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Nonstationary Data Analysis by Time Deformation
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In this article we discuss methodology for analyzing nonstationary time series whose
periodic nature changes approximately linearly with time. We make use of the
M-stationary process to describe such data sets, and in particular we use the
discrete Euler(p) model to obtain forecasts and estimate the spectral characteristics.
We discuss the use of the M-spectrum for displaying linear time-varying periodic
content in a time series realization in much the same way that the spectrum shows
periodic content within a realization of a stationary series. We also introduce the
instantaneous frequency and spectrum of an M-stationary process for purposes of
describing how frequency changes with time. To illustrate our techniques we use
one simulated data set and two bat echolocation signals that show time varying
frequency behavior. Our results indicate that for data whose periodic content is
changing approximately linearly in time, the Euler model serves as a very good
model for spectral analysis, filtering, and forecasting. Additionally, the instantaneous
spectrum is shown to provide better representation of the time-varying frequency
content in the data than window-based techniques such as the Gabor and wavelet
transforms. Finally, it is noted that the results of this article can be extended to
processes whose frequencies change like at�, a > 0, −� < � < −�.

Keywords Euler processes; M-stationary processes; Nonstationary; Time
deformation.

Mathematics Subject Classification Primary 62M10: times series, auto-
correlation, regression, etc; Secondary 62M15: spectral analysis.

1. Introduction

Gray and Zhang (1988) introduced continuous M-stationary processes for the
purpose of analyzing and forecasting nonstationary data that exhibited long
memory characteristics. M-stationary processes were shown to maintain the
properties of regular stationary processes if the composition law is multiplication
rather than addition. For example, for M-stationary processes, E��X�t�X�t��� =
RX��� rather than E�X�t�X�t + ��� = RX���. After developing the properties of
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164 Gray et al.

M-stationary processes, Gray and Zhang (1988) identified a number of such
processes and demonstrated that for certain types of data, an M-stationary process
could improve the forecasts over those obtained using usual techniques. The most
extensive class of M-stationary processes studied by Gray and Zhang (1988) was
the continuous “Euler Process”, shown to be the M-stationary analog of continuous
autoregressive processes. Unfortunately, due to the fact that they only studied the
continuous case, they did not apply the Euler model to data. This has remained
a barrier to the application of the Euler process, and although the process has
remained of some theoretical interest (Girardin and Senoussi, 2003; Girardin and
Rachdi, 2003), until now it has not been applied to data.

Recently, Vijverberg and Gray (2003) introduced the discrete Euler process as
the discretization of the continuous Euler process. In that paper they introduced
the concept of a dual discrete process and showed that the dual of a discrete
Euler process is a discrete autoregressive process. The basic properties of a
discrete Euler process were then developed and it was shown that discrete and
continuous Euler processes whose characteristic equations have complex roots can
be described as processes whose periodic structure is linearly changing in time. For
such a process, it was shown that one could transform the process to a stationary
process by sampling correctly. Several examples were given that demonstrated the
applications of discrete Euler processes.

In order to characterize the changing periods and frequencies of the process,
Gray and Zhang (1988) and Vijverberg and Gray (2003) introduced the concept
of an M-autocorrelation and M-spectrum. Vijverberg and Gray (2003) used the
M-spectrum to detect the presence of changing cycles in data, and they applied
the discrete Euler model to economic data.

Even though Vijverberg and Gray (2003) developed the properties of a discrete
Euler process and introduced several new concepts, they did not apply the
methodology to forecasting, spectral analysis, or filtering and only considered a
few economic time series. In this article we give a quick review of the necessary
results from Vijverberg and Gray (2003). We then develop a forecasting and spectral
analysis methodology for discrete M-stationary processes. The results are applied to
real and simulated data to demonstrate that the method significantly outperforms
autoregressive and window-based methods when the periodic structure is changing
even approximately linearly in time.

Standard spectral analysis of a signal whose frequency is changing in time will
typically result in a spectrum with many small peaks in an attempt to describe the
ever-changing periodic behavior of the series. To address this problem we introduce
the instantaneous spectrum of an M-stationary process as a new tool for describing
the spectral behavior of data with time-varying frequencies that change like �a+
bt�−1. We demonstrate the application of the M-spectrum and the instantaneous
spectrum to several simulated data sets as well as to bat echolocation data.

The question of how one can tell if an M-stationary process is an appropriate
model for a given data set is addressed briefly. It is also noted that the method of
time transformation is much more general than simply linearly changing periods,
the M-stationary case, but in fact can be applied to any process whose frequencies
change monotonically with time. Examples of work currently being completed
include G��� processes, which are processes whose frequencies change like �t−� (see
Jiang et al., 2003), including linear and quadratic chirps. Similar results can be given
for exponential chirps.
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Nonstationary and Time Deformation 165

2. M-Stationary and Euler Processes

2.1. Continuous Case

Gray and Zhang (1988) define a stochastic process 	X�t�
 t ∈ �0���� to be
multiplicative stationary (M-stationary) if the following hold:

(i) E�X�t�� = 
(ii) Var�X�t�� = �2 < �
(iii) E��X�t�− ��X�t��− �� = RX���.

We refer to RX��� as the M-autocovariance, and it is clear that Var�X�t�� = RX�1�.
Also, if the index set is changed from �0��� to �−���� and t� is replaced by t +
�, then it is easily seen that the conditions above become the classical conditions
defining a weakly stationary process. Gray and Zhang (1988) show that the time
series 	Y�u�
 u ∈ �−�����, defined by Y�u� = X�t� where t = eu is stationary if and
only if X�t� is M-stationary. The process Y�u� is referred to as the dual of X�t�. Thus,
if “time” is transformed (or deformed) by a logarithmic transformation, then the M-
stationary process X�t� becomes a classical stationary process Y�u�, where u = ln t.
It is useful to note that similar results can be obtained by letting t = hu and letting
X�t� = Y�u�, where u = ln t/ ln h and h > 1 is a constant. As we will see, there is
some utility in this approach especially in the discrete case. On the other hand, if
Y�u� is a classical stationary process, and if “time” is transformed by an exponential,
then Y�u� is transformed to an M-stationary process X�t�. Additionally, RX��� =
CY �ln �� for � > 0 where CY �w� denotes the usual autocovariance, at lag w, of the
stationary process Y�u�. Gray and Zhang (1988) also define the M-spectrum of the
M-stationary process X�t� to be the Mellin transform GX�f� =

∫ �
0 �−2�if−1RX���d�,

and they show that GX�f� = SY �f� where Y�u� is the dual of X�t� and where SY �f�
denotes the usual spectrum of the stationary process Y�u�.

