.  Therefore, in our 
implementation we use a small value of C0 to grow a big tree, and then use a tree-size adjusted 
version of AICC as our cost-complexity measure.  Our measure is defined as  

 



  AICP )},1||(||)({)ˆlog()( 2 −++= THtrn αψσα        (3.3) 
 

where α, and ||T|| are the unit penalty and the size of the subtree T, respectively.  We propose a 
minimum cost-complexity pruning algorithm based on AICP In the algorithm,  α0 is the maximum unit 
penalty to be imposed for nodes to be pruned.  This is a threshold which may be selected by the user. 
In the algorithm 

1−
nψ  is the inverse function of ψn defined in (2.16), specifically, 
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The implementation of our method is outlined as Algorithm 3.1. 
 

Algorithm 3.1.  Minimum cost-complexity pruning using AICP in (3.3). 
repeat 

Loop for each non-terminal node t,  
i. αmin = infinity 

ii. Calculate the AICP(t) assuming all children of t are pruned. 
iii.  )1||/(||)}())ˆlog()(({)( 21 −−−= − THtrtAICt pn σψα
iv.  If 0 < α (t) < αmin,,  

αmin = α (t) 
v. end if 

end loop 
if  αmin < α0

Prune all children of t = argmin(αmin), the branch that is 
associated with  αmin.

end if 
while αmin < α0.

 
4. SIMULATION RESULTS 

 
4.1.  Simulation Functions and Setup  
Pitblado (2000) uses five simulation functions to evaluate his equal-in-length variable 

bandwidth selection methods.  He names these m1 through m5.  These functions range from a 
quadratic function m1, which has constant second derivative and hence curvature does not change, to 
m5, which mimics the motorcycle impact data with linear combinations of exponential functions. The 
response of the motorcycle impact data is the acceleration (y) of the head of a motorcycle passenger 
during impact over time (x), see for example Fan and Gijbels (1996).  These functions are also used 
by Adams (1998), and m2 appears in Hurvich, Simonoff, and Tsai (1998).  We have shown m2, m3, 
and m5 in previous examples and graph the other functions in this section.  In addition we l add one 
more function and name it m6.  It also appears in Fan and Gijbels (1995) and helps compare our 
method with their FVB method.  For completeness the functions are defined in Table 4.1 and plotted 
in Figure 4.1.  

The ranges of the respective mean functions, denoted by Rm, are also given in Table 4.1 
(adapted from Pitblado (2000)).  However, we scale the domains of the mean functions, the range of 
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x to be in the same interval [0, 1], so that the bandwidths we select are comparable among the 
functions as well.  This means that the same bandwidth covers the same number of point pairs for 
samples of the same size from all of the six functions.   

As discussed in Pitblado (2000), all these mean functions except m1 have varying degrees of 
curvature, which is a function of their corresponding second derivatives.  Some of them like m5 have 
large spatial variability, which implies extensive curvature changes.  Function m1 has no spatial 
variability since , a constant.  So a global bandwidth is most appropriate for m2)(1 −=′′ xm 1.  
Therefore, it serves as a good test of the algorithms for overfitting.  The function m2 may require two 
to three bandwidth partitions since it is a linear combination of two different normal densities.  A 
partition of three is most appropriate for m3 and m4 to model the sine wave and the normal density in 
the middle, respectively.  On the other hand, m5 and m6 may require more partitions.   They do not 
have the clear-cut patterns of the first four functions.  We will show how the proposed RPVB 
algorithm will automatically find a sensible partition for all of these functions in the presence of 
varying amounts of random error.   
It is worth mentioning that the proposed RPVB method minimizes AICC by balancing the residual 
sum of squares and the smoothness of the regression.  Specifically, for m1, where a global bandwidth 
is most appropriate, a good result is achieved by trading some roughness for smaller variance.  For 
m3, the variance is a little larger for the variable bandwidth in order to capture the sine wave in the 
middle.  For m3, m4, m5, and m6, both SSE and tr(H) are smaller for RPVB due to the fact that variable 
bandwidth captures the changes of curvature by varying the bandwidth accordingly.  All of these 
results are accomplished with a  completely data-driven method. 

