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Summary. We propose a test, like the classical sign test, of whether the probability of 
an event differs from 0.5 that is appropriate with clustered binary data.  It combines a 
permutation approach and an exact parametric bootstrap calculation.  Simulation 
studies show it to be superior to a sign test based on aggregated cluster level data. The 
new test is more powerful than or comparable to a standard permutation test 
whenever 1) the number of clusters is small or 2) for larger cluster numbers under 
strong clustering resulting from within cluster correlations of greater than .80.  The 
results from a chemical repellency trial are used to illustrate the three test methods.  
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1. Introduction 

 
 Clustered binary data are commonly encountered in a variety of areas.  Situations 
such as survival after exposure to a contaminant often yield results that are similar for 
animals from the same litter.  Members of a household may hold similar Yes/No 
opinions on political issues. Trees within the same orchard may tend to have 
contracted a disease in such a way that knowledge of one tree’s status may be useful 
in predicting the disease status of other trees in the same orchard.  In each of these 
cases the response of interest may be dichotomous and these binary responses within 
the same cluster (litter, household, orchard) are typically not independent. 
 Methods for handling clustered binary data range from the simplistic summary 
aggregation of the clusters to the more sophisticated fitting of generalized linear 
models with random effects that account for clustering.  In some cases, however, 
these techniques may not be totally satisfactory.  Consider an experiment with 
clustered binary data in which the objective is to test whether the marginal probability 
of a response differs from 0.5.  This is the null hypothesis tested with the classical 
sign test, but here we have clustered binary data.  In some settings the number of 
clusters may be small (≈ 5 ), which would severely reduce the power of simplistic 
aggregation techniques.  A generalized linear model with a random cluster effect can 
be fit and tests conducted but there may be concerns about maintaining the Type I 
error rate with small numbers of clusters.  We propose a modification of the sign test 
for use with clustered binary data.  It involves both permutation and parametric 
bootstrap techniques. It has improved power compared to simplistic aggregation and 
is easily carried out for problems with as few as 4 or 5 clusters. 
 In Section 2 a real example motivates the problem.  In Section 3 the new test is 
introduced.  Section 4 describes simulation results, and Section 5 returns to the 
motivating application. 
 
2. Correlated Binary Responses Example 

   
 Laboratory trials are conducted to determine the effectiveness of chemical 
insecticide compounds.  Specifically, the trial design outlined here involves 
evaluating repellency.  These trials are conducted with a small number of Petri dishes 
(5-10), which are treated with the chemical of interest on one half of the Petri dish, 
with the other half left untreated.  A small number of insects (10-25) are then placed 
in the middle of each Petri dish and after a specified time period, the numbers of 
insects on the treated and untreated sides are determined for each dish. 
 One relevant test is whether the chemical of interest performs differently from 
what is expected by chance, i.e., 50/50. A specific alternative is whether the marginal 
probability of being on the treated side is less than 0.5.  This would indicate that the 
chemical has some repellency.  One complicating factor here is that many insects 
(e.g. termites) are social creatures that tend to follow one another.  Various reasons 
for this exist, but the primary one seems to be the secretion of pheromones that draw 
the insects to one another.  Hence, the insects within each Petri dish are not 
independent, but those in different dishes can be assumed to be. 
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 In one such test, catnip oil was being evaluated as a potential repellant of termites.  
The data for a single dose of catnip involved 5 Petri dishes and 10 termites per dish.  
Figure 1 depicts a typical Petri dish. The data for 5 dishes in a single trial are 4/10, 
0/10, 0/10, 1/10, and 5/10 termites on the treated side.  Obviously there is a general 
tendency for termites to gravitate to the untreated side of the dishes.  The results of a 
test of the null hypothesis mentioned in the previous paragraph would be of interest 
here.    