An example of an M-stationary process is the kth order continuous Euler
process defined by Gray and Zhang (1988) as a process satisfying

tkX�k��t�+ �1t
k−1X�k−1��t�+ · · · + �k�X�t�− � = ��t�� (2.1)

where ��t� is M-white noise (see Gray and Zhang, 1988), E���t�� = 0, and the �i are
constants. The dual process, Y�u�, of the kth order continuous Euler process, X�t�,
is the kth-order continuous auto regressive (AR) process

Y �k��u�+ �1Y
�k−1��u�+ · · · + �k�Y�u�− � = ��u�� (2.2)

where the �i’s are constants determined by the �i’s and where ��u� is continuous
white noise. It should be noted that the coefficients of the continuous Euler models
vary with time while the coefficients of the continuous AR models are constant
values. If X�t� is a kth order continuous Euler process, the autocovariance, CY �w�,
of the dual process Y�u� satisfies a homogenous differential equation with constant
coefficients. If the characteristic equation of the dual has 2q complex roots (suppose,
for ease of notation, none are repeated), then the corresponding terms in CY ��� are
of the form

q∑
j=1

[
cje

aj� cos�bj��+ dje
aj� sin�bj��

]
� � > 0 (2.3)



D
ow

nl
oa

de
d 

B
y:

 [S
m

u 
C

ul
 S

ci
] A

t: 
15

:1
6 

17
 A

pr
il 

20
08

 

166 Gray et al.

while the corresponding terms in RX��� are of the form

q∑
j=1

[
cj�

aj cos�bj ln ��+ dj�
aj sin�bj ln ��

]
� � > 1� (2.4)

where aj is the real part of the jth complex root and bj is the imaginary part.

2.2. Discrete Case

Vijverberg and Gray (2003) extend the concept of an M-stationary process to
the discrete case. For more details concerning discrete M-stationary processes see
Vijverberg (2002). Let h> 1 and S= 	t � t=hk, k = 0�±1�±2� � � � �. Then Vijverberg
and Gray (2003) define X�t�, t ∈ S to be a discrete M-stationary process if the
following conditions hold:

(i) E�X�t�� = 

(ii) Var�X�t�� < �
(iii) E��X�t�− ��X�t��− �� = RX���

for all t and t� ∈ S. Additionally, Vijverberg and Gray (2003) define the dual of Xt

by Yk = X�hk�, k = 0�±1�±� � � � , and show that CY �k� = RX�h
k�. It follows directly

that RX�h
�� = RX�h

−�� and that 	X�t�� is discrete M-stationary if and only if 	Yk� is
stationary. Vijverberg and Gray (2003) define the discrete M-spectrum, GX�f

∗�, as
the discrete Mellin transform

GX�f
∗� =

�∑
k=−�

h−2�if∗kRX�h
k�� (2.5)

where h > 1, �f ∗ ln h� ≤ 1/2, and f ∗ is referred to as M-frequency. They show that
GX�f

∗� = SY �f�, where �f � = �f ∗ ln h� < 1/2, GX�f
∗� is the M-spectrum of X�t�, and

SY �f� is the usual spectrum of the dual process Yk. Thus, the M-spectrum, GX�f
∗�,

and the spectrum of the stationary dual, i.e., SY �f�, have the same shape and differ
only with respect to the “frequency” scale. It should be noted that

∣∣f ∗∣∣ ≤ 1/�2 ln h�
so that for f measured in cycles/sampling unit, we call 1/�2 ln h� the “M-Nyquist”
frequency. Thus, for a given h, it follows that 1/�2 ln h� is the highest M-frequency
that can be detected. More generally, if the dual is sampled at units of k�, then the
M-Nyquist frequency is 1/�2� ln h�.

The time transformation required to move from the original time scale to that
of the dual process is k = ln t/ ln h where t = hk is the original variable. This is
analogous to the time transformation u = ln t (or, as mentioned previously, u =
ln t/ ln h� in the continuous case. Thus one would expect that a continuous M-
stationary process can be approximately transformed to a discrete stationary dual
process by sampling in increments of hk so that Yk = X�hk�. Of course, most time
series data are collected at equally spaced increments. Thus, it will usually be
necessary to interpolate to obtain values at the time points h1� h2� � � � � hn in order
to estimate the dual process. This will be discussed in more detail in Sec. 6.

To be specific, let t ∈ S where S = 	t � t = hk� k = 0�±1�±2� � � � �. Then
Vijverberg and Gray (2003) define X�t� to be a discrete pth order Euler process if
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Nonstationary and Time Deformation 167

X�t� is the M-stationary solution of

�X�t�− �− �1

(
X

(
t

h

)
− 

)
− �2

(
X

(
t

h2

)
− 

)

− · · · − �p

(
X

(
t

hp

)
− 

)
= a�t�� (2.6)

where a�t� is white noise and h > 1. They showed that taking the limit as h → 1 in
(2.6) gives the continuous AR�p� process

tpX�p��t�+ �1t
p−1X�p−1��t�+ · · · + �pX�t� = Z�t��

where the �i’s are functions of the �i’s and where Z�t� is M-white noise. Thus, in
the limit, 	X�t�� is a pth order continuous Euler process. If we let t = hk and without
loss of generality we let  = 0, then (2.6) becomes

X�hk�− �1X�h
k−1�− �2X�h

k−2�− · · · − �pX�h
k−p� = a�hk�� (2.7)

It follows directly that 	X�t�� in (2.7) is a pth order discrete Euler process if and
only if its dual process 	Yk � k = 0�±1� � � � � is the autoregressive process

Yk − �1Yk−1 − · · · − �pYk−p = zk (2.8)

where zk = a�hk�. It should be noted that the coefficients of the discrete pth order
Euler model are the same as the coefficients of the discrete AR�p� model for the
dual process. Thus, estimates of the parameters of the discrete pth Euler model
are obtained by finding the corresponding parameter estimates of the dual AR�p�
model. If X�t� is a discrete Euler process, then in place of (2.3) and (2.4), we have

q∑
k=1

r−�
k

[
ck cos��k��+ dk sin��k��

]
� � = 1� 2 � � � (2.9)

and

q∑
k=1

�r
−1/ ln h
k �ln h

�

[
ck cos

(
�k

ln h
ln h�

)
+ dk sin

(
�k

ln h
ln h�

)]
� (2.10)

respectively where rk =
√
a2
k + b2k, �k = arctan bk

ak
and ak is the real part of the kth

complex root and bk is the imaginary part. We will refer to rk and �k/2� as
magnitude and frequency, respectively.