 
 

Table 4.1.  Simulation functions 
m1 (x) = x (1 – x), x ∈ [0, 1], Rm = 0.25 
m2 (x) =  .3 exp{ -64(x – .25)2 } + .7 exp{ -256(x - .75)2 }, x ∈ [0, 1] , Rm = 0.74 
m3 (x) =  5 { 1 + exp{ 3.2 – 6.4x) }-1 + sin{ 30π(x – 1/3) }δ[1/3, 2/3](x), x ∈ [0, 1] , Rm = 4.60 
m4 (x) =  2 (2x – 1) + 2 exp {-40 (2 x - 1)2}, x ∈ [0, 1] ,  Rm = 4.00 
m5 (x) =  4.26 { exp {-9.75 x} – 4 exp{-19.5 x} + 3 exp{-29.25 x} }, x ∈ [0, 1] , Rm = 1.30 
m6 (x) =  sin (2x) + 2 exp (-16x2), x ∈ [0, 1] ,  Rm = 3.03 
 
We use FVB as the competing method for the performance of our new RPVB. It represents the 

class of equal-in-length methods with published results.  It has the necessary flexibility for capturing 
complicated shapes and curves. The authors argue that their method has spatial adaptation properties 
that are similar to wavelets.  Also Professor Fan provided us with the software to calculate FVB 
estimates for our simulation, for which we acknowledge our deep appreciation. 

The simulation takes the following steps: First M = 400 Monte Carlo replications 
independently for each function. Pilot tests at M= 100 indicate that the standard errors would be 
sufficiently small at M = 400. Then for each Monte Carlo run, sample sizes of n = 50 and 100 are 
used. Because RPVB is computationally intensive, larger sample sizes are not used. The equally 
spaced predictor points (x1, …, xn) are also used as the estimation points. The standard deviations of 
the normal error terms are 5%, 15%, and 20% Rm, the range of the corresponding mean function.  

In the simulation, AICP is our cost-complexity measure. Initial tree growing stops when a split 
fails to reduce AICC  by C0 = 0.01, or an interval includes only 5 or fewer data points.  The stopping 
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rule for tree pruning is α0 = 1.0, where α0 is the maximum per-node penalty for a node to be pruned as 
described in Section 3.3.   

4.2.  Minimization Consideration  
One successful feature of RPVB is the method for minimization of AICC in both the tree 

growing and the tree pruning processes.  For each candidate split of an interval, we search for the 
bandwidths (h1, h2) for the two subintervals generated by the split that minimize AICC, while holding 
the bandwidths in all other intervals constant.  Since this optimization is done for all candidate splits, 
it has a big impact on the stability and speed of this new method.  We investigated two completely 
different approaches.  

One approach uses one of the conventional numerical optimization routines, specifically the 
Downhill Simplex algorithm in multidimensions.  For a detailed discussion of this method, see §10.4 
of Press, et al.  (1992).  This method requires only function evaluations not derivatives.  
The AICC function of the h’s, which must be minimized, has a very complicated form.  Hence such 
numerical methods for finding a minimum do not work well.  Newton-Raphson type methods do not 
always succeed in finding a minimum, not to mention not finding the true global minimum.  Recall 
that the criterion value is based on estimation for all predictor values. Failure at a single point not 
only means the failure in finding the split, but also the whole recursive partitioning  process.     A 
feasible  alternative  was  two- dimensional  grid  of  points.    
In each dimension, those grid proposed in Fan and Gijbels (1995) for the one-dimensional case, 
which we extend into two dimensions to serve our purposes. This method is to compare AICC values 
at a finite points are set to be of geometric type, i.e., hj = dj hmin, where hmin denotes the first grid 
point and d is the grid spacing.  Suppose we want to minimize AICC for (h(left), h(right)) in a [hmin, 
hmax]×[hmin, hmax] region.  Each of the two h’s starts from hmin, are inflated separately by a factor d, 
and the AICC values calculated at the full array of grid points.  

