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1959 

Box, G.E.P. and Lucas, H.L. (1959). “Design of Experiments in Non-linear Situations,” 

Biometrika, 46, 77-90. 

 Seminal paper on the statistical optimality of D-optimal designs for estimating 

parameters in nonlinear models; applicable to fMRI designs when the goal is to fit 

the 6-parameter two-gamma models for the functional form of the HRF 

 

1971 

Box, M. (1971). “Bias in Nonlinear Estimation,” Journal of the Royal Statistical Society, 

Series B,  33, 171-201. 

 Difficulties in calculating exact bias for nonlinear estimation are illustrated 

 Method for calculating the exact bias in a class of nonlinear models is given 

 Applies to Bayesian estimation with uniform priors 

 

1972 

Wynn, H.P. (1972). “Results in the Theory and Construction of D-Optimum 

Experimental Designs,” Journal of the Royal Statistical Society, Series B,  34, 133-

147. 

 Provides an algorithm for generating D-optimal statistical designs 

 Provides theorems guaranteeing optimality under specified conditions 

 

1975 

St. John, R.C. and Draper, N.R. (1975), “D-Optimality for Regression Designs: A 

Review,”Technometrics, 17, 15-23. 

 Discusses and compares various design criteria. Provides an algorithm for finding 

D-optimal designs.  

 

1994 

Friston, K.J., Jezzard, P., Turner, R. (1994), “The Analysis of Functional MRI Time-

Series,” Human Brain Mapping, 2, 69-78. 

 Characterizes the form of the HRF using least-squares deconvolution and a linear 

time invariant (LTI) model. Assumes a Poisson HRF, and uses the data to 

estimate the one parameter.  They then use cross-correlation between the data and 

the convolved HRF to determine activation. 

 In the framework of statistical parametric mapping. 

 No colored noise is accounted for. 
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1995 
Albert, P.S. and McShane, L.M. (1995). “A Generalized Estimating Equations Approach 

for Spatially Correlated Binary Data: Applications to the Analysis of Neuroimaging 
Data,” Biometrics, 51, 627-638. 

 
Friston, K.J. Frith, C.D. Frankowiak, R.S.J., and Turner, R. (1995a). “Characterizing 

Dynamic Brain Responses with fMRI: A Multivariate Approach.” NeuroImage, 2, 

166-172. 

 Argues that fMRI data should be taken rapidly, second by second since the shape 

and duration of the HRF changes rapidly in a few seconds. 

 Possible sources of nuisance trends (physiological biorhythms and stimulus 

correlated motion).  Trends are usually approximated with low-order polynomials 

and long-period sinusoids. 

 Uses MANCOVA to model all voxels simultaneously, getting one p-value. 

Implicitly accounts for spatial correlations without making any assumptions of 

form. Uses canonical variates to characterize the HRF without specifying a form. 

 Scans are divided into epochs that correspond to a particular task or condition. A 

single multivariate response variable contains all the voxels in one scan. 

 Low frequency artifacts and global effects removed by linear regression, data 

centered before eigenvectors and eigenvalues extracted. X* contains columns for 

corrected voxel values and rows are individual scans. 

 Volumes (consisting of 10 transverse sections) acquired every 3s. 120 volumes 

acquired. Three conditions in blocks of 10 scans, each condition repeated 4 times, 

each time constituted a 30s epoch. Confounds are global activity and sine/cosine 

functions up to a max of 2.5 cycles/120 scans. Voxel values > 0.8 volume mean 

used to restrict to intracranial regions. 

 An early approach using GLM with Fourier basis functions to model the time 

series and using canonical variates analysis to describe important features of the 

model. First introduction of basis functions to model “evoked responses in fMRI” 

(Friston et al. 1999). Advantage: can model voxel-specific forms of HRFs. 

 The author mentions possible sources of nuisance trends (physiological 

biorhythms and stimulus correlated motion).  Trends are usually approximated 

with low-order polynomials and long-period sinusoids. 

 Fig 4 shows an immediate HRF response to a fixed schedule of stimuli and a 

delayed, with initial undershoot, HRF response to a random schedule of stimuli. 

Fig. 5, for another individual, shows a longer sustained HRF for the random 

stimuli but activations for both fixed and random stimuli begin immediately. 

 

Friston, K.J., Holmes, A.P., Poline, J-B., Grasby, P.J., Williams, S.C.R., Frankowiak, 

R.S.J., and Turner, R. (1995b). “Analysis of fMRI Time-Series Revisited,” 

NeuroImage, 2, 45-53. 

 These authors consider a general linear model with convolution of an estimated 

HRF, and other effects. In the example they use a Gaussian kernel. 

 Autocorrelations are considered almost completely accounted for by the 

convolution. 
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 Hypothesis testing is done with “effective degrees of freedom”. 

 

Worsley, K.J. and Friston, K.J. (1995). “Analysis of fMRI Time-Series Revisited – 

Again.,” NeuroImage, 2, 173-181. 

 Provides exact, correct linear model results to replace an earlier paper (Friston et 

al. 1995b) where heuristic arguments were given. Uses least squares on smoothed 

(i.e., convolved) responses represented by Kx. Corrected variances and test 

statistics. Cites well known generalized least squares results (e.g., Seber 1977) for 

effective degrees of freedom (usual trace functions).  

 Did not apply correct generalized least squares estimation but argued by several 

means that the least squares results are unbiased (true) and the loss of efficiency is 

more than offset by the gain in robustness because generalized least squares 

requires the correct specification of K
-1

.  

 

1996 

Boynton, G.M. Engel, S.A., Glover, G.H., and Heeger, D.J. (1996). “Linear Systems 

Analysis of Functional Resonance Imaging in Human V1”, The Journal of 

Neuroscience, 16, 4207-4221. 

 Experiments designed to evaluate the linear transform model of fMRI responses 

using visual stimulation, evaluates whether stimulus timing and contrast (visual) 

were separable, whether response to long stimuli could be predicted form 

responses to short stimuli, and whether noise was independent from stimulus 

contrast and temporal period. 

 Two types of block designs (note: not event-related, shortest block = 3 sec.) 

 Periodic: alternating checkerboard and gray panels, moving left, with periods 

of 10, 15, 30, and 45 sec.; total stimulus duration 192 sec., first 12 sec. 

discarded; 120 images in record of 180 sec. (TR = 1.5 sec.) 

 Pulse: Full field checkerboard of duration 3, 6, 12, and 24 sec. followed by 

gray field for 24 sec.; 6 cycles repeated for the full scan – total duration 

depending on the pulse duration. 

 fMRI response: 

 Periodic: amplitude of the sinusoid that best fits the series: amplitude and 

phase taken from the discrete FFT of the time series at the stimulus temporal 

period. Averaged across all voxels in the calcarine sulcus. 

 Pulse: average of the 6 blocks of stimuli times, averaged across all voxels in 

the calcarine sulcus. 

 Confirms separability of contrast stimulus and stimulus timing. 

 Confirmed linearity of pulse timing: response to stimulus of s sec. is the sum of s 

consecutive responses (each delayed by the stimulus timing) for 1 sec. 

 A response of contrast magnitude c is c times the response to a contrast of 

magnitude 1. 

 Uses a gamma HRF and a power curve for the contrast magnitude; models the 

stimulus-evoked fMRI response as a product of the contrast function and the HRF 

convolved with the stimulus. 