The M-power spectrum of the pth order discrete Euler process 	X�t�� is defined
to be

GX�f
∗� = �2

a

���e−2�if∗ lnh��2

= �2
a

�1−�1e
−2�if∗ lnh−�2e

−4�if∗ lnh−···−�pe
−2p�if∗ lnh�2 � (2.11)
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168 Gray et al.

and the M-spectral density is

g�f ∗� = �2
a

�2
X���e−2�if∗ ln h��2 � (2.12)

By replacing the parameters in (2.11) and (2.12) by estimates, we obtain the Euler
spectrum and spectral density estimators, respectively. These spectral estimators
have the dual relationship observed previously in that the Euler spectral estimator
and the dual AR spectral estimator differ only in scale. The sample M-spectrum and
the dual sample spectrum have the same relationship.

3. Origin Offset/Realization Offset

The correlation function of a stationary process is, of course, not a function of
time, while the correlation function of an M-stationary process does change with
time. (The M-correlation is not a function of time, but the correlation is.) The
impact of this, from a data point of view, is that in order to properly model
a discrete M-stationary process, one needs some estimate of the location of the
initial observation. This differs from the case of stationary discrete processes where
without loss of generality the origin of the observations can always be taken as zero
and the observations can be considered to be taken at k�, k = 1� � � � � n. Thus, the
initial observation is at � and without loss of generality, we usually take � = 1.

In the discrete M-stationary case, the observations are taken at hj+k where hj

is the origin for the observations. The initial observation is then taken at hj+1.
However, neither h nor hj is known, so they must be selected from the data. Since
the M-stationary process origin is at zero, we shall refer to hj as the “origin offset”
or the “realization offset.”

Figure 1 shows a realization of length n = 500 from the discrete Euler(2) process

X�hk�− 1�732X�hk−2�+ �98X�hk−2� = a�hk� (3.1)

with hj = 20 and h = 1�01. We now compare the first 100 observations with the last
100 observations. Clearly, as will always be the case with M-stationary data, the
initial 100 points are of higher frequency than the last 100 points. Although we have
not discussed how h is selected, we will later see that if the first 100 points of this
realization are used as our data set, then the best choice of h will not be the same
as the best choice of h if only the last 100 points are used as our data. Thus, given
a realization, we generally will need to select h and the origin offset hj .

4. Instantaneous Frequency and Instantaneous Spectrum

In Sec. 2 we defined the M-frequency and M-spectrum. In this section we discuss
these concepts in more detail and relate these concepts to the instantaneous
frequency and spectrum. We will subsequently show that the instantaneous
spectrum is a very useful tool for displaying time-varying frequency behavior. In the
classical sense, a function is said to be periodic with period (or cycle length) � over
a set I if � is the minimum value in I such that g�t� = g�t + �� for all t ∈ I . In this
case, the corresponding frequency, f , is 1/�. The following definition extends this
notion to the M-periodic setting.
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Nonstationary and Time Deformation 169

Figure 1. Realization from the Euler(2) model in (3.1).

Definition 4.1. A function, g�t�, is M-periodic over I with multiplicative period (i.e.,
M-period) �, if � > 1 is the minimum value of � ∈ I such that g�t� = g�t�� for all
t ∈ I . The associated M-frequency, f ∗, is defined as f ∗ = �ln ��−1.

As an example consider g�t� = cos � ln t. In this case, � = e2�/� since g�t�� =
cos � ln�te2�/�� = cos�� ln t + 2�� = g�t�. Also, f ∗ = �/�2��. From the definition, it
follows that for each fixed t, an M-periodic function returns to the value g�t� at
the distance t�− t = t��− 1�. Thus, when viewed on a “regular time” scale, g�t� has
periods that lengthen linearly.

The M-spectrum has the same role as the traditional spectrum in reflecting
the most important M-periodic components in the data. However, given an M-
stationary time series Xt, the traditional spectrum and the M-spectrum are not
the same. Because frequencies in an M-stationary process change with time, usual
spectral estimators will generally find poorly defined peaks or many peaks in an
attempt to characterize this behavior if the change is significant. This will be
illustrated via examples.

In the discrete setting, Vijverberg and Gray (2003) define the instantaneous
period of an M-periodic function at time hk to be

P�hk
 f ∗� = hjhk�e1/f
∗ − 1� (4.1)

where f ∗ is the M-frequency and hj is the offset. Thus the instantaneous frequency,
f , at time hk associated with the M-frequency f ∗ is

f�hk
 f ∗� = �hjhk�e1/f
∗ − 1��−1� (4.2)

It should be noted that the M-period and M-frequency are constant for an M-
periodic function, but the instantaneous period increases linearly over time while
the instantaneous frequency decreases. If g�t� is an M-periodic function then � =
hm is the M-period of g�t�, where h > 1 and m is the smallest positive integer such
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170 Gray et al.

that g�hk� = g�hk+m� for all hk ∈ I . Since f ∗ = �ln ��−1 = 1/�m ln h�, it follows that
� = hm = e1/f

∗
. Thus the instantaneous period at hk of an M-periodic function is

lk = hk+m − hk = hk�e1/f
∗ − 1�, while the instantaneous frequency is the reciprocal

of lk, i.e., l
−1
k . These comments motivated the definitions in (4.1) and (4.2) above.

As we have seen from (2.10), the M-autocorrelation of an Euler process is a linear
combination of terms that possess the following properties among others:

(i) If the associated root of the characteristic equation is complex and on the unit
circle, the corresponding term in the M-autocorrelation is M-periodic.

(ii) If the root is complex and outside the unit circle, this term is a damped M-
periodic function.

It follows then that any root of the characteristic equation that is complex and close
to the unit circle will contribute a linearly elongating cyclic behavior to the data.

4.1. Instantaneous Spectrum

From (4.2) it follows, for any fixed hj , that the instantaneous frequency f =
f�hk
 f ∗� depends on time t, hk, and f ∗. Moreover, from (4.2) it follows that
if t = hk,

f ∗ =
[
ln
(
1+ fhjhk

fhjhk

)]−1

� (4.3)

This leads to the following definition.

Definition 4.2. The instantaneous spectrum of X�t� at t = hk is defined by

S�f� hk
 hj� = GX�f
∗�� (4.4)

Definition 4.3. If X�t� is a continuous M-stationary process, the instantaneous
spectrum of X�t�, t ∈ �−���� is defined by

S�f� t
 t0� = �X�f
∗�

where t ∈ �−���� and t0 is the origin offset (or realization offset).
It should be noted that at each time hk and fixed hj , the instantaneous frequency

is in cycles/sampling unit based on the sampling units of the equally spaced data
set.