Choose the minimizer of AICC as the grid point having the smallest computed AICC value.  
The advantage of this method is that it is stable. One always finds a minimum or a solution that is 
close enough to the minimum. This is very important for the success and credibility of our 
simulation. The disadvantage is that it is much slower than the Newton-Raphson type methods in our 
two-dimensional case.   

Fan and Gijbels (1995) use hmin = (X(n) – X(1)) / n,  hmax = (X(n) – X(1)) / 2, and d = 1.1.  Using 
the same settings in our simulation, hmin = 0.01 and hmax = 0.5, we need 422, or 1764 evaluations for 
each minimization.  This is quite slow.  So in our simulation, we use hmin = 3 (X(n) – X(1)) / n, hmax = 
(X(n) – X(1)) / 4.  The number of evaluations needed for each optimization reduces to 232, or 529. 
These approximations reduce the adaptability of our proposed method.  However, we see later in this 
section that our method still compares favorably to the FVB method.   
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Figure 4.1.  Plots of Simulation Functions 
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4.3.  Performance Comparison Criteria 
 In this section we define two measures for comparison. The familiar Relative 

Efficiency (RE) is a global measure.  Mean Absolute Difference Ratio (MADR) is introduced to 
compare the local performance at a given estimation point of interest.  Unless otherwise specified we 
use a level of α=0.05 to test whether RPVB performs significantly different from FVB, i.e. H0: θ = 1, 
where θ is either RE or MADR.   

4.3.1. Global comparison measure - RE 
Relative Efficiency (RE) is a conventional measure to compare the overall performance of two 

smoothing techniques.  For each random sample j = 1, 2, …, M, we estimate mt = (m(x1), …, m(xn)), 
the regression function at each of the observed predictors xt = (x1, …, xn).  We define Mean Squared 
Residuals (MSR) as  
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where  denotes the estimated mean at x)(ˆ ij xm i for sample j.  To compare the performance of two 
methods, say RPVB and FVB, the relative efficiency (RE) of the two methods is defined as the ratio 
of the corresponding MSR, i.e.,  
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This is our measure for global performance. A RE less than 1 (or 100%) indicates that RPVB 

compares favorably to FVB. The smaller RE is, the more superior RPVB is relative to FVB. 
4.3.2. Local comparison measure - MADR 
With any smoothing technique it is important to investigate its performance with respect to 

oversmoothing.  However, relative efficiency is not helpful in this regard.  This can be achieved by 
comparing the two methods at local minima or maxima, where such oversmoothing occurs.  In 
Section 4.5 we select one such point from each simulation function to do this comparison.   We 
defined a statistic for this purpose,  the Mean Absolute Difference Ratio (MADR).  Suppose we want 
to compare the two methods at a mode x0 based on m Monte Carlo samples. Let , , 

and  denote the true mean, RPVB estimate for sample j, and FVB estimate for sample j at x

)( 0xm )(ˆ 0xmRPVB
j
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j 0, 

respectively. Then MADR is defined by  
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which measures the relative closeness of the estimates to the true mean at a given peak or valley.  
MADR like RE is a ratio statistic.  If it is significantly less than 1, we have evidence to say that RPVB 
compares favorably to FVB.  Another comparison that should be conducted is the undersmoothing, 
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but there is no conventional measure for this purpose.  However, RPVB uses AICC
 as the bandwidth 

selection criterion, which has the built-in “roughness” penalty.  FVB on the other hand only exploits 
residual sum of squares, which estimates the local mean-squared error..  Therefore, RPVB is expected 
to produce smoother estimates than FVB.  This is substantiated by visual inspection of the plots of 
their estimated curves.  

4.4.  Overall Comparison of RPVB versus FVB  
 In this section we present one set of results for both RPVB and FVB with the six 

simulation functions in Section 4.1.  The additive error standard deviation is 5% of the respective 
range of the mean functions.  Sample size is n = 100, and M = 400 independent samples were 
analyzed for each function.  Minimum and maximum bandwidths are set to be 0.03 and 0.25, 
respectively.  Tables4.2 shows the relative efficiency of the two methods.  The standard errors (s.e.) 
of the ratios in (4.2) are based on the sample variances and covariances of the 400 pairs of inner sums 
in (4.1).  