 Reports that Menon et al.(1995) found an initial decrease in signal (attributed to 

initial deoxygenation) then increase due to oxygenated hemoglobin. 
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Buckner, R. L., Bandettini, P.A., O‟Craven, K.M., Savoy, R.L., Petersen, S.E., Raichle, 

M.E, and Rosen, B.R. (1996). “Detection of Cortical Activation During Averaged 

Single Trials of a Cognitive Task Using Functional Magnetic Resonance Imaging,” 

Proceedings of the National Academy of Sciences, 93, 14878-14883. 

 Authors investigate single trial paradigms and their ability to show activation.  A 

block trial paradigm was used for comparison. 

 They averaged the signal across runs, subjects, and blocks (or single trials). 

 

Bullmore, E., Brammer, M., Williams, S.C.R., Rabe-Hesketh, S., Janot, N., David, A., 

Mellers, J., Howard, R., and Sham, P. (1996). “Statistical Methods of Estimation and 

Inference for Functional MR Image Analysis,” Brain Activation Mapping for fMRI, 

34, 261-277. 

 Fits linear and sinusoidal (at the fundamental frequency of the boxcar stimulus 

function + first two harmonics)  regression model terms to data from a block 

design with 30 sec. activation and 30 sec. rest over 5 complete cycles. Then 

estimates an AR(1) error term and refits using (estimated) generalized least 

squares and arima.mle from S-Plus. Fits are very close. Demonstrates the biased 

(too small) standard errors that OLS gives if the AR term is ignored. 

 Uses randomization techniques to identify activated voxels. 

 

1997 

Dale, A. M. and Buckner, R. L. (1997). “Selective Averaging of Rapidly Presented 

Individual Trials Using fMRI,” Human Brain Mapping, 5, 329-340. 

 Major impediment to block trials: do not allow separate trials within task blocks 

to be distinguished. Must accept many repetitions of one trial type. Advocates 

single-trial or event-related designs. 

 Goal: establish that hemodynamic response to rapidly presented isolated trials 

adds in a linear fashion and individual trials can serve as the basis for mixed trial 

designs.  

 Compared single-stimulus fMRI responses with two- and three-stimulus 

responses. Two stimuli 5 sec. apart and three stimuli 2 sec. apart were examined. 

Concluded that responses were additive and that the individual stimuli responses 

could be obtained by subtraction. 

 Showed that visual stimuli localized to one hemisphere could be detected using 

intermixed trial paradigms. 

 

Holmes, A. P., Josephs, O., Buchel, C., and Friston, K.J. (1997). “Statistical Modeling of 

Low-Frequency Confounds in fMRI”, NeuroImage, 5, S480. Poster. 

 Use cosine functions with 7 periods kπ(s+24)/84, where s is the scan number (1 – 

84). Fastest period (7) has 3 ½ cycles; whereas the boxcar stimulus has 7 cycles. 

Long-periods (7) in a regression model with 7 columns acts as a high-pass filter 

(removes those cycles from the fit). Claims to remove aliased cardiac and 

respiratory effects.  No proof that‟s what they are. 

 Darcie: Also, it makes no sense to me to model cardiac and respiratory effects 

with LONG period functions.  They should be faster. 
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Josephs, O., Turner, R., Friston, K. (1997). “Event-Related fMRI,” Human Brain 

Mapping, 5, 243-248. 

 Model a convolved HRF with an equally spaced event-related ISI using basis 

functions for the unconvolved HRF. 

 Assume that each HRF is zero when a new stimulus is given – there is no overlap 

of HRF functions. 

 Use Fourier series basis functions to create a GLM, different parameters for each 

voxel. Says that these sinusoidal basis functions account for phase shift in 

acquisition and that with other basis functions derivatives should be added to the 

model. This renders non-Fourier models less sensitive to artifactual phase 

differences.”  Inferences are then used to create a statistical parametric map. 

 Assume a constant ISI and choose it in such a way as to sample the HRF at a 

higher frequency than the TR; states that block designs can be confounded with 

psychological factors such as attention span and habituation. 

 Seem to be the first use of an SPM{F} map. 

 

Lange, N. and Zeger, S.L. (1997). “Non-linear Fourier Time Series Analysis for Human 

Brain Mapping by Functional Magnetic Resonance Imaging,” Applied Statistics, 46, 1-

29. 

 Use a gamma function with spatially varying shape and scale parameters to model 

fMRI data. No undershoot in their model. DFT estimation equations. 

 

Zarahn, E., Aguirre, G.K., and D‟Esposito, M.D. (1997). “Empirical Analyses of BOLD 

fMRI Statistics,” NeuroImage, 5, 179-197. 

 Observations made that suggest fMRI data might be autocorrelated (Friston et al. 

1994, Boynton et al. 1996). Previously suggested that intrinsic autocorrelation 

might be negligible relative to autocorrelations introduced after smoothing (i.e., 

fitting linear models; Friston et al. 1995b). 

 Temporal autocorrelations and spatial coherency (cross-correlations of voxel time 

series) were studied in human „noise‟ datasets (no stimulus presentation) and also 

with water phantoms. Defined “global signal” as the average brain voxel time 

series: spatial coherence could be due to a stationary, continuously differentiable 

spatial autocovariance function or to other types of spatial smoothness. Included 

spatial global signal covariates to determine if the global signal was physiological 

or affected by the type of brain matter.  

 Water Phantom: Experiment 1 assessed whether computers used for stimulus 

presentation contributed noise to fMRI time series and whether there were 

differences in computer noise. Experiment 2 assessed whether LCD panels 

contributed.  

  Correlations were present in the water phantom, implying they were not 

physiological processes. 

 1/f and exponential models were considered in fitting the periodogram of the data 

for the 17 human “noise” subjects.  See the Wiener-Khinchin Theorem and DFT 

inverse to understand the relationship between the power spectrum of the signal 

and autocorrelation. 1/f models fit the data but there was also a white-noise 
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component. The first 13 subjects had less noise than the last 4, suggesting that 

over the months of data-gathering additional noise from the computers affected 

the last 4 subject measurements.  

 One subject compared to the phantom showed that the 1/f error component is not 

due to physiological processes. 

 Even though the data were noise data, GLM results (with Fourier basis functions) 

were analysis to examine the effect of intrinsic autocorrelation on test statistics.  

Interestingly, activation was determined using R>.2. 

 Overall Conclusions: 

 temporal autocorrelations for both human noise data and water phantom data 

are 1/f frequency error processes with white noise 

 the 1/f error component could not be explained by motion, equipment, or 

convolution of neuronal activity 

 when a GLM model was used to model intrinsic autocorrelations, the 

empirical model proved to be invalid, suggesting a spatially nonstationary 

temporal autocorrelation structure 

 spatial coherency was demonstrated, with greater coherence at lower 

frequencies; could not be explained by a continuously differentiable 

autocorrelation function 

 

1998 
Aguirre, G.K., Zarahan, E., and D‟Esposito, M. (1998). “The Variability of Human, 

BOLD Hemodynamic Responses,” NeuroImage, 8, 360-369. 

 Previous work, going back to Boynton et al. (1996), used a single gamma model 

for all subjects; more recent work suggests individuals might vary in the 

parameterization of the HRF. This paper investigates this hypothesis.  

 Event-related design, with ISI = 16 sec. Averages signal for each subject over the 

epochs after the stimulus applications. Previous studies (e.g., Dale and Buckner 

1997) indicated return to baseline after 16 sec. TR = 2 sec gave 160 images per 

slice across a 320 sec (20 trials) scan. 

 GLM using a Fourier basis set of 3 sines and 3 cosines at .0625 (16 sec/cycle or 

1/16 cycle/sec), .125, .1875 Hz (Josephs et al. 1997). These 6 covariates + 

adjustment for Nyquist and testing frequencies provide a complete basis set for 

the 8 time points per activation. 