5. Forecasting from an Euler(p) Model When Data are Observed at Euler
Time Points

Even though data will usually be taken at equally spaced time points, in this section
we consider the case in which data are observed at points t = hj+k for a specified j, and
k = 1� 2� � � � � n. We will say that such data are observed at Euler time points. Because
of the dual relationship between discrete Euler(p) and discrete AR�p� processes, the
parameter estimation method for discrete Euler(p) processes is strongly related to that
of discrete AR�p� processes. That is, when we estimate the parameters of the dual
discrete AR�p� process, we obtain the parameter estimates of the corresponding
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Nonstationary and Time Deformation 171

Euler(p) process. However, in this section we will obtain forecasts for data observed
at Euler time points from a known Euler(p) model where h and hj are also known.

For a discrete AR�p� process, it is well known that the l-step ahead forecast
function given data to t0 is the solution of the corresponding pth order difference
equation that passes through the last p points. In other words, if we denote the
l-step ahead forecast by Ŷt0�l�, then

Ŷt0�l�− �1Ŷt0�l− 1�− �2Ŷt0�l− 2�− · · · − �pŶt0�l− p� = 0 � (5.1)

Letting T0 = ht0 , we then denote the l-step ahead forecast for X�ht0+l� given data
to T0 by X̂T0

�hl� = X̂�ht0+l� = X̂�T0h
l�. Note also that since Yk = X�hk�, we define

forecasts using the relationship X̂T0
�hl� = Ŷt0�l� where Ŷt0�l� is the usual l-step ahead

forecast of a stationary AR�p� process.
If Yt is the AR(1) process Yt − �1Yt−1 = at, then it is well known that Ŷt0�l� =

Yt0�
l
1. Thus, it follows that if X�h

k� is a first-order discrete Euler process, then

X̂T0
�hl� = Yt0�

l
1 = X̂T0

�1��l
1 = X̂T0

�1��ln h
l

(5.2)

where � = �
1/ ln h
1 � If X�hk� is a second-order discrete Euler process with dual process

Yk − �1Yk−1 − �2Yk−2 = ak, then based on standard results for forecasts from AR(2)
processes (see e.g., Box et al., 1994), if the roots of the characteristic equation 1−
�1r − �2r

2 = 0 are both positive and distinct, it follows that

X̂T0
�hl� = Ŷt0�l� = c1r

−l
1 + c2r

−l
2 = c1�

− ln hl
1 + c2�

− ln hl
2

where c1 and c2 are real constants determined by x�ht0� and x�ht0−1� and where �1 =
r
1/ ln h
1 and �2 = r

1/ ln h
2 . Furthermore, if the roots of the characteristic equation are

complex, i.e., r = a± bi, then it follows that

X̂T0
�hl� = Ŷt0�l� = �R�−l	c1 cos �l+ c2 sin �l�

= �Rh�− ln hl	c1 cos � ln hl + c2 sin � ln hl�

where R = √
a2 + b2, � = tan−1�b/a�, Rh = R1/ ln h, and � = �/ ln h. Again, c1 and c2

are real constants determined by x�ht0� and x�ht0−1�.
All the above results are useful in understanding the nature of forecasting on

the log scale. However, the actual computation of a forecast will be based on the
relationship

X̂T0
�hl�− �1X̂T0

�hl−1�− · · · − �pX̂T0
�hl−p� = 0

for l ≥ 1� Thus, forecasts can be obtained recursively as

X̂T0
�h� = �1X�h

t0�+ · · · + �pX�h
t0−p+1��

X̂T0
�h2� = �1X̂T0

�h�+ �2X�h
t0� · · · + �pX�h

t0−p+2��

and similarly for X̂T0
�hl�, l > 2�
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6. Data Observed at Equally Spaced Time Points

A data set observed at equally spaced time intervals must be treated differently
from a data set observed at Euler time points even though both are taken from the
same underlying M-stationary process (see Vijverberg, 2002; Vijverberg and Gray,
2003). Since most real data are equally spaced it is important to have procedures
for estimating the parameters of the underlying Euler(p) model and subsequently
obtaining forecasts when the observed data are equally spaced.

Suppose we are given data X�1+ ��� X�2+ ��� � � � � X�n+ ��, where � ≥ 0, which
we consider to be data from a continuous Euler process, where n is the number of
observed values and � is an unknown shift of the sample from the process origin. In
this section we describe a procedure for estimating the parameters of the Euler(p)
model, including h and �. Additionally, for a given model and equally spaced data
X�1+ ��, X�2+ ��� � � � � X�T + �� up to the forecast origin T + �, we describe a
technique for forecasting X�T + �+m�, where m ≥ 1 is an integer.

The procedure for estimating the underlying Euler(p) model and its parameters
is described below. See Vijverberg and Gray (2003) for further discussion of this
procedure. Before specifying the steps, it should be noted that h and � are selected
together as a pair. Specifically, for a given � we select h so that the number of data
points in the dual will be the same number (n) as there are in the original data set.
Thus, for a given �, the values for j and h are determined by letting j be the largest
integer such that hj+1 ≥ �+ 1 and hj < �+ 1, i.e., j = �ln��+ 1�/ ln h�− � where
� is the fractional part of ln��+ 1�/ ln h. Also, the last Euler time point should
be equal to the last equally spaced time point, i.e., hj+n = �+ n. Substituting j =
�ln��+ 1�/ ln h�− � into this equality, we obtain h = (

�+n
�+1

)1/�n−��
. Since 0 < � < 1

depends on h, in practice we approximate h using h = (
�+n
�+1

)1/�n−�5�
. Based on the

given data and the resulting h and j, we interpolate the data at the Euler time
points, i.e., t = hj+k, k = 1� � � � � n. Note that hj is the origin offset or realization
offset defined earlier. Several methods are available for interpolation, and it should
be noted that in the examples discussed here we use standard linear interpolation.

The current procedure (which is still evolving) is as follows:

1. For each � in a predetermined range of possible values:

(a) We obtain the corresponding h and the interpolated data at the Euler time
points t = hj+k, k = 1� � � � � n.

(b) The values at the Euler time points correspond to a dual AR�p� process for
which we can use traditional methods for identifying p and obtaining the
resulting coefficient estimates. The estimated model then corresponds to an
Euler model.