 
Table 4.2. Relative Efficiency of RPVB to FVB. Each based on M = 400 Monte Carlo 

simulations, sample size n = 100, bandwidth h > 0.03. 
 

Function MSR of FVB MSR of RPVB RE s.e. of RE Mean (med) partition 
m1 0.0000157 0.0000164 1.043 0.0223 1.07 (1) 
m2 0.0003138 0.0002938 0.936 0.0062 2.21 (2) 
m3 0.1680993 0.0464788 0.277 0.0025 3.29 (3) 
m4 0.0073811 0.0068286 0.925 0.0099 3.24 (3) 
m5 0.0012078 0.0009767 0.809 0.0058 3.02 (3) 
m6 0.0053930 0.0050313 0.933 0.0091 3.58 (3) 

 
For all six sample functions, except m1, the RE are significantly less than 1 (at 95% 

confidence level), which implies that RPVB is preferred to FVB.  RE is 1.043 in the case of m1, which 
is not significantly greater than 1 due to the large variance.  However RPVB elects to use global 
bandwidth more than 88.6% of the time with mean partition size 1.07, while FVB uses a fixed five-
interval partition.  Therefore this is expected and should not be considered as a drawback of RPVB.   

RPVB outperforms FVB significantly for m3 and m5.  For m3 FVB failed to detect the sine 
wave in the middle for 99% of the random samples while our new method detected every one of 
them. Figure 4.3 shows a typical fit. The four cases in 400 runs that FVB does detect the sine waves 
are because the sine waves in those samples are almost perfect,  meaning that essentially there was 
very little random noise.  Even in these cases however, FVB has some trouble by oversmoothing the 
sine waves and undersmoothing both left and right sides.   We examine these comparisons function 
by function in the next section.  

4.5.  Size of Partitions of RPVB 
Size of partition means the number of intervals in the partition.  In this section we analyze the 

size of partitions that RPVB yields. FVB have a fixed size of partitions. Fan & Gijbels (1995) in their 
simulation used an empirical value [n / 10 log (n)], or a constant five interval partitions in our 
simulation setting where n = 100. The number of intervals in the partition increases only with sample 
size, regardless of the data relationship.  . 
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Figure 4.2. A typical two-interval partition for m2. 

 
 
The mean and median partition sizes RPVB generated for the six functions are listed in the 

last columns of Table 4.2. We will discuss them in detail by function. 
The RPVB method in most of the samples uses a global bandwidth for function m1, the 

quadratic function with constant second derivative. This is consistent even when we introduce larger 
error.  In the case when h > 0.03, 88.61% of the samples did not even find an initial split that 
improves the AICC by 1%.  Some of those that did were also pruned all the way back.  Investigation 
of those samples that did use variable bandwidths reveals that they form clear random patterns that do 
appear to change in curvature and hence the choice of variable bandwidths is sensible. 

A two-interval partition is appropriate for m2, one for each mode. A third interval for the 
transition area in the middle is also justifiable. This is exactly what RPVB found. The 400 Monte 
Carlo runs yield mean partition size 2.41 and median 2. A typical fit is shown in Figure 4.2. Among 
the limited three-interval partitions, the largest bandwidth goes to the almost flat middle area between 
the two modes, which are acceptable. 

The mean function m3 is defined to be three equal-length pieces with a sine function in the 
middle (1/3,2/3].  Therefore a three-interval partition is ideal for m3.  The mean partition size out of 
the 400 simulation runs (when h > 0.03) is 3.29 and the median is exactly 3, which implies that RPVB 
automatically detected the curvature changes and finds a partition of 3 in most of the cases.  On the 
other hand, FVB fails in 99% of the samples to detect the sine wave.  Typical RPVB and FVB fits are 
shown in Figure 4.3.   
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The function m4 is defined as a single normal density added in the middle of a straight line.  
So a symmetric three-interval partition like in the case of m3 is the right partition except the normal 
density damps off beyond interval [-.0125, 0.125], which is about 1/5 of the range of support. This is 
consistent with what RPVB achieved. The mean partition size is 3.24 and the median is 3. Typical 



RPVB and FVB fits of m4 are shown in Figure 4.4.  FVB is successful in fitting the normal density but 
it undersmoothes the straight line very often.   