 Significant subject variability, much less within-subject variability over different 

scans. 

 

Burock, M, Buckner, R.L., Woldorff, M.G., Rosen, B.R. and Dale, A.M. (1998). 

“Randomized Event-related Experimental Designs Allow for Extremely Rapid 

Presentation Rates Using Functional fMRI,” NeuroReport, 9, 3735-3739. 

 Open question: how rapidly can individual trials be presented in event-related 

designs and still provide a powerful procedure for fMRI brain mapping. 

 Difficulty is the delay in HRF response and the evolution of the HRF over 10-12 

sec. On the other hand, longer ISIs restricts the choice of experimental paradigms 

and limits the number of trials available to detect signal changes. 
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 Solution: Randomized experimental designs allow one to overcome the overlap 

problem. 

 Design: 250 ms flickering checkerboard (left hemi-field, right hemi-field, 

fixation), 20s time series after each stimulus; stimuli 16, 3, 1 s for fixed interval 

experiment; and random (yes, no) application with mean ISIs the same as for 

fixed length ISIs for the randomized interval experiment.  

 Compares fixed ISI designs (1, 3, 16 sec) with randomly chosen ISIs that have the 

same mean ISI as the fixed designs; estimates the HRF function using non-

parametric methods (selective averaging). 

 Fixed interval ISI designs deteriorate to constant HRFs and the HRF 

cannot be estimated as the interval decreases 

 Random interval ISIs have increased variability but do allow the HRF to 

be estimated for shorter durations, even an average ISI = 1 sec. 

 The estimated HRF is compared to that empirically estimated by a 1 s 

checkerboard. 

 Concludes that for rapid presentation rates, randomly presentated stimuli are 

better for HRF estimation than one fixed ISI because there is more variance in the 

time series.  For a fixed ISI of 3 or 1, there is hardly variation in the time series. 

 References a Masters Thesis and states that “in a separate study investigating the 

effect of such non-linearities on the hemodynamic response estimates using rapid 

presentation, randomized event-related designs and analysis, we found that the 

estimates were largely insensitive to the kinds of long time-scale non-linearities 

that have been observed.” 

 

Friston, K.J., Josephs, O., Rees, G., Holmes, A., Rugg, M.D., and Turner, R. (1998a). 

“Event-Related fMRI: Characterizing Differential Responses,” NeuroImage, 7, 30-40. 

 Models the HRF as Fourier basis functions or a two-gamma function (can test for 

differences in magnitude) and its derivative (can test for differences in latency). 

Includes them in a regression model with confounding effects as covariates. 

 Uses GLM to calculate standard errors for any time t using the basis functions 

evaluated at t. 

 Equally spaced ISI (16 sec.). 

 Suggests an SPM{F} map for the combined effects of two different stimuli, and 

an SPM{t} map to contrast the stimuli. 

 Acknowledge that nonlinear components occur in HRFs (Friston et al. 1998, see 

below), but that this occurs when ISIs are too small. With reasonably spaced ISIs, 

the nonlinearities can be discounted. 

 

Friston, K.J., Fletcher, P., Josephs, O., Rees, G., Turner, R. (1998b), “Nonlinear Event-

Related Responses in fMRI,” Magnetic Resonance in Medicine, 39, 41-52. 

 Examine the significance of nonlinear aspects of the HRF. 

 Showed „interactions‟ between stimuli spaced closely together (1-2s apart), 

resulting in reduced responsiveness at very small ISIs. 

 Uses a Volterra series to model the times series nonlinearly.  Still uses a 

prescribed 2-gamma HRF that was estimated from a previous experiment in one 

voxel. 
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 Comments that temporal HRF derivatives were used to accommodate multislice 

acquisition.  Adding or subtracting the temporal derivative shifts the basis 

functions backwards or forwards in time. 

 Their experiment was done in the left temporal superior gyrus with a passive 

word experiment, similar to ours. 

 Notes a slight pre-undershoot. 

 “suggests that if neuronal activity has been high in the past few seconds, then the 

hemodynamic response will be suppressed.”  

 The HRF deviates from a linear relationship at higher event frequencies. 

 

McKeown, M.J, Makeig, S., Brown, G.G., Jung, Y-P, Kinderman, S.S., Bell, A.J., and 

Sejnowski, T.J. (1998). “Analysis of fMRI Data by Blind Separation Into Independent 

Spatial Components,” Human Brain Mapping, 6, 160-188. 

 Correlation techniques create a reference function by convolving the block design 

with a fixed HRF function. Those voxels whose signals correlate with the 

reference function above a threshold are designated as areas of activation.  

 Since task-related signal changes are typically small (<10%), other “component 

processes” having separate time courses and spatial extent produce the bulk of the 

signals. 

 ANOVA methods are based on the tenuous assumptions that 1) observations have 

known (e.g., Gaussian) distributions, 2) variances and covariances between 

repeated measurements are equal, 3) time courses of factors affecting the 

variances of the fMRI signal can be reliably estimated in advance, and 4) signals 

at different voxels are independent. None of the current modeling methods 

attempt to extract the intrinsic structure of the data. 

 Current methods typically require grouping or averaging data over several 

task/control blocks. This reduced the ability to detect transient changes due to 

changes in strategy by the subject, learning or habituation of task performance, 

fatigue, etc. 

 Principal components analysis (PCA) captures orthogonal spatial patterns or 

eigenimages that exhibit the greatest variability between pairs of voxels. 

However, if task-related fMRI changes are only a small portion of the total signal 

variance, retaining only those orthogonal eigenimages capturing the greatest 

variance in the data might reveal little information about task-related activations 

or other processes of interest. If voxels become simultaneously activated, methods 

based on voxel-pair associations might not capture the overall pattern of 

activation. 

 Brain function is based on two principles. Localization implies that each 

psychomotor function is performed principally in a small set of brain areas. 

Connectionism posits that the brain regions involved with a given psychomotor 

function may be widely distributed and require functional integration of activity 

in multiple loci or distinct brain systems.  

 The authors posit that brain areas activated by performance of a psychomotor task 

should be unrelated to brain areas whose signals are affected by artifacts such as 

head movements, machine noise, etc. – spatially-independent components.  
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 ICA models independent component time series of activities (activation, head 

movement, etc.) and a voxel‟s signal is a linear sum of the independent 

components. No a-priori assumptions need be made about the time courses of 

activation of the different components or the cause of any of the activations.  

 The ICA algorithm is an iterative unsupervised neural network learning algorithm 

based in information-theoretic principles. The ICA algorithm determines an 

unmixing matrix W from which the component maps and time courses of 

activation can be computed. 

N

1k
kjikij XWC

, where Cij is the value of the jth 

voxel in the ith component map, Xkj is the kth time point in the jth voxel, and N is 

the number of time points. Equivalently, C = WX. The data can be reconstructed 

from X* = W
-1

C, where each column of W
-1

 is a time course of one of the 

components.  

 The strength of this ICA approach is that it is completely nonparametric. The 

weakness is what does one have when one is finished? The independent 

component time courses still have to be identified. They still have to be shown to 

be consistent across groups of voxels. In the papers, either correlations with the 

stimulus vectors or various percentages of agreement are calculated. To the extent 

that high z values, correlations or percentages of agreement are achieved, the 

information is useful. 