(Figure 1 about here) 
 One simple way to analyze data of this type is to declare the entire Petri dish as a 
success or failure regarding repellency by whether less than 50% of the termites are 
on the treated side (majority rule).  Because the dishes are independent, the classical 
sign test can be used to test the hypothesis of interest. This test relies upon the 
proportion of repelled dishes to assess whether that observed proportion is 
significantly different from 0.5.  Obviously, with only 5 dishes, this test will have 
limited power.  On the other hand if these data were fit to a logistic regression model 
with dish as a random effect, controlling Type I error rate may be a concern. 
 In some other design settings it may be possible to assign treatments randomly to 
items within a cluster, rather than to the entire cluster.  See Moerbeek (2005) for a 
comparison of the robustness of these two randomizations.  In the next section we 
propose a new method for testing this hypothesis with clustered binary data.  Like the 
classical sign test, it has a permutation basis, but with an added bootstrap component. 
 
3. Hypothesis Tests for No Effect 
  
 There are several mechanisms used to model clustered binary data.  These include 
random cluster effects (McCulloch and Searle, 2001) or allowing the probability of 
success to vary according to some probability distribution, such as the beta 
distribution, which results in a marginal beta-binomial distribution (MuCullagh and 
Nelder, 1989; Agresti, 2002).  Williams (1975) advocates the use of likelihood ratio 
tests in the latter of these two settings.  Kupper and Haseman (1978) proposed a 
correlated binomial model employing a correction factor to adjust the standard 
binomial probabilities from independence.  Rao and Scott (1992) suggested a more 
general correction to binomial probabilities based on a deviation of the variance from 
that expected under independence.  This paper will adopt a random effects model for 
clustering.  For example, the random variables associated with the responses of each 
unit have Bernoulli distributions.  Specifically, 
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where Xij is the binary response for the jth unit within the ith cluster, i = 1,…, m , the 
number of clusters, j = 1,…, ni, βi is a random effect associated with the ith cluster, 
and θ is a log-odds parameter related to the marginal probability of success.  Another 
link function such as the probit function could be used here.  Typically the βi are 
assumed to follow some symmetric probability distribution with mean 0 and 
variance . 2

βσ
 As in the traditional sign test, the null hypothesis pertains to the log odds  
 
 Ho : θ = 0,                 (3.2)  
 
which corresponds to a probability of success equal to 0.5, versus one- or two-tailed 
alternatives.  In the application described in Section 2, a one-sided alternative,  
Ha : θ < 0, would be appropriate indicating that a termite tends to avoid the treated 
side. 
 As is commonly assumed in random effects models, the Xij are independent, 
conditional on the random effects, but with different probabilities of success.  
Unconditionally, however, observations within the same cluster, Xij and Xik, are 
correlated.  It is well known (Gastwirth and Rubin, 1971) that to naively ignore this 
correlation can have dramatic effects on hypothesis tests.  One simple way of 
removing the effects of the correlation that does not require parametric modeling is to 
classify each cluster as a “success” or “failure” based on the preponderance of the 
outcomes within the cluster.   For example, for Ha : θ < 0, a cluster can be deemed a 
“success” if less than 50% of the units within a cluster achieve the outcome of 
interest.  In our example, a dish is considered a “success” if less than 50% of the 
termites are on the treated side.  Under the null, the probability that a cluster will be 
deemed a success is 0.5 for an odd number of items in a cluster and less than 0.5 for 
an even number.  Now a sign test can be carried out at the cluster level.  If the number 
of clusters is small, this procedure will suffer from low power, but this is avoidable 
only if one is discarding useful information. 

 Under the null hypothesis (3.2), (3.1) reduces to i
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are determined solely by unobserved random variables, βi.  Thus, Xij|βi are 
independent binomial random variables with probability of success pi.  Even though 
the βi are not observable, they may be estimated, or more conventionally for random 
effects models, predicted from the data.  However, the sole reason that we would 
want to predict βi would be to estimate pi, which can be done directly 
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ijXT = total number of successes in all clusters.  We will use a one-sided, 