(c) From the estimated model obtained in (b) we can obtain estimated data
values at t = hj+k� k = 1� � � � � n. Using these modeled values at the Euler time
points, we interpolate to obtain model-based values at the original equally
spaced time points with the specified �. A weighted sum-of-squared residuals
(or, alternatively, the AIC) between the actual dual process and the model-
based values of the dual is then calculated.

2. Steps (a)–(c) above are repeated for each � ranging over the predetermined range
of possible values. The values of h and j resulting from the value of � with the
minimum weighted sum-of-squared residuals (or the minimum AIC if desired)
are selected as the estimates of h and j.
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Nonstationary and Time Deformation 173

The procedure outlined in Steps 1–2 above produces an estimated model for
the observed equally spaced data. In the following we describe a technique for
obtaining forecasts based on a given model and equally spaced data X�1+ ��,
X�2+ ��� � � � � X�T0 + �� where T0 + � is the forecast origin. We wish to find a
forecast function for X�T0 + �+ k�� k = 1� � � � � m. In order to obtain X̂�T0 + �+ k�
we proceed as follows.
3. Based on the estimated values of h and j, we can interpolate Euler data as in the

above and estimate the parameters of the associated Euler model. The forecasts
can be obtained as described in Sec. 5. We can, therefore, find the forecasts at t =
hj+T0+q� q = 1� 2� � � � � m1, where m1 is determined as follows: Letting hj+n+m′

1 =
�+ T0 +m we have m′

1 ≈ ln��+T0+m�

ln h − �j + n�. Then, m1 = �m′
1 + 1� where ���

denotes the greatest integer that does not exceed �.

4. The forecasts X̂�hj+T0+1�� X̂�hj+T0+2�� � � � � X̂�hj+T0+m1� are then used to interpolate
to obtain forecasts at the desired time points, i.e., X̂�T0 + �+ 1�� X̂�T0 + �+
2�� � � � � X̂�T0 + �+m�.

It should be pointed out that Steps 1–2 above provide an Euler model fit to the
data. After this is obtained, not only can forecasts be obtained as mentioned above,
but also the estimated model and associated data at Euler time points can be used
to provide spectral estimates.

Remark. Software for modeling M-stationary processes as well as for forecasting
and spectral estimation is available and can be downloaded from the authors’
website. Specific instructions as well as a user’s manual are included there.

7. Examples

Example 7.1. We refer again to the realization in Fig. 1 of equally spaced data
values generated from the discrete Euler(2) model in (3.1) where h = 1�01, � = hj =
20, n = 200, and �2

Z = 1. To illustrate the difference between the AR and Euler
forecasts, we assume that we are only given the first 170 equally spaced observed
data, and we want to forecast the next 30 data points. Thus, we have n = 170 and
m = 30 in this case. The dual process is the AR(2) model Yk − 1�732Yk−1 + �98Yk−2 =
zk. We follow the procedures mentioned above to estimate the offset. Using �0� 60�
as the predetermined range of allowable values of hj and allowing AIC to select
up to an Euler (10) model, the procedure discussed in the previous section selects
an Euler(3) model with ĥ = 1.0118 and ĥj = 26. By using the estimated offset, we
interpolate values at Euler time points and estimate the parameters of the Euler
model. The estimated parameters are �̂1 = 1�452, �̂2 = −�764, and �̂3 = −�125. The
factors of this third-order model are displayed in Table 1. This presentation breaks

Table 1
Factor table for Euler(3) fit for data in Example 1, ĥ = 1�0118

Absolute reciprocal M-frequency Dual frequency Factors

�984 8�7 �102 1− 1�581B + �968B2

�129 42�6 �5 1+ �129B
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174 Gray et al.

a pth order autoregressive operator 1− �1B − · · · − �pB
p into its irreducible first-

and second-order factors. For an irreducible second-order factor of the form 1−
�1B − �2B

2, the associated roots of 1− �1r − �2r
2 = 0 are complex, and the absolute

reciprocal of these roots is
√−�2. Additionally, an irreducible second-order factor

is associated with a system frequency of f = 1
2� cos

−1
(

�1
2
√−�2

)
. In this setting, the

system frequency indicates the frequencies in the dual process and is referred to in
the table as the “dual” frequency. Roots for which the absolute reciprocal is close
to unity are close to the nonstationary region and are thus more dominant. For a
first-order factor, 1− �1B, the absolute reciprocal of the associated root is ��1�, and
the system frequency is f = 0 if �1 > 0 and f = �5 if �1 < 0. In the table we show
the dual frequency and the M-frequency, f ∗, which is given by f ∗ = f/ ln h�The
dual frequency corresponding to the second order 1− 1�581B + �968B2 is .102. Since
ĥ = 1�0118, the associated M-frequency is given by �102/ ln�1�0118� = 8�7 which is
a reasonable estimate of the true M-frequency, i.e., .08/ ln�1�01� = 8�04� In Fig. 2
we show the l-step ahead forecasts (denoted by “+”) from the fitted Euler(3) model.
Additionally, we analyzed the original data set as an AR�p� model. In this case,
AIC picked an AR(10). In Fig. 2 we show the l-step ahead forecasts (denoted
by a dashed line) from the fitted AR(10) model, and it is visually apparent that
the Euler(3) forecasts are much better than the AR(10) forecasts as of course is
expected. More specifically, the mean square forecast errors of the last 30 points is
7.2 for the Euler(3) model and 142 for the AR(10). The Euler(3) model appropriately
interprets the expanding periodic behavior of the data. On the other hand, the AR-
based analysis considers the data to be a realization of a stationary process with
fixed frequencies. Thus, the periodic behavior seen in the forecasts is essentially
an averaging of the periodic components for the entire realization and fails to
adjust for the fact that the cycles are lengthening. Probably more important are the
results shown in Fig. 3 where we show the spectral estimates associated with the
Euler(3) fit. In Fig. 3(a) it can be seen that the M-spectrum has a single sharp peak.

Figure 2. AR forecasts (dashed line), and Euler forecasts (“+”) with h = 1�0118 and �̂ = 26
based on the realization in Fig. 1.
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Nonstationary and Time Deformation 175

Figure 3. Spectral plots based on Euler(3) fit to realization in Fig. 1.

In the instantaneous spectrum in Figure 3(b) it can be seen that the instantaneous
frequency at the beginning of the series is at about f = �3, while at the end of the
realization the instantaneous frequency has decreased to about .04. That is, initially,
cycle lengths are about 3 while at the end of the series there are approximately 25
points per cycles. Examination of Fig. 1 will show that this is indeed the case.
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176 Gray et al.