 Seriously deficient in the approach is any ability to properly use spatial 

correlations. That is actually cited as a positive because contiguous activations 

due to stimuli might not be in contiguous groups of clusters. On the other hand, 

we have already seen the increase in power that is obtainable using contiguous 

blocks of spatially correlated signals. We ultimately -- if we are to perform whole 

brain analyses -- need to be able to identify noncontiguous groups of activated 

clusters. Perhaps ICA gives us a starting point. 

 

Rosen, B. R., Buckner, R. L., and Dale, A. M. (1998). “Event-Related Functional MRI: 

Past, Present, and Future,” Proceedings of the National Academy of Sciences, 95, 773-

780. 

 Survey of the history of fMRI studies. 

 Cerebral blood flow increases within 2 sec. of stimulus, peaking approximately 5-

7 sec. after stimulus. 

 Details the use of event-related paradigms, especially studies proving the efficacy 

of event-related designs to detect changes in signal. Cited 

 Savoy et al. (1995) for demonstrating a detectable event-related signal 

from a stimulus of only 34 msec. 

 Boynton et al. (1996) for LTI responses. 

 Dale and Buckner (1997) for mixed trial paradigms with short ISIs. 

 Buckner et al. (1996) as evidence that high-level cognitive functioning 

could be detected by event-related fMRI. 

 Courtney et al, (1997) for intermixed trials that separated encoding of 

stimuli from maintaining the stimulus in working memory; analysis 

identified brain areas activated during both encoding and maintenance 

but showed differential participation in the two kinds of processes. See 
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also Cohen et al. (1997). Both separated prefrontal areas from posterior 

ones. 

 Cautioned about nonlinearities in rapid ISI paradigms: unknown whether the HRF 

itself becomes nonlinear or the additivity breaks down. 

 

Vazquez, A. L. and Noll, D.C. (1998). “Nonlinear Aspects of the BOLD Response in 

Functional MRI,” NeuroImage, 7, 108-118. 

 Linear time-invariant HRF satisfy scaling (amplitude of the input increased by a 

factor of c, amplitude of the output similarly affected) and superposition (2 1 sec. 

stimuli result in additive HRFs, with the second one beginning 1 sec. after the first 

one) conditions. 

 Visual stimuli of 1, 2, 4, and 8 sec. (note: block design); stimulus contrast 10, 2, 

40, and 80% at 4 sec. 10 trials per stimulus duration or contrast.  

 The hemodynamic responses did show evidence of nonlinearity for stimulus 

durations < 4 sec and for contrasts less than 40%: 

 Short ISIs result in responses that are larger in amplitude and shorter in 

duration than predicted by a linear time-invariant (LTI) model; Boynton et 

al. (1996) reported similar results for the short duration (3 sec.) stimuli. 

 This suggests that a short, intense visual stimulus could give similar results 

to a longer, weaker stimulus. 

 Duration manipulation study: predicted amplitudes greater than observed. 

 

1999 

Dale, A.(1999). “Optimal Experimental Design for Event-related fMRI,” Human Brain 

Mapping, 8, 109-114. 

 Randomized ISI designs have better efficiency thatn fixed ISI designs for event-

related designs.  

 Widely reported that using ISIs of at least 15 s is optimal, shorter ISIs result in 

serious lack of power. Cites Cox and Bandettini 1998, Hutton et al. 1998. Other 

studies report success with ISIs as short as seconds. Cites Buckner et al. 1998, 

Burock et al. 1998, Clark et al 1998, Dele and Buckner 1997, Wagner et al. 1998. 

 Explanation: Accuracy or efficiency is not determined by the mean ISI but by the 

entire distribution of ISIs. 

 Authors use GLM methods with an empirically defined HRFs and selective 

averaging techniques to estimate the HRF.  Efficiency of the estimates is 

examined for different mean ISIs; fixed vs variable. 

 For a fixed design, it‟s more efficient to have long ISIs.  For variable designs, the 

smaller mean ISI, the better efficiency.  This is assuming LTI. 

 If ISI is jittered, efficiency improves monotonically with decreasing mean 

ISI 

 If ISI is kept stable, efficiency decreases with decreasing mean ISI 

 Recommends generating a lot of stimulus vectors with the same mean ISI and 

picking the one with the best efficiency. 
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Eddy, W.F., Fitzgerald, M. Genovese, C., Lazar, N., Mockus, A., and Welling, J.(1999). 

“The Challenge of Functional Magnetic Resonance Imaging,” Journal of 

Computational and Graphical Statistics, 8, 545-558. 

 Survey of statistical and computational issues relevant to fMRI data modeling and 

analysis. Comments: 

 More oxygen in hemoglobin, smaller the magnetic field generated by the 

iron in the blood, thus less interference in the local magnetic field 

 Change in signal due to activity (1%) is less than the noise (2%) 

 

Friston, K. J., Zarahan, Z., Josephs, O., Henson, R.N.A., and Dale, A.M. (1999). 

“Stochastic Designs in Event-Related fMRI,” NeuroImage, 10, 607-619. 

 Rapid stimulus onset asynchrony (SOA, ISI) allows for maintenance of a 

particular cognitive or attentional set, decreases the latitude subjects have for 

engaging alternative strategies or incidental processing, and allows the integration 

of event-related paradigms. Random SOAs ensure that preparatory or anticipatory 

factors do not confound event-relates responses and ensure a uniform presentation 

of stimuli. 

 References: 

 Very short SOAs (Dale and Buckner 1997; Clark et al. 1998; Burock et al. 

1998). SOAs of 1 sec. or less are commonplace. 

 Relatively long SOAs (Friston et al. 1998b). SOAs of several seconds or 

more. 

 Concerned that rapid, fixed SOAs render the form of the HRF flat due to the 

extended time course of the HRF. 

 Efficiency of estimation is inversely related to the inverse of the covariance 

matrix of the estimators (uses GLM), which is a function of and only of the design 

matrix and the error variance. Interprets X to be a convolution of the stimulus 

vector and the HRF, the latter characterized by a small set of basis functions. 

 Wants to compare efficiency of short-and long-duration SOAs in multiple 

trial/event types. Notes that efficiency might depend on the type of response: 

individual event-related responses c' = (1,0) or contrasts of two responses c' =  (-1, 

1). 

 Considered efficiency of both deterministic and stochastic methods of generating 

a stimulus vector assuming a GLM model with fixed HRF. 

 Gives an example (Fig. 1) for which a fixed-interval SOI is the least 

efficient and a block design in most efficient. Slowly varying (slow 

modulations, Fig. 1, dynamic stochastic slow) stimulus probabilities. 

 Experience is that there is always some nonstationary stochastic design that 

is substantially more sensitive (psychological benefits) than the equivalent 

stationary (probability of stimulus is constant over time) design. 

 Considered nonlinearity issues for a minimum ISI. 

 LTI systems: Friston et al. 1994; Boynton et al. 1997 

 Nonlinear effects may predominate at very short SOAs: Vasquez and Noll 

1998 

 Nonlinearities become important at < 2 sec SOAs (Fig. 2) 
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 Fig. 3 shows that the most efficient probability of occurrence was P = 0.5 and 

corresponded to a trial onset asynchrony (TOA) of 2 x SOA min = 2 sec. 

 With more than one trial type very short TOAs are appropriate when comparisons 

are appropriate; for a 2 trial types but interest is in estimating one HRF, longer 

TOAs are needed (~ 16 sec.) when P = 0.5 and are ensured by null events in the 

design. This can be achieved by using P ~ 0.3, giving a mean TOA of ~ 3 sec. 

 By making the probability of null events and all other events = 1/(N+1), where N 

= number of events, a mean TOA of (N+1) x SOAmin is optimal. 

