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Abstract

For the problem of dual system estimation, we propose a treed Capture Recapture

Model (CRM) to account for heterogeneity of capture probabilities where individual

auxiliary information is available. A treed CRM uses a binary tree to partition the

covariate space into “homogeneous” regions, within each of which the capture response

can be described adequately by a simple model that assumes equal catchability. In this

paper, a Bayesian approach is presented to fit and search promising treed CRMs. We

compare the performance of estimators based on this approach to those of alternative

models in three examples. The attractive features of the proposed models include

reduction of correlation bias, robustness, practical flexibility as well as simplicity and

interpretability. In addition, they provide a systematic and effective way to form post-

strata for the Sekar and Deming estimator of population size.
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1 Introduction

The problem we consider is that of estimating the size of a closed population from capture-

recapture data when capture probabilities are heterogeneous. We restrict attention to the

case of two capture periods, as in Census undercount estimation. In this context, the problem

is known as dual system estimation.

Under the classical model for capture-recapture data, the maximum likelihood estimator

(MLE) for population size N is N̂ = n1n2/m where n1 and n2 are the sample sizes in each

of the two capture periods and m is the number of previously captured individuals captured

in the second period. This estimator is asymptotically unbiased for N under the assumption

of equal catchability, but asymptotically biased if capture probabilities vary in both capture

periods. The bias is negative when capture probabilities in the first and second capture

periods are positively correlated (Alho et al. 1993), as is typically true in real populations.

As a result, this bias is sometimes called correlation bias.

The presence of unequal catchability and the problems it causes for estimation of N have

been long recognized in both animal and human populations (e.g., Young et al. 1952, Wilbur

& Landwehr 1974, Sekar & Deming 1949). Several alternative estimation approaches have

been proposed for the two-capture period case. Among the earliest was that of Sekar &

Deming (1949), who suggested a method whose basic idea is still used by the U.S. Bureau of

the Census today in undercount estimation. Their approach is to divide the captured indi-

viduals into post-strata that are believed to be more homogeneous with respect to capture

probabilities than the entire population; then make separate estimates of population sizes

within the post-strata and sum them up. That is, compute N̂SD =
∑

i N̂i, where N̂i is the

MLE of population size in the i-th stratum. If the post-stratification is perfectly effective

so that the capture probabilities are equal within each stratum, then N̂SD would be asymp-

totically unbiased. However, there is little guidance in the literature about how to choose

a post-stratification scheme. Sekar and Deming suggest that “...the population need be di-

vided only to the stage when further division shows no increase in N̂ ...”. Though it appears

reasonable, their method can result in overstratification because an increase in N̂ can always

be expected by randomly dividing sampled individuals into more groups (Appendix A).
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More recently, there have been several methods proposed that model the selection proba-

bilities as regression functions whose coefficients are estimated from the data of the individu-

als captured at least once (Alho 1990, Huggins 1991, Pollock et al. 1984, Pollock 2002). The

estimated probabilities are then used to form a kind of Horvitz-Thompson estimator of N .

These regression methods have been shown to reduce correlation bias, as well as to provide

useful information about which individuals are easy and which are difficult to capture (Alho

et al. 1993).

In this paper, we propose a new class of models allowing heterogeneous capture proba-

bilities. We refer to our models as Bayesian Treed Capture Recapture Models (BTCRM).

As with the approaches using regression functions, our method requires that auxiliary infor-

mation about each captured individual is available, and that these covariates are potentially

related to that individual’s capture probabilities. There are two key features that make

our models different from past work. First, given a set of covariates X, instead of using a

regression setup, our models use binary trees to partition the domain of X, denoted X , into

subsets. Within each of the subsets, individuals are assumed to have equal capture rates, so

the classical model can adequately describe the distribution of the capture history Y . Such

treed models, though simple, are flexible and robust in practice (Breiman et al. 1984, Hastie

et al. 2001). This is because a series of binary splits can achieve good approximation to many

different forms of functions, including non-smooth relationships that are difficult to describe

by a standard regression model. Second, our approach to finding a good tree is a supervised

learning process guided by the information in the observed capture history y. Intrinsically,

it incorporates Bayesian model selection to account for model uncertainty. Rather than use

ad hoc penalty criteria for ranking models, the Bayesian approach coherently ranks trees

by the posterior distribution. MCMC is used to search for high posterior trees. Due to its

stochastic nature, MCMC can readily find systematic structures that tend to be overlooked

by a short-sighted greedy search. The use of the BTCRM could be easily integrated into the