7.1. Analysis of Bat Echolocation Data

The problem of identifying bats by their echolocation signal is one of great
interest to many scientists, and several methods for characterizing such signals have
been employed. Such methods include standard spectral analysis, wavelet analysis,
window methods, and decision tree classification methods as well as others. To date,
such approaches have met with varying degrees of success. For example, in Herr
et al. (1997), 95% of the bats in 4 of 8 species were correctly classified, but in the
remaining 4 species, 2 of the species were misclassified in 100% of the trials and the
remaining 2 species were misclassified 96 and 51% of the time. According to Herr
et al. (1997), “A new approach is required which considers other characteristics of
the calls in more detail, such as shape of the pulses (frequency change over time) in
each call.” To support their conclusions, via sonograms they showed that many of
the echolocation signals possessed an instantaneous frequency behavior that could
be well modeled over much of its range as 1/�at + b�� Therefore, the instantaneous
period is a linear function of time, and consequently the results of this article suggest
that the Euler process should serve as a very good model for this type of data. In
these last two examples, we will demonstrate that this is indeed the case. In fact, we
will demonstrate that these data have a very well-defined M-frequency structure and
an instantaneous spectrum that is totally hidden from standard measures based on
stationary models.

Example 7.2. In this example, we consider echolocation data from a large brown
bat. The data were obtained courtesy of Al Feng of the Beckman Center at the
University of Illinois. The entire data set is shown in Fig. 4(a) while close-ups of
the first 100 and the last 60 points are shown in Fig. 4(b). The data consist of
381 data points taken at 7-microsecond intervals with a total duration of .0026671
seconds. Unlike our previous examples, the instantaneous period does not appear
to be linear over the entire signal. In fact, the signal appears to be made up of
possibly two different signals. However, we will consider the application of the Euler
model to this data set and compare its usefulness with the autoregressive model.
Based on the AIC, an AR(20) was fit to the data using standard methods, and
using the methodology described here, an Euler(11) with offset equal to 203 was
determined to be the best Euler model. In each case a maximum model of order 20
was considered. Tables 2 and 3 show the factors of the AR(20) and Euler(11) models
along with the corresponding frequencies and their proximity to the unit circle.
Figures 5(a) and 5(b) show the sample ACF and the sample M-ACF, respectively.
Figure 6(a) shows the sample spectrum and the AR(20) spectral estimator, while
Fig. 6(b) shows the M-sample spectrum and the Euler(11) spectral estimator. The
lack of an indication of a periodic component in the sample ACF, sample spectrum,
and AR(20) spectral estimator are quite surprising in view of the cyclic appearance
of the data. This is due to the fact that although there certainly is a cyclic nature to
the data, the cycle is lengthening slightly with time. As a result, the usual spectrum
is spread and the correlation changes with time resulting in the sample estimates
shown in Figs. 5(a) and 6(a). It should be pointed out that even though the Euler
process has an elongating period, the M-ACF does not depend on time, nor does
the M-spectrum. Figures 5(b) and 6(b) clearly indicate the cyclic behavior of the
data on the log scale. It is important to note that the energy in the signal is primarily
concentrated at approximately the M-frequencies 53k� k = 0� 1� 2� 3� We will refer
to the case k = 1 as M-fundamental frequency and k = 2� 3 as M-harmonics.



D
ow

nl
oa

de
d 

B
y:

 [S
m

u 
C

ul
 S

ci
] A

t: 
15

:1
6 

17
 A

pr
il 

20
08

 

Nonstationary and Time Deformation 177

Figure 4. Plot of echolocation data for large brown bat.

Figures 7(a) and 7(b) show the residuals of the AR(20) fit and the Euler(11) model.
Even though some correlation still remains in the residuals, most of the variation in
the data has been accounted for in the case of the Euler(11). Higher orders do not
improve the fit.

Although it is not our primary interest, forecasting from different origins
provides insight into the fit of the two models. Figure 8(a) compares the AR forecast
with the Euler forecasts from points 40 to 80, while Fig. 8(b) compares the forecasts
for the last 24 points. It is obvious in both cases that the AR forecasts quickly
become out of phase while the Euler forecasts track the signal well. Thus the Euler
model seems to provide a good fit for these data.

Earlier we introduced the instantaneous spectrum that displays the variance (or
power) in the signal at each instantaneous frequency and time. Let the time series
be recorded at the integers of a time scale denoted by t, i.e., on this scale, the
observed values occur at equally spaced times t = 1� � � � � n. Since the origin offset
was estimated to be �̂ = 203, then the sampled values are actually at time points
t� = �̂+ t = 203+ t. Thus, the M-frequency is mapped into an instantaneous
frequency at each t. Instantaneous frequency is frequency in the usual sense, i.e.,
cycles per sampling unit. Figure 9 shows the instantaneous spectrum Ŝ�f� hk
 hj� for
0 ≤ f ≤ �5 and t� ∈ �203� 584� associated with the Euler(11). The graph uses a gray
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178 Gray et al.

Table 2
Factor table for AR(20) fit for large brown bat data

Absolute reciprocal Frequency Factors

�997 �0 1− �997B
.960 �149 1− 1�141B + �922B2

.950 �097 1− 1�557B + �903B2

.930 �178 1− �817B + �864B2

.919 �500 1+ �919B

.905 �258 1+ �094B + �819B2

.892 �225 1− �274B + �795B2

.890 �299 1+ �540B + �792B2

.887 �441 1+ 1�652B + �787B2

.884 �389 1+ 1�357B + �782B2

.878 �341 1+ �952B + �771B2

scale to show the amplitude of the instantaneous spectrum, Ŝ�f� hk
 hj�, at �f� t�
where t = 1� � � � � 381. In this scale, dark regions represent larger spectral values.
It should be noted that the instantaneous frequencies appear to be decreasing,
indicating that the periods are lengthening. Thus, at the beginning of the data the
major source of the variation is at frequencies .26 and above while at the end of
the data the variation is concentrated at frequencies .27 and below. In this regard it
is interesting to note that the instantaneous frequency, .26, associated with f ∗ = 53
at the initial observation, is almost exactly equal to the instantaneous frequency,
.27, associated with f ∗ = 157 at the final data point t = 381 (i.e., t� = 584�. Also it
should be noted that the sampling rate is not quite fast enough at the beginning
of the data. Again, since the origin offset is 203, then the actual times, t�, at
which observations are recorded are 204� 205� � � � � 584. The Nyquist frequency for
the equally spaced data is 1/2, so the highest instantaneous frequency that can be
detected at a given t, is f = f�hk
 f ∗� ≤ 1/2� The instantaneous frequency at t� =
212� i.e., at t = 9, is given by f�t
 f ∗� = ���̂+ t��e1/f