 

Glover, G.H. (1998). “Deconvolution of Impulse Response in Event-Related BOLD 

fMRI,” NeuroImage, 9, 416-429. 

 Cites undershoot (Kruger et al. 1996) and delay (Hu et al. 1997) 

 Uses deconvolution to remove the effect of the impulse response from the 

measurements in order to more accurately depict the time course of the neuronal 

response. Goals: 

 Experiments to determine whether response to long stimuli could be predicted 

from measured responses to very short stimuli 

 Experiments to determine if different stimulus rates and episode repetitions 

would enable the signal to be extracted 

 Block and “repeated trial” designs for visual and auditory stimuli 

 Block trial analysis involved correlations of sine waves with signals after linear 

trend removal; repeated-trial data used quadratic trend removal, “time-locked” 

averaging of 30-35 time frames, and averaging of activated voxels in the cortex 

 Linearity assessed by convolving fitted 1 sec. finger tapping responses with 

rectangular impulse functions of 2, 4, 8, and 16 sec: neither the motor nor the 

auditory cortex system was linear – undershoot was not well predicted 

 Deconvolution of three 1 sec stimuli Ts sec (ISI) apart is not “well resolved” 

unless the Ts is 4 or more sec.; i.e, the deconvolution does not show three 

impulse responses 

 Used two-gamma convolved HRF function with n1 = 6, n2 = 12, t1 = 0.9, t2 = 

0.9, and a2 = 0.35, cj = [max{(t
nj

)exp(-t/tj)}]
-1

 

 Long-duration data looks flawed; 1 sec. data looks as the HRF would suggest 

 

Kershaw, J., Ardekani, B.A., and Kanno. I. (1999). “Application of Bayesian Inference to 

fMRI Data Analysis, IEEE Transactions on Medical Imaging, 18, 1138-1153. 

   fMRI data appears to contain confounding or nuisance trends (possibly 

sinusoidal); the precise nature of these trends is unknown but might include 

physiological biorhythms and stimulus correlated motion 

 Trends are usually approximated by making an ad-hoc choice for the 

confounding terms: popular choices are low-order polynomials and long-

period sinusoids 

 Structure of the noise not well understood: data may be auto-correlated and 

models now routinely include first-order autoregressive terms 

 Analysis is unclear 

 Goal: apply Bayesian modeling methods  

 No spatial or temporal smoothing used 
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 3 models are considered using Bayesian methods 

 GLM with white noise 

 Linear time invariant nonlinear model  

 GLM with AR noise 

 Comprehensive Bayesian derivation of posterior distributions and procedures for 

testing for activated voxels. 

 

Kruggel, F. and von Cramon, D. Yves (1999). “Modeling the Hemodynamic Response in 

Single-trial Functional MRI Experiments, Magnetic Resonance in Medicine, 42, 787-

797. 

 HRF: within milliseconds, oxygen consumption elicits shortening of the T2* time 

and consequent signal decrease; the active region is oversupplied by an inflow of 

oxygenated hemoglobin (HbO2), leading to a signal increase 5-6 sec after stimulus 

onset; limitations of the vascular regulation and/or HbO2 excess induce a 

dispersion of the signal increase in 3-4 sec; final negative dip is not yet 

interpreted. 

 They used nonlinear regression to fit a Gaussian three-parameter HRF model. 

Modeled errors as an AR(1). Used suboptimal tests for Gaussian errors, Gaussian 

form for the HRF. 

 

Quinn, B.G. (1999). “A Fast Efficient Technique for the Estimation of Frequency: 

Interpretation and Generalization,” Biometrika, 86, 213-220. 

 Expands on Quinn and Fernandez (1991) for estimating the frequency of a 

sinusoid in the presence of noise. 

 

2000 

Bandettini, P. A. and Cox, R. W. (2000). “Event-Related fMRI Contrast When Using 

Constant Interstimulus Interval:  Theory and Experiment”, Magnetic Resonance in 

Medicine, 43, 540-548. 

 Constant ISIs: 

 More trials per unit time increase statistical power but slowness of the 

hemodynamic response causes signal overlap and possible saturation of the 

fMRI signal (increase in baseline level and subsequent attenuation of the 

amplitude change). 

 Event-related studies employ stimulus durations (SDs) from 0.33 sec. to 2 sec and 

ISIs from 2 sec. to 30 sec. 

 Noise is assumed stationary and white.  The stimuli are placed far enough apart 

that the signals do not overlap. 

 Topt =2 2/ 1
2
 where j is the jth raw moment of the HRF. 

 Examples: boxcar, tent, single gamma 

 Optimal (in terms of minimum variance in the GLM model) ISI and stimulus 

duration (SD) were determined in the constant ISI case. (SD=2s; ISI=12-14s). The 

optimal repetition interval is Topt = ISI + SD with ISI = 14 – SD for stimuli of 3 

sec. or less; Topt = 8 + 2SD = SD + ISI where ISI = 8 + SD for longer stimuli.  

 Experiments with ISI 8 sec. or less (SD = 2 sec.) show pre-undershoots that are a 

result of the previous HRF returning to baseline from the post-undershoot. 
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 Theoretical optimal ISI for SD = 2 is 10.3 sec. for a single-gamma HRF; 

experimentally, the optimal is 12 sec. 

 Comments that randomized ISIs require linearity assumption, preliminary 

work suggests optimal functional contrast achieved if on-off distribution is 

50%-50% with ISI as short as desired within constraint of subject response 

time. 

 Suggests that experiments imply that event-related signal amplitude is greater 

than predicted when assuming LTI models. 

 Gives references for nonlinearity and pre-undershoot.   

 

Buxton, R.B., Liu, T.T., Martinez, A., Frank, L.R., Luh, W.-M., and Wong, E.C. (2000). 

“Sorting Out Event-related Paradigms in fMRI: the Distinction Between Detecting and 

Activation and Estimating the Hemodynamic Response,” NeuroImage, 11, S457. 

 Demonstrate the estimation efficiency and detection power of event-related, 

block, and single-trial periodic designs.  

 Conclude that the best compromise for maximizing both is a block with some 

randomness added, similar to Friston et al. (1999); c.f., Liu et al. (2001). 

 

Friston, K.J., Josephs, O., Zarahn, E., Holmes, A.P., Rouquette, S., and Poline, J.-B. 

(2000). “To Smooth or Not to Smooth,” NeuroImage, 12, 196-208. 

 Note: Smoothing and Filtering are transformations y Sy in a GLM framework 

 Autocorrelation is present in fMRI time series but parametric modeling often 

misspecifies the structure. Serious bias can result from prewhitening but band-

pass filtering, implicitly smoothing, can protect against serious bias. 

 Neuronal noise is neurogenic signal not modeled by explanatory variables that 

occupies the same part of the frequency spectrum as the hemodynamic signal. 

 ISIs should be high frequency in event related designs 

 Physiological and nonphysiological, white and colored, typically low 

frequency (Holmes et al. 1997) or wide-band. 

 Superposition of these colored components induces error serial correlation 

 Analysis requires 3 considerations: optimum experimental design, optimal 

filtering to obtain efficient parameter estimates, robustness of the statistical 

inference procedures. High efficiency and robustness require a variance – bias 

tradeoff that can be controlled by temporal filtering. 

 Previous:  

 Worsley and Friston (1995), in order to avoid estimating serial 

correlations, convolved the data with a Gaussian kernel to impose an 

approximately known correlation structure – for robustness purposes 

 Bullmore et al. (1996) used the estimated autocorrelation structure to 

prewhiten the data prior to fitting a GLM with assumed uncorrelated 

errors – motivated by estimator efficiency. Validity (false positive rate no 

larger than the significance level of the test) and robustness assured 

because of the use of a randomization strategy. 