Census undercount estimation by using a tree chosen based on the posterior to define the

post-strata for N̂SD.

The idea of such Bayesian treed models was pioneered by Chipman et al. (1998) (here-

after CGM 1998) and Denison et al. (1998) to find and fit CART models, which partition X
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into regions where E(Y |X) is constant. Chipman et al. (2002, 2003) (hereafter CGM 2002

and 2003) extended it to treed regressions and treed GLMs, where linear regression and gen-

eralized linear models were used to describe the variation within each subset of the partition,

respectively. What distinguishes our work from these earlier treed models is that we consider

a capture-recapture model with homogeneous capture probabilities at each terminal node,

and this induces considerable differences in prior specification and posterior calculation.

The remainder of the paper is organized as follows. Section 2 introduces BTCRMs in

a general mathematical framework. In Section 3, we propose several prior distributions for

trees and capture probabilities and address the problem of computing the marginal densities

of the data. A Metropolis-Hastings (MH) algorithm with parallel tempering is presented

to search for promising trees, and discussed in Section 4. The potential of our proposed

BTCRMs is illustrated through three examples in Section 5, where we also compare their

predictive performance in estimating N with competing models on an actual dataset from

the 1990 Census. Section 6 concludes with discussion.

2 The Bayes Setup for Treed CRMs

We begin by discussing the general structure of a treed model that describes the condi-

tional distribution of a random vector of interest Y given a set of known covariates X.

Typically, a binary tree is used to divide the covariate space X into regions where a single

parametric model for Y |X is adequate. Consider a tree T with b terminal nodes denoted

T1, . . . , Tb, corresponding to the distinct regions of a partition of X . Let ( Xi,Yi) denote

the observations assigned to the i−th terminal node Ti, and Yi|Xi ∼ f(Yi|Xi, θi) where

θi is the parameter vector associated with Ti. Define X ≡ (X1, . . . ,Xb)
′, Y ≡ (Y1, . . .Yb)

′

and Θ ≡ (θ1, . . . , θb)
′. Assuming y values across terminal nodes are independent, the treed

model distribution of the data will be of the form

f(Y|X, Θ, T ) =
b∏

i=1

f(Yi|Xi,θi). (1)

A Bayesian solution to model uncertainty problems for the general treed setup in (1) proceeds

as follows. We seek priors of the form
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π(Θ, T ) = π(Θ|T )π(T ) =
b∏

i=1

π(θi) · π(T ). (2)

so that θi’s across terminal nodes are assumed a priori independent. Such prior distributions

lead to posterior distributions over T of form

f(T |X,Y) ∝ f(Y|X, T )π(T ), (3)

where

f(Y|X, T ) =
b∏

i=1

∫
f(Yi|Xi, θi)π(θi)dθi (4)

is the marginal density of Y given T . Then an MCMC method is used to simulate a sample

from f(T |X,Y), which tends to gravitate toward trees with high posterior probabilities.