lower tail critical region for illustration. 
 Now under the null hypothesis and the assumption of symmetry, βi and - βi are 
equally likely and hence pi is as likely as 1-pi.  In the spirit of permutation tests, we 
evaluate every permutation of the signs of  (and hence permute  with 1- ).  
For each of the  permutations conditional on predicted random effects, we again 
treat the dichotomous outcomes as independent Bernoulli random variables with 
estimated probability of success  or 1- .  Next it is necessary to determine how 
likely the value of our test statistic is under the null hypothesis.  For each permutation 
let  be the estimated probability of success for the r
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*ˆ rip th permutation and the ith 
cluster.  Additionally, let ( )*ˆ*,...,ˆ*ˆ 1 rmrr
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probabilities for the rth permutation.  Designate  analogously.  Consider Bernoulli 
random variables  , which are viewed as independent with probabilities of 

success given in 

*ˆ
rβ

*ˆ  |* rβijX

*ˆ
r

p .  Define also *ˆ|** ∑∑=
i

r
j

ijr XT β , which is the test statistic 

computed for the rth  permutation.   
For each permutation the probability that Tr * is less than or equal the observed 

value T = t is required.  Within each of the  permutations, a parametric bootstrap 
might be used to estimate this probability.  This would yield an estimated p-value of 
the form 
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where I(.) is the indicator function, B is the total number of bootstrap resamples, and 

 is the test statistic from the b*
rbT th  bootstrap resampling of the rth permutation.   

Note, however, that 
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is an estimate of the probability that a sum of independent Bernoulli random variables 
with nonconstant probabilities of success, defined by *ˆ

r
p , is less than or equal to the 

observed test statistic.  An algorithm of Thomas and Taub (1982) for computing 
probability distributions for sums of independent Bernoullis with unequal 
probabilities of success can be used to evaluate the population value of (3.3). This 
eliminates the need for any resampling.  Denote by pTr this exact (conditional) 
probability that is estimated in (3.3).  Thus our proposed p-value is  
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which may be compared to any desired significance level to carry out the hypothesis 
test. 
 To further illustrate, let C1, C2, …, CN, N = 2m, be the configurations generated by 
the permutations under the null hypothesis.  For the proposed test we are computing 
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Each configuration, Cr, is associated with estimated success probabilities *ˆ

r
p .  Now, 

( )ir CtTP |* ≤  is computed as the sum of Bernoulli random variables with unequal 
probabilities of success given in *ˆ

r
p .    Here ( ) NCP r 1=  because the configurations 

are equally likely under the null.  For comparison purposes, we include a permutation 
test (CP) for which (3.4) also applies, but now ( )rr CtTP |* ≤  is 1 if ≤ t and 0 
otherwise. 

*rT

  For example consider a data set with only m= 3 clusters and 10 observations 
per cluster.  Suppose that one cluster has 1 success, the second has 3 successes, and 
the third has 8 successes. Hence the success proportions are 0.1, 0.3, and 0.8. The 
observed number of successes, t = 12, in this case.   The  configurations 
are given in Table 1.  For each configuration, the number of successes associated with 

82 == mN

*ˆ
r

p  are summed and compared with t.  The count of configurations with total 
number of successes less than or equal to t divided by the number of configurations is 
the p-value for CP.  This is the average of the estimated probabilities in the 
Permutation column, which in this case is 3/8.  For the new parametric bootstrap test, 
the probabilities of success for each permutation are used to compute (3.4).   
Parametric bootstrap resamples (B =5000) are used to compute (3.3) and the exact 
calculation done using the algorithm of Thomas and Taub (1982).  The two columns 
give virtually identical results and the latter can be averaged to obtain the proposed p-
value for our new test.  The actual p-values are 2.7652/8 for the resampled bootstrap 
and 2.7761/8 for the exact calculation.  Each is smaller than the p-value obtained 
from PT.  In the next section we use simulation to compare these three tests. 