 Locascio et al. (1997) used ARMA models for each voxel, Purdon and 

Weiskoff (1998) used AR(1) and white noise, Aguirre et al. (1997) and 

Zarahn et al. (1997) used 1/f error models 
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 Experimental Design: Experimental effects can only be efficiently estimated if 

their frequency content survives convolution with the HRF.; i.e., experimental 

effects should have frequencies that  have high power in the spectrum of the HRF.  

Noise (drift, sinusoids) has lower frequencies – experimental effects should avoid 

these frequencies, f < 1/64 Hz 

 Block designs desirable for DoX (but not good for other purposes) 

because they induce low frequency spectra (Note: all of this is under the 

context of filtering low frequency noise). 

 Temporal Filtering: Minimum variance filters induce large bias, preference is on 

minimum bias filters. Suppressing low and high frequencies (high-pass filter with 

smoothing) is required to minimize bias. Note: Variance and bias of estimated 

standard errors. 

 

Friston, K.J., Mechelli, A., Turner, R., and Price, C.J. (2000). “Nonlinear Responses in 

fMRI: The Balloon Model, Volterra Kernels, and other Hemodynamics,” NeuroImage, 

12, 466-477. 

 Volterra basis functions approximate the nonlinear additivity of event-related 

HRFs. Enables the characterization of the dynamical behavior without having to 

define and measure state and input interactions in causing the response; however, 

results in no mechanistic explanation of how the response is mediated.  

 Balloon model is a theoretical model of the dynamics of state variables on the 

response.: 

 Increases in blood flow inflate a venous “balloon” so that deoxygenated 

blood is diluted and expelled at a greater rate 

 Clearance of deoxygenated blood reduces intravoxel dephasing and 

engenders an increase in signal 

 Before the balloon has inflated sufficiently, the expulsion and dilution 

may be insufficient to counteract the increased delivery of deoxygenated 

blood to the venous compartment and an early dip in signal may occur 

 After the flow has peaked and the balloon has relaxed again reduced 

clearance an dilution contribute to the poststimulus undershoot 

 The paper evaluates the Balloon model in relation to Volterra characteristics and 

real hemodynamics 

 

Genovese, C.R. (2000). “A Bayesian Time-course Model for Functional Magnetic 

Resonance Imaging Data,” Journal of the American Statistical Association, 95, 691-

719. (with discussion). 

 Comprehensive Bayesian analysis of fMRI data. Discusses the form of the HRF, 

selection of priors, inferences on trends rather than simple t tests, and 

computational issues. Discussion by several expert statisticians and neurologists. 

 Includes baseline constant, drift component, HRF (multiparameter), and white 

noise model components 

 Points out that much of any serial correlation is likely filtered out by the 

fitted drift component 

 Presence of residual autocorrelation likely due to the inability of fitted 

models to adequately capture epoch-to-epoch variations in the response 
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Hopfinger, J.B., Buchel, C., Holmes, A.P., and Friston, K.J. (2000). “A Study of Analysis 

Parameters that Influence the Sensitivity of Event-related fMRI Analyses,” 

NeuroImage, 11, 326-333. 

 36 analyses of a single fMRI data set, varying voxel size, spatial smoothing, 

temporal smoothing, and choice of basis sets. Used 16 brain regions 

 HRF and its temporal derivative was more sensitive to voxel activation 

than the HRF alone 

 2 mm
3
 resampled voxel size, 10 mm spatial smoothing, and 4 sec temporal 

smoothing recommended 

 

2001 

Ari, N. and Yen, Y. (2001). “Extraction of the Hemodynamic Response in Randomized 

Event-related Functional MRI,” Proceedings of the 23
rd

 EMBS International 

Conference, Istanbul, Turkey. 

 Cites Dale (1999) for greater efficiency of randomized event-related designs over 

fixed ISI designs.  

 Linearity has been demonstrated for ISIs in the 2-15sec range but not always for 

short ISIs. 

 Time-window averaging is unreliable. Cepstral analysis is unstable when noise is 

added to the signal. The conjugate gradient method worked best when applied in 

the frequency domain (Y(f) = S(f)H(f)). 

 

Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., 

and Brammer, M. (2001). “Colored Noise and Computational Inference in 

Neurophysiologcal (fMRI) Time Series Analysis: Resampling Methods in Time and 

Wavelet Domains” Biometrics, 57, 554-562. 

 Discuss pre-whitening and pre-coloring options for validating statistical methods 

when the errors are 1/f. Introduce wavelet transformations and Resampling in the 

wavelet domain because of the uncorrelated nature of wavelet coefficients.  

 Pre-whitening is more efficient but may be biased if autocorrelation is 

misspecified 

 Pre-coloring is less efficient but less  to bias provided the coloring matrix 

is robust enough to impose its predicted form on the residual 

autocorrelation 

 Time series methods assume stationarity; resampling methods assume 

exchangeability – wavelet methods achieve this approximately through the 

whiteningproperty of the discrete wavelet transform 

 Point out other studies that suggest colored noise is not only due to HRF-

convolved neuronal or instrumental white noise, aliased cardiorespiratory 

pulsation, uncorrected head movement, and incomplete specification of the design 

matrix, but also physical effects because of the presence of colored noise in 

measurements on cadavers and phantoms. 

 

Gossl, C., Auer, D.P., and Fahrmeir, L. (2001). “Bayesian Spatiotemporal Inference in 

Functional Magnetic Resonance Imaging,” Biometrics, 57, 554-562. 
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 Hierarchical Bayes formulation allows temporal and spatial interdependence of 

voxel time series to be included in the model formulation. Use parametric and 

semiparametric spatial and spatiotemporal models.  

 

Lazar, N.A., Eddy, W.F., Genovese, C.R., and Welling, J. (2001). “Statistical Issues in 

fMRI for Brain Imaging,” International Statistical Review, 69, 105-127. 

 Excellent review of the basics of fMRI, Fourier space acquisition, preprocessing, 

and statistical modeling and analysis. 

 

Liu, T.T., Frank, L.R., Wong, E.C., and Buxton, R.B. (2001). “Detection Power, 

Estimation Efficiency, and Predictability in Event-related fMRI,” NeuroImage, 759-

773. 

 Randomized designs: maximum estimation efficiency, poor detection power 

(Dale 1999) 

 Block Designs: good detection power, minimum estimation efficiency 

 Periodic single-trial experiments: poor on both criteria 

 Above conclusions from Buxton et al. (2000) 

 Semirandom designs: tradeoff between power and efficiency (Friston et al. 1999), 

achieve both at the cost of increasing the experiment by less than a factor of 2 

 Predictability: ability to circumvent confounds such as habituation and 

anticipation 

 Small increases in predictability can offer gains in power with only a 

minor decrease in efficiency 

 
Naiman, D.Q. and Priebe, C.E. (2001). “Computing Scan Statistic p Values Using 

Importance Sampling, with Applications to Genetics and Medical Image Analysis,” 
Journal of Computational and Graphical Statistics, 10, 296-328.  