RPVB also consistently yields sensible partitions for function m5.  This function simulates the 
motorcycle impact data.  The sharp curve at the bottom to the left mimics the effect of the impact.  
The function then rises rapidly back to its peak and gradually levels off.  Therefore partitions with 
three or more intervals with increasing bandwidths from left to right are expected.  This matches what 
RPVB found.  The mean and median partition size are 3.02 and 3 respectively.  A typical RPVB fit of 
m5 is shown in Figure 4.5.  For a function with such large spatial variability, RPVB demonstrated 
superior spatial adaptation.  It minimized oversmoothing the steep curve to the left with very small 
bandwidth that is almost equivalent to interpolation, while it minimized undersmoothing the flat right 
side with a large bandwidth that is almost equivalent to regular linear regression. 

Finally, m6 is the sum of a sine function and a normal density.  A partition of three to five 
would be appropriate.  This matches the simulation results, whose mean partition is 3.58 and median 
is 3.  A typical RPVB fit is shown in Figure 4.6. 

Based on the above discussion we close this section with the following remarks.  
• RPVB performed satisfactorily in automatically finding the right partitions in all six 

simulated functions.  
• The partitions are not restricted to equal-in – length ones, and do reflect the relationship or 

curvature changes in data. And hence, 
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Figure 4.3. Typical RPVB and FVB fits for m3.  
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Figure 4.4. A typical RPVB fit for m4. 
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Figure 4.5. A typical RPVB fit for m5. 
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Figure 4.6. A typical RPVB fit of m6 compared with FVB.  

 
• RPVB reaches smaller partitions than FVB,which simply uses 5 equal-in-length intervals 

for all the functions with our simulation settings.  
• RPVB gives appealing estimates of the piecewise-constant bandwidth corresponding to the 

partitions it yields.  
• RPVB results in smoother estimated mean functions.  
• Allowing the selection of smaller h’s helps reduce oversmoothing, but it is also more 

likely to pick up small random patterns and results in more partitions.  The choice should 
be made based on anticipated application. 

4.6.  Local Comparison 
In Section 4.4 we investigated the overall performance of RPVB and demonstrated that it 

compares favorably with FVB for all six simulated functions.  In this section we investigate the 
performance of RPVB method at specific estimation points.  We select one extreme point for each test 
function except m1, and investigate how close the estimates RPVB and FVB are to the true mean 
values using the local measure in Section 4.3.  The locations for the five test functions are listed in 
Table 4.5.  They are all local extrema in the functions and are selected as being difficult for any 
method.  

 
Table 4.3. Local extrema selected for local comparison  

 
Function Xmode Description. 

m2 0.57 Only minimum, change point. 
m3 0.36 First peak to the left. Close to change point. 
m4 0.50 Only maximum. 
m5 0.04 Minimum. Steep curve. 
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m6 0.70 Second lower maximum. Close to inflection point. 
 
As defined in Section 4.3, we use the Mean Absolute Difference (Ratio (MADR) to compare 

our RPVB with the FVB.  A MADR less than 1, or 100% implies our proposed RPVB estimates are 
closer to the true mean than FVB. The smaller MADR is, the more superior RPVB is to FVB.  Table 
4.4 list the MAD and MADR from 400 Monte Carlo runs per function.  The following conclusions 
can be made. 

• RPVB proved to be superior to FVB for m3 and m5.  For m3 this is because FVB failed 
99% of the time in capturing the sine wave.  In the case of m5 it is because of RPVB’s adaptability to 
spatial variability in its partitions, which results in less oversmoothing when there are such extensive 
curvature changes.    

• MADR is not significantly different from 1 for the other functions, which implies that 
RPVB is comparable to FVB locally for these functions. This is confirmed in the scatterplots of the 
sample absolute differences of these two methods. 