(Table 1 about here) 
 

4. Simulation Results 
 
 The performance of the new exact parametric bootstrap test introduced in Section 
3 (EPB) was evaluated using Monte Carlo simulation methods.  The null hypothesis 
(3.2) is tested against a one-sided alternative Ha : θ < 0 .  We found, as expected, that 
the p-values in (3.3) and (3.4) differ only slightly due to sampling error, so only the 
exact ones (3.4) are reported here.  In addition the cluster level sign test (CLS) and 
another permutation test (CP) described in Section 3 were also used for comparison.  
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In CP each permutation involves exchanging the number of successes in a cluster 
with the number of failures.  The test statistic used in each permutation is the number 
of successes and the p-value is the number of permutations for which the total number 
of successes is less than or equal to the observed number of successes, divided by the 
total number of permutations.  As mentioned previously, in CLS a cluster is deemed a 
success whenever less than half of the units in a cluster achieve the outcome of 
interest.  The p-value is computed from the probability that a binomial random 
variable with number of trials equal the number of clusters and success probability .5 
is greater than or equal to the number of cluster successes.  The hypothesis of interest 
could also be tested using the NLMixed procedure of SAS® (Agresti 2002).  
However, some preliminary simulations resulted in greatly inflated Type I error rates 
in situations with small numbers of clusters and moderate to large numbers of units 
per cluster, most notably with weak to moderate clustering.  Because this test did not 
consistently maintain its size, it is not part of the overall simulation study.  All 
simulations were conducted using SAS software. 

 Consider four scenarios with a fixed number of clusters and cluster size and 
1000 independent replications each.  Clustered binary random variables are generated 
using the technique described in Lunn and Davies (1998), which allows specification 
of the marginal probability of success as well as a clustering value whose square is 
the correlation between units within a cluster, φ2 = ρ.  In each scenario, the marginal 
probabilities, 0.5 (null of (3.2) is true), 0.3, 0.2, and 0.1, are combined with clustering 
values, φ, 0.1, 0.3, 0.5, 0.7, and .9.  Hence the within cluster correlations range from 
.01, essentially independent, to .81, which is strong clustering.  The four scenarios 
investigated were a) 5 clusters with 10 units/cluster, b) 5 clusters with 20 units/cluster 
(Table 2), c) 10 clusters with 5 units/cluster (Table 3), and d) 10 clusters with 10 
units/cluster (Table 3).  

We also investigated the performance of a binomial test that essentially ignores 
clustering information.  We found that for the smallest clustering value, φ = 0.1, this 
test maintained its size.  This is not surprising because the smallest clustering value 
yields data that are practically independent.  However, the Type I error rate was larger 
than the nominal level for all other clustering values and so this test did not deserve to 
be in our simulations. 

Each table gives the percentage of times that Ho : θ = 0 (3.2) is rejected.  In all 
simulations one-sided tests are at the 5% level.  The standard errors of the table 
entries are 0.7% at the null and bounded by 1.6% at the alternatives.  The significance 
of the differences among the three tests (bold font for the winner) is assessed with an 
exact conditional version of McNemar’s test, Lehmann (1998), page 268 and 
Bonferroni corrections for the multiple comparisons within each table.  The 
significance of the levels below the nominal 5%, obtained with the binomial (denoted 
by italics), are also Bonferroni corrected.  Figure 2 displays the estimated powers of 
the three tests for all four scenarios at a marginal probability of 0.2.  

(Figure 2 about here) 
 Results for 5 clusters with ni≡10 units per cluster (Table 2) show that all three 
tests control size, at the cost of being conservative, especially for weak clustering.  
CLS and CP are identical here. EPB has significantly higher power, except for 
essentially independent data (φ = .1) and marginal probability of success 0.3.  The 
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results for 5 clusters and 20 units per cluster are very similar.  Rejection proportions 
under the null are closer to 5%, power values are greater, and EPB has uniformly 
higher power. 

(Table 2 about here) 
 For 10 clusters and ni≡ 5 units per cluster (Table 3), CP provides empirical levels 
close to the nominal 5%.  CP also enjoys a power advantage at small clustering 
values, with EPB having nearly equivalent, or slightly greater, power for large 
clustering values.  For 10 clusters and 10 units per cluster (Table 3), the results are 
similar to those in Table 3.  Again, CP has greater power for small clustering values 
(φ = 0.1, 0.3) and EPB performs as well or better for large clustering values, (φ = 0.9). 