 Correction to Bonferroni p-values 
 
Ollinger, J.M., Corbetta, M., and Shulman, G.L. (2001). “Separating Processes within a 

Trial in Event-related Functional MRII. The Method,” NeuroImage, 13, 210-217. 
 HRF was estimated without assuming a form but required partial trials 
 Estimated the mean for each time point after averaging across similar events: 14 

equations in 14 unknowns 
 Mix compound trials with partial single-event trials 

 

Ollinger, J.M., Corbetta, M., and Shulman, G.L. (2001). “Separating Processes within a 

Trial in Event-related Functional MRI: II. Analysis,” NeuroImage, 13, 218-229. 
 BOLD HRF curves can be estimated easily from block designs because the long 

task and control periods enable square waves to approximate the resulting curve. 
Modeling as a linear system enables rise time, delay, and fall time to be estimated 
(Boynton 1996).  

 Event related designs make estimating the shape of the BOLD response more 
difficult and the estimated shape can depend on the experimental paradigm. In a 
companion paper, the HRF was estimated without assuming a form but required 
partial trials 

 Statistical maps using F statistics from extra sums of squares principle or t 
statistics from cross correlations 
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Purdon, P.L., Solo, V., Weisskoff, R.M., and Brown, E.N. (2001). “Locally Regularized 

Spatiotemporal Modeling and Model Comparison for Functional MRI,” NeuroImage, 

14, 912-923. 
 Model includes a physiologically derived low-frequency noise component. 
 Spatiotemporal model, estimation, and model comparison. 

 
Woolrich, M.W., Ripley, B.D., Brady, M., and Smith, S.M. (2001). “Temporal 

Autocorrelation in Univariate Linear Modeling of fMRI Data, NeuroImage, 14, 1370-
1386. 

 Excellent discussion of tapering as a component of a pre-whitening process for 
transforming data prior to a GLM; tapering removes edge effects and the 
influence of high lags in estimating autocorrelations – smooths spectral density 
estimates 

 Used to accommodate 1/f error processes 
 

2002 

Aguirre, G.K., Detre, J.A., Zarahn, E., and Alsop, D.C. (2002). “Experimental Design 

and the Relative Sensitivity of BOLD and Perfusion fMRI,” NeuroImage, 15, 488-

500. 
 Arterial Spin Labeling (ASL): noninvasive, quantification of brain tissue 

perfusion using labeled inflowing arterial protons as endogenous tracers, absolute 
units (cc blood / 100 g of tissue / min) – change in blood flow itself, as opposed to 
BOLD 

 Subtraction of labeled and unlabeled image pairs 
 BOLD fMRI demonstrates greater power at low frequencies, characterized by 1/f 

modeling: boxcar design (e.g., 60 sec) will have reduced sensitivity because of the 
presence of greater noise (1/f) at low frequencies 

 ASL will differ from BOLD in that the subtraction will difference 1/f noise, 
leading to data that behave more like they are uncorrelated 
 Experimental designs with concentrated power at low frequencies are 

feasible; e.g., seeking a slow, continuously changing signal over time  

 

Birn, R.M., Cox, R.W., and Bandettini, P.A. (2002). “Detection versus Estimation in 

Event-related fMRI: Choosing the Optimal Stimulus Timing,” NeuroImage, 15, 252-

264. 
 Estimation and detection are fundamentally different and require different 

stimulus times 
 Estimating the HRF requires frequent stimulus times that vary between 

active and control states 

 Activation detection is optimized by block designs 

 Maximum detectability or accuracy for a stimulus pattern with a varying ISI 

occurs when the number of time points in the task and control states are equal 

 Significant decrease in estimation accuracy if the stimulus and control 

periods are forced to vary on a coarser time scale than the TR 

(see also Bandettini et al. 2000) 

 

Duan, J-R, Jung, T-P, Kuo, W-J, Yeh, T-C, Makeig, S., Hsei, J-C, and Sejnowski, T.J. 

(2002). “Single-trial Variability in Event-related BOLD Signals.” NeuroImage, 15, 

823-835. 
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 Model-based methods assume the form and all parameters of the HRF except 

amplitudes are known a-priori. They also assume similar HRFs across stimulus or 

task events, brain areas, stimulus parameters, and subjects.  

 Independent components analysis (ICA) decomposes the entire fMRI data set into 

component activities associated with fixed spatial distributions. Variability is 

modeled as a sum of deterministic processes with maximally independent spatial 

distributions. M = WX or X = W
-1

M, where X is the T (times) x V (voxels) 

BOLD signals, W is an “unmixing” matrix, and M contains spatially independent 

component activations.  

 McKeown et al. (1998) contains details. 

 

Friman, O., Borga, M., Lundberg, P., and Knutsson, H. (2002). “Detection of Neural 

Activity in fMRI Using Maximum Correlation Modeling,” NeuroImage, 15, 386-395. 

 Detecting of neuronal activity is achieved by calculating and determining the 

significance of maximum correlations between a spatially varying (only the scale 

parameter) HRF and the fMRI time course. 

 Local voxel time courses are averaged to increase power. 

 Inference is carried out via Monte Carlo simulations 

 

Shen, X., Huang, H-C, and Cressie, N. (2002). “Nonparametric Hypothesis Testing for a 

Spatial Signal,” Journal of the American Statistical Association, 97, 1122-1140. 

 Procedure for controlling the false discovery rate using spatial wavelets, based on 

the premise that large wavelet coefficients tend to cluster spatially and noise 

wavelet coefficients are approximately uncorrelated 

 Define clusters of neighboring wavelet coefficients using a distance 

measure for 4 neighboring voxels at the same wavelet scale or adjacent 

locations for wavelets at different scales – selects b = 11 locations 

 Select L* hypotheses tests corresponding to the L* clusters with the 

largest cluster-maximum wavelet coefficients; eliminate all remaining 

hypotheses  

 Apply standard FDR procedures to the maximum coefficients 

 Details for selecting L* are given in Section 3.2 

 

Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., and Evans, 

A.C. (2002). “A General Statistical Analysis for fMRI Data,” NeuroImage, 15, 1-15. 

 Uses estimated autocorrelation parameters, GLM, and the EM algorithm to 

circumvent estimating small numbers of degrees of freedom 

 

2003 

Cressie, N. and Kornak, J. (2003). “Spatial Statistics in the Presence of Location error 

with an Application to Remote Sensing of the Environment,” Statistical Science, 18, 

436-456. 

 Seminal paper on the application of spatial modeling when the locations of the 

measurements are not exactly known; i.e., they are measured with error. 
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 Potential for application to the brain, where locations are spatially normalized to 

accommodate movement and morphed to a common template to accommodate 

different brain sizes and geometries. 

 

Pfeuffer, J., McCullough, J.C., Van de Moortele, P-F, Ugurbil, K., Hu, X. (2003). 

“Spatial Dependence of the Nonlinear BOLD Response at Short Stimulus Times,” 

NeuroImage, 18, 990-1000. 

 Using very short visual presentation times (< 2 sec), deviations from the linear 

model in the measured BOLD data was found for the response integral, amplitude 

and width.  

 

Smith, M., Putz, Benno, Auuer, Dorothee, and Fahrmeir, L. (2003). Assessing Brain 

Activity through Spatial Bayesian Variable Selection. NeuroImage, 20, 802-815. 

 Predecessor to Smith et al. (2003) in which the prior for activation indicator 

variables is introduced. Spatial correlation is directly modeled for activation 

probabilities and indirectly for regression coefficients for covariates. Shows 

superior edge-preserving properties and fast computing. 

 

2004 

Friman, O., Borga, M., Lundberg, P., and Knutsson, H. (2004). “Detection and 

Detrending in fMRI Data Analysis,” NeuroImage, 22, 645-655. 

 Event-related designs benefit more from pre-whitening than block designs for the 

detection of activated voxels when colored noise is present. 