∗ − 1��−1 which for f ∗ = 106 and
�̂ = 212 is given by f�9
 106� = �212�e1/106 − 1��−1 ≈ �5. Thus, beginning at about the
9th data value, we can detect the M-frequency f ∗ = 106. This is visually displayed in
Fig. 9 in the sense that initially we cannot visually detect the frequencies associated
with M-frequencies of 106 and 157. However, by the 9th data point we begin to

Table 3
Factor table for Euler(11) fit for large brown bat data, ĥ = 1�00278

Absolute reciprocal M-frequency Dual frequency Factors

�997 53�2 �148 1− 1�195B + �993B2

�996 105�8 �294 1+ �539B + �991B2

�970 0�0 �0 1− �97B
�955 156�7 �435 1+ 1�753B + �911B2

�706 61�1 �170 1− �684B + �498B2

�658 135�9 �377 1+ �944B + �433B2
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Nonstationary and Time Deformation 179

Figure 5. Sample ACF (a) and sample M-ACF for data in Fig. 6(a).

see the appearance of f ∗ = 106. Actually, we can detect M-frequencies up to 102
from the beginning. Although the power does fall off quickly in a neighborhood of
106, there is still significant power at 102. Consequently, the frequency at 106 can
also essentially be seen from the beginning. However, the instantaneous frequency
associated with f ∗ = 157 cannot be fully detected until about t� = 314 , i.e., it
cannot be fully seen until approximately the 111th observation in Fig. 4(a).

This now explains the unusual appearance of the data beginning around the
81st data point. It actually appears that the data are joined by an “interfering” signal
at this point. However, this is not the case. Instead, up to this point, this highest
frequency of the underlying signal has been too high to detect at this sample rate,
and as a result has been completely aliased until approximately the 81st value at
which point the associated instantaneous period becomes sufficiently long that it can
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180 Gray et al.

Figure 6. Spectral estimates for large brown bat data.

be seen. From the Euler(11) spectral estimator and the M-sample spectrum it can
be seen that the power is increasing from about f ∗ = 142 to the peak at f ∗ = 157.
The appearance of a third cycle at about the 81st sample point (i.e., before the 111th
point) is due to the power in the signal in the neighborhood of the peak at f ∗ = 157.

In Fig. 10(a) we show the modulus of the continuous wavelet transform while
in Fig. 10(b) we show the Gabor transform. These graphs were obtained using the
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Nonstationary and Time Deformation 181

Figure 7. Residuals from models fit to large brown bat data.

Rwave package, and involve a transformed version of the frequency axis. In the case
of the wavelet transform the vertical axis is based on “scale” which is an inverted
version of frequency. These window-based presentations of the time-varying spectral
content also tend to show a portion of the fundamental and its first harmonic, and
in the case of the Gabor transform, a slight indication of the second harmonic.
However, the zero frequency is not visible in either case. Some improvement can
be obtained by determining an optimal kernel based on the Wigner distribution.
However, in these representations, the periodic behavior toward the beginning
and end of the realization are not seen, and the second harmonic is barely
visible while the zero frequency does not show up at all. (See http://www-
dsp.rice.edu/software/optkernel.shtml.) As described above, examination of the
data shows that the instantaneous spectrum does an excellent job of describing the
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182 Gray et al.

Figure 8. Forecasts based on AR(--) and Euler (++) fits to data in Fig. 4(a).

frequency behavior throughout the entire realization. The improvement is obtained
since, in contrast to the window-based methods, M-stationary analysis actually uses
the entire data set to estimate spectral information at each frequency. A remark
should be made concerning the zero frequency. Since this frequency does not change
with time, its graph essentially coincides with the t axis. As a result, the gray scale
may not show the zero frequency as clearly as the other frequencies. However,
inspection of the factor table or the M-spectrum confirms the presence of substantial
power at the zero frequency.
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Nonstationary and Time Deformation 183

Figure 9. Instantaneous spectrum for Euler(11) fit to data in Fig. 4.

Another useful representation of the time-varying frequency behavior at time
t can be obtained by plotting S�f� t
 A� = GX�f

∗� at the values of t where A

is the origin offset. Thus, for each t one can obtain a spectral plot displaying
the instantaneous frequency behavior in a format similar to the usual spectrum.
For example, in Figs. 11(a)–(d) we show the time varying spectral plots for t =
1� 14� 114� and 381. There it can be seen that at t = 1 only one peak is visible,
while the second peak is seen by about the ninth observation. The third peak in the
spectrum begins to appear by time t = 114, and at the end of the series, three peaks
are still present. In general it is clear that M-frequencies are being mapped into
instantaneous frequencies at time t are becoming closer to zero (i.e., are becoming
lower frequency) as t increases.

To summarize, we note the following.

1. The M-stationary model seems to be an excellent model for the data and is far
superior to the AR model in this case, even though the period is expanding
slowly.

2. The notion of instantaneous frequency has been well demonstrated and it has
shown that for a fixed hj , f = f�hk
 f∗� so that the M-frequency determines the
instantaneous frequency at each time point.

3. We have provided a useful visualization of the spectral content of the linearly
expanding periodicity (and the corresponding decaying frequency) in time.

4. It was demonstrated that as time evolves and periods lengthen, frequencies not
seen previously in the data may become visible as time increases.
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Figure 10. Window-based representations for data in Fig. 4(a).

In this example, from the start there was a question as to whether or not
autoregressive or M-stationary models were appropriate. As it turned out, the AR
model was not satisfactory and the M-stationary model performed very well.

In the next example we consider another bat signal where at a glance, it is not
obvious that an AR model is not satisfactory. However, the software referenced
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Nonstationary and Time Deformation 185

Figure 11. Spectral plots showing instantaneous frequency behavior in data from Fig. 4(a)
at four different time points. Top left, t = 1; top right, t = 14; bottom left, t = 115; bottom
right, t = 381.

earlier does identify the M-stationary model as the appropriate model. This will be
explained in more detail in the final section of this article.

Example 7.3. The data consist of 280 observations taken from a Nyctalus noctula
hunting bat echolocation signal at 4× 10−5 second intervals. This data set was
studied recently by Jiang et al. (2003). We briefly analyze these data in the same
manner as the previous example and find a strong similarity in structure, although
the frequencies involved are quite different. We compare the AR model to the Euler
models for purposes of describing the behavior of the data. In this case AIC selects
an AR(7) while the algorithm introduced here picks an Euler(12) with origin offset
188 where a maximum order of 13 was allowed in each case. Figure 12 shows the
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Figure 12. Echolocation signal from a Nyctalus noctula hunting bat.

data, and close inspection indicates that the cycles are indeed elongating. Figure 13
shows the forecasts of the last 30 points using the AR and Euler models. It can be
seen that the Euler forecasts do an excellent job of tracking the elongating cyclic
behavior while the AR forecasts quickly get out of phase.