(Tables3 about here) 
 CLS is equivalent to CP for scenarios a) and b) and performs significantly worse 
than both EPB and CP in the other two scenarios. The results of CLS and CP are 
equivalent in the special case of m = 5 clusters.   With exactly 5 clusters, CLS will 
reject Ho with significance level .05 only if all 5 clusters have less than 50% of units 
have the attribute of interest.  This yields the smallest total possible among all 
permutations in the permutation test, CP, which is also significant.  Conversely, at m 
= 5  the CP is significant only if the smallest total possible among all permutations is 
observed, which in turn implies that less than 50% of units in each cluster achieve the 
outcome of interest which results in significance for CLS.  
 
5. Example 

   
 The results of a repellency trial for termites involving catnip are given in Section 
2.  In this particular trial, m = 5 Petri dishes were evaluated, with ni = 10 termites on 
each dish.  Half of the area of each Petri dish was treated and the other half left 
untreated.  After a specified period of time the numbers of termites were recorded, 
yielding 4/10, 0/10, 0/10, 1/10, and 5/10 termites on the treated side for the five 
dishes.  One can see that in 4 of the 5 dishes, less that half of the termites were found 
on the treated side.  Hence, the p-value for a one-sided sign test, CLS, of hypothesis 
(3.2) is .1875.  The result of the permutation test, CP, which simply permutes the 
treated and untreated labels, yields a p-value of .0625.  The p-value of the new test 
introduced in Section 2 EPB is .0534.  So in this example, we obtain a smaller p-
value using the new test than with either CLS or CP. 
 
6. Discussion 

 
 .  In somewhat related work Miao and Gastwirth (2004) examine confidence 
intervals from dependent binary data.  In a different context Antolini, Nam, and 
D’Agostino (2004) consider nonparametric inference from a set of correlated 
indicators.  

It should also be pointed out that this new test allows one to reject hypotheses in 
situations in which it is simply not possible with CLS or CP.  One example is an 
experiment with 4 clusters.  The smallest p-value possible for CLS and CP with a 
one-sided alternative is .0625, which does not permit rejection at the .05 significance 
level.  Our simulations show that the new test maintains size in this setting with 10 
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units per cluster and does allow one to reject the null hypothesis, achieving power of 
greater than .50 in some cases.  However, as the strength of the effect increases, with 
marginal probabilities of the outcome of interest less than 0.1, the power tends to 
decrease rather than increase.  The reason is that as the strength of the effect 
increases, the behavior of EPB approaches that of CP, which does not allow rejection.   
 Therefore, we have identified some situations in which the new test for clustered 
binary data is superior to simple cluster level aggregation followed by a sign test.  
Additionally, when the number of clusters is small, it outperforms the standard 
permutation test.   For larger numbers of clusters and with strong clustering it 
performs similarly or better than the standard permutation test.   
 We emphasize that this new test tends to perform better than the other tests 
considered in practical applications such as our example of chemical repellency 
testing.  In these settings, the number of clusters tend to be small and strong 
clustering is present, precisely where the new test is the superior methodology.  
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Figure 1. Petri dish in termite repellency test. 
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Figure 2.   Power results with marginal probability .2 for Scenarios a) through d) for the 
proposed test (EPB), the sign test on aggregated cluster data (CLS), and the permutation 
test (CP). 

 
 
 
 
 

 12



 
Table 1. Illustration of p-value calculations for 3 clusters with 10 units per cluster, having 
1, 3, and 8 successes, respectively. 
 