 Canonical correlation analysis (Friman 2002) is used to remove drift 

 

Kim, H-J. and Boos, D.D. (2004). “Variance Estimation in Spatial regression Using a 

Non-parametric Semivariogram Based on Residuals,” Scandinavian Journal of 

Statistics, 31, 387-401.  

 Demonstrate the well-known negative bias in sample semivariograms for large 

lags when mean parameters have to be estimated. While predictions are known to 

be little affected, estimated standard errors can be seriously negatively biased. 

 Propose a monotonic averaging of neighboring sample semivariogram values 

when values decrease with increasing lag distance.  

 Propose a bias-adjustment to the estimated prediction variance. 

 

Long, C., Brown, E.N., Manoach, D., and Solo, V. (2004). “Spatiotemporal Wavelet 

Analysis for Functional MRI,” NeuroImage, 23, 500-516. 

 Spatiotemporal wavelet procedure that uses a stimulus-convolved hemodynamic 

signal plus correlated noise model 

 

Spence, J.S., Carmack, P.S., Gunst, R.F., Schucany, W.R, Woodward, W.A., and Haley, 

R.W. (2004). “Improved Agreement Between Talairach and MNI Coordinate Spaces 

in Deep Brain Regions,” NeuroImage, 22, 367-371. 

 

Talavage, T.M. and Edmister, W.B. (2004). “Nonlinearity of fMRI Responses in Human 

Auditory Cortex,” Human Brain Mapping, 22, 216-228. 
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 Intense noise at acoustic frequencies caused by the scanner causes activity in the 

auditory cortex that competes with responses to a presented stimulus.  

 Nonlinear additivity of BOLD responses is the dominant source of reductions in 

the measurements of both amplitude and spatial extent of auditory cortex 

activation.  

 

Woolrich, M.W., Behrens, T.E.J., and Smith S.M. (2004). “Constrained Linear Basis Sets 

for HRF Modeling Using Variational Bayes,” NeuroImage, 21, 1748-1761. 

 Large portion of subspaces spanned by basis functions produce nonsensical HRF 

shapes 

 Assuming a linear time-invariant system, priors are placed on members of a basis 

set to give higher probability to components that represent reasonable shapes for 

the HRF 

 Demonstrate far improved detection of voxel activation 

 

2005 

Christensen, W.F. and Yetkin, F.Z. (2005). “Spatio-temporal Analysis of Auditory 

Cortex Activation as Detected with Silent Event Related fMRI,” Statistics in 

Medicine, 24, 2539-2556. 

 Focus is in scanner noise contributing to the signal responses in the auditory 

cortex 

 Uses a spatiotemporal, measurement-error-free kriging model to spatially smooth 

the data and increase activation sensitivity 

 

Friman, O. and Westin, C-F. (2005). “Resampling fMRI Time Series,” NeuroImage, 25, 

859-867. 

 When determining thresholds for activation, BOLD responses bias temporal 

autocorrelations, leading to biased thresholds 

 Fourier and wavelet Resampling methods may lead to erroneous thresholds 

 Resampling based on a pre-whitening transform, driven by an explicit AR(1) error 

model, fitted by usual methods 

 

Penny, W.D., Trujillo-Barreto, N.J., and Friston, K.J. (2006). “Bayesian fMRI Time 

Series Analysis with Spatial Priors,” NeuroImage, 24, 350-362. 

 Bayesian priors are placed on regression coefficients in a GLM 

 Variational Bayes is used to let the data determine the optimal amount of 

smoothing 

 

2006 

Calhoun, V.D. and Adali, T. (2006). “Unmixing fMRI with Independent Component 

Analysis,” IEEE Engineering in Medicine and Biology Magazine, March/April, 79-90. 

 Survey of ICA with special reference to fMRI. 

 

Heller, R., Stanley, D., Yekutieli, D., Rubin, N, and Benjamini, Y. (2006). “Cluster-based 

Analysis of fMRI Data,” NeuroImage, 33, 599-608. 
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 Introduces a clustering algorithm for spatial data that produces small clusters 

using the maximum correlations of neighboring voxels. 

 Tests individual voxels in a cluster and then averages the significant voxels in the 

cluster to form a cluster average 

 Cluster tests are the usual SPM tests for clusters  

 

Pavlicova, M., Cressie, N., and Santner, T.J. (2006). “Testing for Activation in Data from 

fMRI Experiments,” Journal of Data Science, 4, 275-289. 

 Block designs: periods of transition between activation and rest are ignored, two-

sample t-tests and Wilcoxon rank tests are compared to determine activated 

voxels; a modified Wilcoxon test performs best 

 
Spence, J.S., Carmack, P.S., Gunst, R.F., Schucany, W.R, Woodward, W.A., and Haley, 

R.W. (2006). “Using a White Matter Reference to Remove the Dependency of Global 
Signal on Experimental Conditions in SPECT Analyses,” NeuroImage, 32, 49-53. 

 
Strother, S.C. (2006). “Evaluating fMRI Preprocessing Pipelines,” IEEE Engineering in 

Medicine and Biology Magazine, 25 (2), 27-41. 
 Reviews and evaluates the optimization of preprocessing steps for BOLD fMRI 
 Provides 147 references 

 

2007 

Benjamini, Y. and Heller, R. (2007). “False Discovery Rates for Spatial Signals,” Journal 

of the American Statistical Association, 102, 1271-1281. 

 Generalizes Benjamini and Hochberg (1995) to clusters of observations. Can be 

applied to spatial data. Clusters need to be previously defined as in Heller et al. 

(2006). 

 

Bowman, F.D. (2007). Spatiotemporal Models for Region of Interest Analyses of 

Functional Neuroimaging Data. Journal of the American Statistical Association, 102, 

442-453. 

 Discusses spatial correlations among spatially distant brain locations and 

nondecreasing spatial correlations as a function of increasing spatial distances due 

to connectivity issues between different structures in the brain. Defines a spatial 

correlation model based on functional similarity, not geographic proximity.  

 Very good discussion of spatiotemporal models and estimation. Distance is 

measured using previous estimates of activity profiles in each voxel. 

 

Smith, M. and Fahrmeir, L. (2007). Spatial Bayesian Variable Selection with Application 

to Functional Magnetic Resonance Imaging. Journal of the American Statistical 

Association, 102, 417-431. 

 Use Ising priors to smooth spatially indicator variables representing whether a 

covariate is included in the model, indirectly smoothing the regression 

coefficients. Spatially smooths activation maps from regression models of blood 

oxygenation. Uses a single-site sampling scheme to rapidly evaluate posterior 

activation maps and activation amplitudes. Maps are superior to Bayesian 

approaches using continuous Markov random fields.  
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 For baseline trend components of the model, the authors use 1, t, t
2
, t

3
, sin(2πt/T), 

cos(2πt/T, sin(3πt/T), and cos(3πt/T). 

 

Spence, J.S., Carmack, P.S., Gunst, R.F., Schucany, W.R., Woodward, W.A., and Haley, 

R.W. (2007). Accounting for Spatial Dependence in the Analysis of SPECT Brain 

Imaging Data, Journal of the American Statistical Association, 102, 464-473.  

 Spatially models distance-dependent correlations among voxels in each of several 

deep brain structures using spatial semivariograms. 

 Calculates block and structure averages using weights obtained from fitted spatial 

semivariograms; standard errors of the averages also calculated. 

 Use general linear model (GLM) analyses to compare SPECT measurements of 

Gulf War syndrome groups with a control group. Determined that there were 

baseline difference in some structures between syndrome and control groups. 

Also found treatment differences after administration of physostigmine to the 

subjects. 

 

 