Figure 14(a) shows the sample spectrum and the AR(7) spectral estimator
while Fig. 14(b) shows the M-sample spectrum and the Euler(12) spectral estimator.
Inspection of Fig. 14(a) shows that the AR model gives a very broad spectrum.
However, Fig. 14(b) indicates that the Euler model has M-frequencies primarily

Figure 13. Forecasts of AR(--) and Euler(++): the last 30 points.
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Nonstationary and Time Deformation 187

Figure 14. Spectral estimators for Nyctalus noctula hunting bat signal.

concentrated at the M-fundamental and its M-harmonics, which in this case are
given by 37k� k = 1� 2� 3 along with a peak at zero. These peaks are clearly seen in
Fig. 14(b) and are also displayed in Table 4 where the factors of the Euler(12) model
are shown along with their proximity to the unit circle. It is clear that the highest
M-frequency that will have much effect on the cycles in the data is f ∗ = 112.
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188 Gray et al.

Figure 15. Instantaneous spectral estimates for data in Fig. 11.

Figure 15(a) shows the sample instantaneous spectrum (i.e., the instantaneous
spectrum based on the sample M-spectrum) while Fig. 15b shows the Euler(12)
instantaneous spectrum. There the harmonics seen in Fig. 14(b) are clearly visible
in both plots and it can be seen that the frequency behavior is decreasing with time.
Also in both plots it can be seen that the instantaneous frequency, .20, associated
with the M-fundamental frequency, i.e., f ∗ = 37, at the beginning of the data is
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Nonstationary and Time Deformation 189

Figure 16. Window-based representations for data in Fig. 11.

higher than the instantaneous frequency, .16, associated with the M-frequency of the
middle peak in the M-spectrum, i.e., f ∗ = 75, at the end of the data set. A similar
behavior was noted in Example 7.2. In Fig. 16 we show the continuous wavelet
and Gabor transforms of the hunting bat echolocation signal. Interestingly, these
transforms only show one time-varying frequency in the data.
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190 Gray et al.

Table 4
Factor table for Euler(12) fit for nyctalus noctula hunting bat data, h = 1�00326

Absolute reciprocal M-frequency Dual frequency Factors

�998 37 .12 1− 1�445B + �995B2

�986 75 .24 1− �070B + �972B2

�959 112 .37 1+ 1�269B + �919B2

�872 6 .02 1− 1�728B + �760B2

�809 52 .17 1− �789B + �654B2

�759 147 .48 1+ 1�502B + �576B2

Realizations of length n = 280 were generated from the Euler(12) model
factored in Table 4 in order to compare the instantaneous spectrum with the Gabor
and wavelet transforms. In Fig. 17(a) we show the instantaneous spectrum for
a representative realization and in Fig. 17(b) we show the corresponding Gabor
transform. From Table 4 and Fig. 13(b) it can be seen that the Euler (12) model used
to generate the realization has multiple frequencies. It is clear that the instantaneous
spectrum in Fig. 17(a) does a better job of identifying the multiple frequencies
that are in the model than does the Gabor transform in Fig. 17(b). The wavelet
transform gave results similar to those of the Gabor transform and is not shown
here. The results shown in Fig. 17 are representative of those seen in the generated
realizations.

Before concluding this example we note that transforming the frequency axis to
Hz shows that the lowest frequency in Hz for the large brown bat in Example 7.2
ranges from 38,000Hz at the beginning of the series to about 15,000Hz at the end.
These values are about an order of magnitude higher than those for the hunting bat.

7.2. Monotonic Time Varying Frequencies (MTVF)

As was stated earlier, the problem of the analysis of processes with time varying
frequencies (TVF) is a long-standing one. Some of the more common data of
this type are chirps and Doppler signals. For example, deterministic signals of the
form cos��2t

2 + �1t�, cos��3t
3 + �2t

2 + �1t� and cos��1 + �2e
bt�, are referred to as

linear, quadratic, and exponential chirps, respectively, and are quite common in
radar, sonar, and communication theory. For an interesting medical application see
Xu et al. (2000). All of these signals generally have monotonic time varying
frequencies (MTVF) over the time period of interest.

An element of stochasticity can be added to each of these MTVF signals by
adding random noise, and to date that is essentially the extent of progress in this
area. However, using the time deformation method employed here it is possible
to dramatically extend chirp, Doppler, and other MTVF signals to corresponding
stochastic processes where, in essence, sets of such functions furnish the basis of the
correlation structure in the same way as 	cos �kt� sin �kt� do for stationary models,
and 	cos �k ln t� sin �k ln t� do in the M-stationary case as shown by (2.10). Each of
these MTVF processes can be transformed to stationarity using the proper time
transformation or by sampling appropriately.

This has been done for processes referred to as G��� processes in Jiang et al.
(2003). These processes are shown to have a frequency structure that changes
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Nonstationary and Time Deformation 191

Figure 17. Spectral displays for data simulated from Euler(12) model factored in Table 4.

asymptotically like �t� for some � and �. Moreover, if � = 1, these processes are the
usual stationary processes while if � = 0, these processes are M-stationary processes.
For � > 1 the waveforms contract while for � < 1 they expand. A complete
development of such processes as well as of linear, quadratic, and exponential
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192 Gray et al.

chirp processes will be the topics of several future papers. For a rather complete
development of G��� processes see Jiang et al. (2003). For linear and quadratic chirp
processes, see Liu et al. (2004).

8. Concluding Remarks

In this article we have expanded the properties and applications of the discrete M-
stationary process introduced by Vijverberg and Gray (2003). The concept of the
instantaneous spectrum of an M-stationary process has been introduced in a natural
way. Through the instantaneous spectrum we have demonstrated that when the data
have a quasi-periodic structure that lengthens approximately linearly in time, the M-
spectrum describes the changing frequency with time more accurately than current
methods. In current research we have extended these results to the case in which
the periodic structure changes like at�� a > 0�−� < � < �, as well as to linear and
quadratic chirps.

Finally, we should mention that since the equally spaced data from a continuous
M-stationary process can be viewed as unequally spaced data from a continuous
autoregressive process, one could conceptually avoid interpolation by employing the
Kalman filter. However, for the higher-order processes the algorithm may become
unstable. The authors are presently examining this approach.
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