• Allowing smaller bandwidths reduces oversmoothing significantly. In a full 
replication of the simulation with h > 0.015, MADR drops from 47.4% to 26.2% for m3 and from 
81.1% to 42.9% for m5. However, it is also more likely to pick up random patterns and make the 
estimates unstable. For example a MADR of 99% when h > 0.03 increases to 107% when h > 0.015 
for m6.   
 

Table 4.4. MAD and MADR statistics for local comparison  
 

Function Xmode MAD of RPVB MAD of FVB MADR s.e. of MADR 
m2 0.57 0.0103 0.0109 0.946 0.3389 
m3 0.36 0.4675 0.9856 0.474 0.0055 
m4 0.50 0.1278 0.1278 1.000 0.2035 
m5 0.04 0.0834 0.1028 0.811 0.0126 
m6 0.70 0.0520 0.0525 0.990 0.1813 

 
Now let us have a closer look behind the summary statistics. Figure 4.7 shows the joint distribution 
of Absolute Differences, , of RPVB and FVB for the sample functions at selected 
estimation points based on 400 Monte Carlo runsIn the scatterplots of absolute differences a point 
below the diagonal line implies that the estimate of RPVB at the given point x

|)(ˆ)(| 0202 xmxm −

0 is closer to the true 
mean (above or below) than that of FVB for that sample, otherwise FVB estimate is closer.  In this 
sense we may call this the break-even line.  If the majority of the samples are below this line, it 
implies that RPVB is favorable, and vice versa.  Here we want our judgments to be based on the 
general trend rather than specific samples.  Individual estimates could be far off the true mean 
because of random patterns.  

The MADR ratio for m2 at x0 = 0.57 is 94.6%, which is not significant different from 1. In 
Figure 4.7 (a) however, the scatterplot does indicate that our RPVB performs slightly better than 
FVB, especially for the larger differences.  

RPVB estimates at the given location x0 = 0.36 for m3 are much closer to the true mean than 
those of FVB.  The MADRs is 47.4%.  The distribution of the absolute differences at x0 = 0.36 based 
on 400 runs is shown in Figure 4.7 (b).  RPVB estimates are much better than FVB in  
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   (e)      (f) 
 

Figure 4.7. The scatterplot of Absolute Differences of (a) m2 at x0 = 0.57, (b) m3 at x0 = 0.36, (c) m4 at 
x0 = 0.50, (d) m5 at x0 = 0.04, (e) m6 at x0 = 0.7 and (f) signed differences of m6 at x0 = 0.7. All based 

on 400 Monte Carlo runs: 
 

all 400 samples, including the four cases in which FVB succeeded in depicting the sine wave.  RPVB 
successfully recognized the sine wave without undersmoothing the gently curving sides in each run 
of the 400 samples.  This requires both appropriate partitions and variable bandwidth selections.  Yet 
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all these are achieved without any a priori knowledge or even a hint, but rather totally driven by the 
data. This is an excellent demonstration of the data adaptive potential of our method.  

Both RPVB and FVB did well for function m4 because of its relatively small curvature 
change.  Even a global bandwidth would yield a decent estimate. The joint distribution of absolute 
differences at x0 = 0.50 based on 400 random samples is shown in Figure 4.7 (c).  

RPVB estimates for m5 at the given location are also much closer to the true mean than those 
of FVB.  The MADR against FVB is 81.1%.  This is consistent with the distribution shown in Figure 
4.7 (d).  RPVB almost always yields a closer estimate of  m5(.04).  On average the estimates are about 
20% closer to the true mean when using RPVB than using FVB.   

For m6, the location x0 = 0.7 is very close to the sharp peak at x = 0.51 with an inflection point 
in between at x = 0.65.  Some samples have erratic patterns around the inflection point.  There are a 
lot of cases that can be interpreted as  having quite different curvature. Therefore the estimates in this 
neighborhood are not very stable. Figure 4.7 (e) shows the joint distribution of the absolute 
differences of the 400 sample runs. The high correlation between the absolute differences yielded by 
RPVB and FVB reflect that these two methods perform similarly in this situation (MADR = 99%). 

