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Summary

It is well known (Searle, Casella, and McCulloch, 1992, pages 321-325) that re-

stricted maximum likelihood estimators of variance components in a two component

mixed linear model are equivalent to Bayes estimators using a flat or improper prior

for the fixed effects. This is due to a certain algebraic identity involving location

families. A similar algebraic identity involving scale families is introduced, and used

to show that the restricted maximum likelihood estimator of the intraclass correlation

coefficient is also a Bayes estimator using an improper prior for one of the variance

components.

Some key words: Bayesian inference, improper priors, intraclass correlation coefficient,

marginal likelihood.

1. Introduction

This note demonstrates a connection between restricted maximum likelihood es-

timation of the intraclass correlation, ρ, in a mixed linear model and “objective”

Bayesian inference using improper priors for the nuisance parameters. A novel iden-

tity for scale families is introduced and applied in demonstrating the equivalence of

the seemingly different methods of deriving estimators. A one-dimensional posterior

distribution for ρ, or equivalently a marginal likelihood function for ρ, is derived.

There are practical implications to the result which are briefly described at the end

of the paper.

2. Restricted likelihood and Bayesian inference
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For brevity and simplicity, we will illustrate the connection using the one-way

random effects model. Extension to the general mixed linear model is conceptually

simple and involves just a little more algebraic complexity in dealing with the fixed

effects. Consider the one-way random effects model given by

Yij = µ + Ai + eij, (1)

where i = 1, ..., a, j = 1, ..., bi, and
∑a

i=1 bi = n. Yij is the jth observation associated

with the ith class or group of factor A. The a groups of A in the model are assumed to

be randomly selected from some large population of groups. Furthermore, a random

sample of size bi has been obtained from the ith group. The random error is eij. It

is assumed that the Ai are a random sample from a N(0, σ2
1) distribution, the eij

are a random sample from a N(0, σ2
2) distribution, and that Ai and eij are mutually

independent. In addition, σ2
1 ≥ 0 and σ2

2 > 0. The overall mean of Yij , µ is a fixed

but unknown quantity.

Often the main objects of the inference are the variance components, with µ

representing a nuisance parameter. Under this scenario, a preferred mode of inference

is to use restricted likelihood, see for example Harville (1974). There are several ways

to obtain the restricted likelihood function. One way is to transform the data to a set

of minimal sufficient statistics (Ȳ.., Q1, ..., Qd), where Ȳ.. is the overall mean and the

Qi are quadratic forms that are a set of minimal sufficient statistics for the model void

of the fixed effect. The Qi are independent σ2
2(1 + ∆iρ/(1 − ρ))χ2

ri
random variables

where ∆i and ri are related to the design of the experiment. See Burch and Harris
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(2001) for more details on the derivation and form of the Qi and the values of ∆i

and ri. The Qi are independent of Ȳ.., so integrating with respect to Ȳ.. produces a

marginal likelihood which is a function of σ1, σ2 alone. See Searle et al. (1992) for

details. The marginal likelihood, or joint density of the Qi is then just a product of

scaled χ2 densities.

As shown by Searle et al. (1992), one can also obtain the restricted likelihood

function from the full likelihood by integrating out the unwanted fixed effect param-

eters using flat or improper priors. That this is equivalent to the marginal likelihood

derivation is due to the algebraic identity,

∫
f(m − µ)dm =

∫
f(m − µ)dµ, (2)

with m = Ȳ... So the restricted likelihood can be obtained from the full likelihood

function by integration with respect to the overall sample mean or the unknown

population mean.

Often the parameter of interest is the intraclass correlation, defined as ρ =

σ2
1/(σ

2
1 + σ2

2). The purpose of this note is to demonstrate that there is a further

connection between Bayesian inference and restricted likelihood in finding the re-

stricted maximum likelihood estimator for ρ. To see the connection we must first

derive a marginal likelihood function for ρ whose maximum is the restricted maxi-

mum likelihood estimator for ρ.