 
Configuration   

(r) 
*

1ˆ rp  *
2ˆ rp  *

3ˆ rp  ( )rr CtTP |* ≤  
(Permutation) 

( )rr CtTP |* ≤  
(Bootstrap) 

     simulated exact 
__________________ _____________ _____________ _____________ __________________ _____________ _____________

1 .1 .3 .8 1 .5968 .5968 
2 .1 .3 .2 1 .9978 .9975 
3 .1 .7 .2 1 .8688 .8791 
4 .1 .7 .8 0 .0528 .0532 
5 .9 .3 .2 0 .2436 .2436 
6 .9 .3 .8 0 .0002 .0003 
7 .9 .7 .2 0 .0052 .0056 
8 .9 .7 .8 0 .0000 .0000 
       

Average    .375  .3470 
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Table 2. Percentages of 1000 replications rejected with the nominal α= 5 % tests for 
twenty combinations of marginal probability and clustering value when there are 5 
clusters all with either 10 or 20 units per cluster. 
  
 

  ni = 10 ni = 20 
Marginal 

Probability 
Clustering 
Value, φ 

EPB CLS≡CP EPB CLS≡CP 

______________ _______________ ____________ ____________ _________ __________

.5(null) .1 0.1 0.9 0.2 1.3 
.5 .3 0.4 1.1 2.4 2.7 
.5 .5 2.4 2.8 4.3 4.1 
.5 .7 2.8 3.1 4.1 3.7 
.5 .9 3.3 3.3 2.4 2.4 
      

.3 .1 36.2 41.4 72.8 71.4 

.3 .3 30.0 33.1 47.5 37.3 

.3 .5 27.7 20.3 30.9 18.8 

.3 .7 18.2 14.7 22.8 17.2 

.3 .9 16.5 16.5 19.4 18.2 
      

.2 .1 87.5 81.4 99.5 97.0 

.2 .3 73.8 61.8 81.8 63.1 

.2 .5 55.0 42.2 64.0 39.2 

.2 .7 38.5 31.7 48.9 33.1 

.2 .9 35.0 34.8 38.6 35.1 
      

.1 .1 99.8 98.0 100 99.9 

.1 .3 95.3 86.3 99.0 92.7 

.1 .5 84.7 69.3 91.8 68.9 

.1 .7 65.2 57.1 81.0 59.1 

.1 .9 59.6 59.4 62.4 57.7 
      
      



Table 3. Percentages of 1000 replications rejected with the nominal α= 5 % tests for twenty combinations of marginal probability and 
clustering value when there are 10 clusters and 5 or 10 units per cluster. 
 
 

5 units per cluster 10 units per cluster Marginal 
Probability 

Clustering 
Value, φ EPB  CLS CP  EPB   CLS CP

___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________

.5(null)      .1 0.9 1.8 4.9 0.4 0.2 3.1 
.5      .3 1.1 0.7 4.0 1.2 0.2 2.5 
.5    .5 2.3 0.3 4.1 3.7 0.9 4.9 
.5     .7 2.1 0.9 2.8 5.3 1.6 5.4 
.5      .9 4.0 1.4 2.8 5.5 1.4 3.6 
        

.3      .1 62.5 47.7 81.5 92.3 53.6 96.7 

.3      .3 57.2 36.5 72.3 77.9 31.9 82.8 

.3      .5 47.3 24.8 55.8 58.3 17.0 61.5 

.3      .7 41.9 17.2 45.8 46.9 17.1 47.3 

.3      .9 34.9 15.4 29.1 38.0 14.0 34.6
        

.2      .1 96.0 .85.9 99.4 99.9 92.8 99.9 

.2      .3 92.6 74.3 96.3 98.6 72.0 98.8 

.2      .5 84.6 55.7 87.6 91.8 48.1 92.3 

.2    .7 74.9 44.1 76.9 79.4 37.4 78.8 

.2      .9 61.0 34.9 55.1 69.3 37.7 64.8
        

.1        .1 100 99.6 100 100 99.9 100

.1    .3 99.9 96.7 100 100 96.4 100 

.1    .5 99.2 89.1 99.5 100 82.8 100 

.1    .7 96.5 77.7 96.3 97.9 75.8 97.8 

.1      .9 89.0 76.3 87.0 91.8 71.2 89.2
 
 