More insight can be gained from the signed differences, )(ˆ)( 0606 xmxm − , which are shown 
in Figure 4.7(f)., including y = 0 in addition to the diagonal to emphasize that these are not absolute 
differences.  However, when more pairs fall below the break-even line this means that RPVB 
estimates tend to be larger than the FVB estimates. The samples with positive differences below the 
break-even line indicate that both estimates are below the true mean but RPVB estimates are closer.  
The samples on the negative side under the line mean that both estimated values are above the true 
mean and RPVB estimates are higher.  . The behavior of RPVB at this unstable point of m6 actually 
demonstrates that it is responsive to curvature changes. Even though RPVB and FVB perform 
similarly at this specific location, globally RPVB still performs better, specifically about 7% more 
efficient than FVB. Moreover, RPVB estimates? ?? 

RPVB is one type of pattern recognition; it tries to find partitions by exploiting the 
relationships in the data, curvature changes in particular.  When insufficient sampling or excessive 
noise obscures the true signal, it is hard for RPVB or any smoothing technique to produce reliable 
estimates.   We assessed how these factors affect the performance of our proposed method.with two 
different settings, samples size n = 50 and error standard deviations 15% Rm.   

When n = 50. RPVB is preferred on overall efficiencies relative to FVB for m4, m5 and m6, 
but only comparable for m2 and m3. FVB is preferred to m1 RPVB lost its edge for m3 when n = 50 
since it  fails in most of the cases to detect the sine function in the middle and hence behaves 
similarly to FVB .   This suggests that at this sampling rate, RPVB does not have enough evidence to 
detect the curvature change. The seeming inefficiency of RPVB for m1 is because RPVB weights 
smoothness over bias. Local comparisons for n = 50, however, indicate that  RPVB compares 
favorably for all test functions except m4.   

When we increase the standard deviation of additive errors to  = 15% R2
eσ m , the overall 

relative efficiencies are mixed. RPVB leads significantly for m3 and m5, is comparable with FVB for 
m1, m2 and m6, but loses significantly for m4.  The same comparisons are observed in the local 
comparison.  The lead in m3 is explained by the fact that RPVB still recognizes the sine curve in the 
middle. But only for some samples in this case due to the large error.  However, RPVB is able to 
raise the bandwidths on both sides to adapt to the gentle curves unless there are significant sinusoid 
patterns.  It is observed that undersmoothing by FVB is typical at this error rate. The large spatial 
variability of m5 is hard to conceal even when large error is introduced.  Therefore it is not surprising 

 27



that RPVB is more successful with its superior data adaptivity.  It consistently yields 3-interval 
partitions that are appropriate for m5. It is not surprising that RPVB is less successful for m1, m2, and 
m6.  These functions have less curvature, which is more easily to be buried in the noise, harder for 
RPVB to recognize.  Function m4 is an extreme of this situation.  
When we increase the error standard deviation to 20% Rm, the situation is somewhat different.  In this 
case here the curvatures are almost completely concealed by the large additive error.  This is reflected 
by the fact that the median partition sizes are 1 for of m1, m3, and m4 and 2 for the rest. RPVB is 
preferred locally for all functions except for m2 and m4, for which RPVB chooses global bandwidths 
and yields smoother estimates.  Relative efficiencies indicate that RPVB is preferred for of m1, m3, 
and m5, while FVB is preferred for m2, m4 and m6.  However, only m6 is significantly worse in both 
comparisions.  This is because m6 plus noise often looks like a big “S’ with the second lower 
maximum being concealed, in which case RPVB picked a two-interval partition instead.  This choice 
looks more natural for these data give that one does not know the true mean function.  However, FVB 
is significantly undersmoothing all six functions.  RPVB remains the preferred choice even though it 
also fails to recognize the sine wave, which is totally buried in the noise.  
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Figure 4.11. RPVB and FVB estimates of the Noisy Blocks function  

( n = 1024,  = 1). 2
eσ
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Figure 4.12. RPVB and FVB estimates of the Noisy Doppler function  