To find the marginal likelihood function, transform the vector of Q’s to Q,Y2, ..., Yd,

where Q = Q1 and Yi = Qi/Q1, i = 2, ..., d. By simple Jacobian transformation, the
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joint density function of Q,Y2, ..., Yd is

fQ,Y (q, y) =
d∏

i=1

2−ri/2Γ(ri/2)
−1

d∏

i=2

y
ri/2−1
i

d∏

i=1

(
1 +

ρ

1 − ρ
∆i

)−ri/2

σ
−
∑d

i=1
ri

2

×q
∑d

i=1
ri/2−1 exp

{
− q

2σ2
2

(
1 − ρ

1 + ρ(∆1 − 1)
+

d∑

i=2

yi(1 − ρ)

1 + ρ(∆i − 1)

)}
.(3)

Maximization of fQ,Y with respect to ρ and σ2
2 will give the restricted maximum

likelihood estimators of these parameters. Now factorize this joint density function

into fY fQ|Y , where the marginal density function of Y is given by

fY =
Γ(
∑d

i=1 ri/2)∏d
i=1 Γ(ri/2)

d∏

i=2

y
ri/2−1
i

∏d
i=1(1 + ρ(∆i − 1))−ri/2

(1 + ρ(∆1 − 1))−
∑d

i=1
ri/2

×
(

1 + (1 + ρ(∆1 − 1))
d∑

i=2

yi

1 + ρ(∆i − 1)

)−
∑d

i=1
ri/2

, (4)

and the conditional density of Q given Y is given by

fQ|Y ∝
(

h(ρ)

σ2
2

)∑d

i=1
ri/2

exp

(
−qh(ρ)

2σ2
2

)
.

Here q is the observed value of Q1 and h(ρ) is a somewhat complicated function of ρ,

not involving q or σ2
2.

Note that fY is a function of ρ alone as Y are a set of pivots for ρ. If fQ|Y was

a function of σ2
2 alone then finding the restricted maximum likelihood estimator of

ρ would be easy, we would just maximize fY with respect to ρ. This of course is

equivalent to saying Y is sufficient for ρ. However, fQ|Y is also a function of ρ, so

this term cannot just be dropped. Curiously, this term does not play a role in the

maximization, as one can see using a profile approach to the maximization. First

maximize with respect to σ2
2, with ρ fixed to obtain σ̂2

2(ρ) = Bh(ρ)/A for some
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constants A,B. Then substituting this back into fQ|Y we obtain an expression devoid

of ρ. The end result is that one can find the restricted maximum likelihood estimator

of ρ by directly maximizing fY with respect to ρ.

The above is not a Bayesian argument. To make the connection we argue as

follows. The marginal density fY is obtained by integrating out Q from the joint

density fQ,Y . Now fQ,Y is of the scale density form τ−1f(q/τ ) with respect to q and

τ = σ2
2. There exists a simple, but apparently unknown algebraic identity for such

scale densities which is

∫ ∞

0
τ−1f(q/τ )τ−1dτ = q−1

∫ ∞

0
τ−1f(q/τ )dq. (5)

This follows by simple substitution of t = q/τ in both integrals. Although (5) is a

straightforward result, the Authors are not aware of it being reported in the literature.

Arguably, (5) is as important as (2) in that like (2) it relates integration with respect

to the parameter to integration with respect to the random variable.

Now in terms of deriving a likelihood function for ρ alone, the q−1 term on the

right hand side of (5) plays no role, so from a likelihood approach, integrating with

respect to q is equivalent to integrating with respect to σ2
2 with an improper prior

σ−2
2 . But integrating with respect to q is precisely what is needed to obtain fY . Hence

the restricted maximum likelihood estimator of ρ is also a Bayesian posterior mode

using an improper prior for the nuisance parameter σ2
2.

3. Implications and uses of the result

There are two interesting theoretical features of the connection here. The first

5



is the demonstration of a novel identity for scale families, and an illustration of it’s

use. It remains to be seen whether there are any more applications of the identity.

The second interesting result is a further connection between restricted maximum

likelihood estimation, marginal likelihoods and “objective” Bayesian inference.

In addition to the theoretical results there are some practical uses for the marginal

likelihood for ρ. This is a one-dimensional function on a bounded parameter space,

so simple and reliable bisection search algorithms can be used to find the restricted

maximum likelihood estimator for ρ. A second practical use is in finding Bayesian

means via numerical integration. Again, this is a one-dimensional function, so the

integration is relatively simple and should be more reliable and faster than algorithms

used for two-dimensional posterior distributions. This could be a particular advantage

in large data sets.

The posterior mean for ρ will generally need to be found using numerical meth-

ods, except for very specific cases. Although these posterior means may make good

estimators from a frequentist viewpoint, the study of their properties is well beyond

the scope of this paper.
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