( n = 512,  = 1). 2
eσ

As mentioned in Section 2.1, Fan and Gijbels argue that local polynomial regression using 
their data-driven variable bandwidth has spatial adaptation properties that are similar to wavelets.  
They used two other test functions, the Noisy Blocks and the Noisy Doppler, defined in Donoho and 
Johnstone (1994),  to compete with their wavelet shrinkage method. Figures 4.11 and 4.12 exhibit 
RPVB and FVB estimates of these two functions.  The bandwidths are rescaled to be visible.  RPVB 
and FVB estimates for the Noisy Blocks are comparable.  RPVB outperforms FVB for the Noisy 
Doppler function with much less oversmoothing for the high frequency area between 0 and 0.15.  The 
variable bandwidths match the trend of curvature changes of the target function.  Our estimates are 
also comparable to wavelet shrinkage in Donoho and Johnstone (1994). 

 
5. CONCLUSIONS 

5.1.  Summary 
In this paper we developed a tree-based approach for local linear regression.  This new 

methodology recursively partitions the range of the predictor variable based on the unknown structure 
of the relationship and simultaneously estimates the piecewise constant bandwidths.  Our partitions 
do not have to be equal-in-length and are totally data driven as in CART. The recursive partitioning is 
based on a modified version of Akaike Information Criterion (AICC).  We defined a partition-adjusted 
version of this criterion, called AICP, and used it to derive the optimal sized tree.  

In Section 1 we briefly introduce the problem of local linear regression using variable 
bandwidth and surveyed the existing methods, mainly Fan & Gijbels (1995) and Pitblado (2000).  In 
Section 2 we discuss the bandwidth selection problem and the AICC and AICP criteria.  In Section 3 
we give the details of the recursive partitioning algorithm and its implementation proposed here.  The 
simulation results are presented in Section 4 with respect to global and local performance, as well as 
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the sizes of partitions on six test functions with direct comparisons to the fully variable bandwidth of 
Fan & Gijbels (1995).  

Simulation results demonstrate that this new approach retains the adaptability to spatially 
inhomogeneous curves while it requires fewer smoothing parameters, and compares favorably to the 
FVB approach of Fan & Gijbels (1995).  Even though it greatly enhanced the performance of RPVB 
for m3 and m5 to allow the choice of smaller (h > 0.015), it may be too sensitive in general. Hence 
focus on the results obtained with h > 0.03.  In Table 5.1 we summarize both the overall and local 
comparisons of the two methods for the six functions in all simulation settings.    We use “+” (“-“) to 
indicate that the corresponding statistic (RE or MADR) is significantly less (greater) than 1 at the 5% 
level.  “0” indicates that we failed to reject the null hypothesis that the statistic is equal to 1.  

 
Table 5.1. Summary of the global and local comparisons between RPVB and FVB  

(+ : favorable, 0 : comparable, -: unfavorable) 

  
n=100 

2
eσ =5% Rm

n=50 
2
eσ =5% Rm

n=100 
2
eσ =15% Rm

n=100 
2
eσ =20% Rm

RE 0 - 0 + m1 MADR NA NA NA NA 
RE + 0 0 - m2 MADR 0 + 0 - 
RE + 0 + + m3 MADR + + + + 
RE + + - - m4 MADR 0 - - - 
RE + + + + m5 MADR + + + + 
RE + + 0 - m6 MADR 0 + 0 + 

 
Among the 44 function-setting-measure combinations, RPVB outperforms FVB in 24 of the 

cases (55%). Two methods performed similarly in 11 cases (25%).  FVB outperforms only in 9 cases 
(20%).  

However, 7 out of the 9 factor combinations for which FVB wins were for functions m4 (4), 
m2 (2) and m6 (1) with large additive error, where the curvature changes were concealed by the large 
error and RPVB choose smoothness over bias.   

In summary, RPVB yields reasonable partitions based on curvature and sensible estimates of 
bandwidths.  It consistently results in a smaller number of partitions while achieving similar MSE 
and smoother estimates than FVB.  It finds a good balance between bias and smoothness. It 
demonstrated satisfactory adaptivity to data and the degree of adaptability could be tuned by the 
choices of C0 and hmin at the tree growing stage, and α0 at the tree pruning stage.   
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