Under this general framework, there have previously been three classes of Bayesian treed

models proposed. The difference in these models lies in what kind of terminal node distri-

bution they consider. For example, for CART models, the conditional distribution of Y |X
under the terminal node Ti is given by a normal distribution with constant mean and vari-

ance, i.e., N(µi, σ
2
i ); for treed regression models, it is given by N(xβi, σ

2
i ), where βi is the

vector of regression coefficients associated with Ti. In this paper, we introduce a new class

of treed models that are Bayesian Treed Capture Recapture models, by considering a condi-

tional multinomial as the terminal node distribution. Once a tree is given, each individual in

the population under consideration is assigned to a terminal node. Let Ni be the unknown

number of individuals assigned to Ti in the population, i = 1, . . . , b. For the k−th individual

assigned to Ti, define indicator variables uijk and mik for k = 1, . . . , Ni,

uijk =





1, if individual k is captured on occasion j only, j = 1, 2;

0, otherwise;

mik =

{
1, if individual k is captured twice;

0, otherwise.

Define Mik = ui1k + ui2k + mik, uij =
∑

k uijk, mi =
∑

k mik, nij =
∑

k nijk, and Mi =

ui1 + ui2 + mi. Define pij as the capture probability on the j−th occasion for all individuals

assigned to Ti. Then we have the following generalized Bernoulli (GB) model for each
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individual under Ti:

(ui1k, ui2k,mik, 1−Mik) ∼ GB (1, pi1(1− pi2), (1− pi1)pi2, pi1pi2, (1− pi1)(1− pi2)) (5)

Assuming that the captures of different individuals are independent, the conditional likelihood

given the observed individuals under Ti (i.e., those with Mik = 1 ) is

f(Yi|θi) =
pui1+mi

i1 (1− pi1)
ui2pui2+mi

i2 (1− pi2)
ui1

[1− (1− pi1)(1− pi2)]
ui1+ui2+mi

(6)

Here, Yi ≡ (ui1, ui2, mi) and θi ≡ (pi1, pi2). As in the CART model, (6) does not depend on

Xi. This reduces f(Yi|Xi,θi) to f(Yi|θi), f(Y|X, T ) to f(Y|T ), and f(T |X,Y) to f(T |Y).

The practical value of the introduced BTCRMs relies heavily on the flexibility of the

prior distributions and the ease of posterior computation. In the next section, we address

both of these issues for various prior settings on Θ.

3 Prior Specifications and Marginal Densities

For the tree prior π(T ), we note the specification in CGMs (i.e., CGM 1998, 2002 and 2003)

is independent of the terminal node models. Hence, it is sufficiently general for all kinds of

tree structures. In this paper, we adopt their specification because of its flexibility and ease

of implementation. For completeness, a brief description is provided below.

Unlike classical prior specifications, the CGM version of π(T ) has no closed-form density.

Instead, it is implicitly defined by a tree-generating stochastic process which is controlled by

two functions fsplit(η, T ) and frule(ρ|η, T ). fsplit(η, T ) specifies the probability that terminal

node η of tree T is split and frule(ρ|η, T ) specifies the probability of assigning splitting rule

ρ to η when the tree is split. A general form for fsplit(η, T ) is given by α(1+ dη)
−β, where dη

is the depth of the node η and β ≥ 0. This allows for controlling the size and the shape of

the generated trees through (α, β): a large α will tend to grow larger trees and a large β will

make deeper nodes less likely to split. A default choice of frule(ρ|η, T ), which will be used

throughout this paper, is a prior distribution that is uniform on all available X variables

and within a given variable, uniform on all possible splits for that variable. For a discussion

about a variety of frule(ρ|η, T ) specifications or more details about π(T ), see CGM 1998.
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We now proceed to choose the conditional prior π(Θ|T ) on the parameter space and cal-

culate the marginal density of the data f(Y|T ). As in CGMs, one simplifying and reasonable

assumption we take is that the components θi = (pi1, pi2) of Θ are a priori independently and

identically distributed (IID). This reduces our consideration of π(Θ|T ) to a unified π(pi1, pi2)

for every terminal node. Such consideration must confront the difficulty that the integrations

in (4) are often analytically intractable. In what follows, we discuss three different priors

on capture probabilities pij for a given terminal node Ti to accommodate different needs

in practice; for each of the priors, we derive the corresponding approximate representation

for the marginal f(Y|T ), based on the Laplace method or its modification, which leads to

analytical tractability and computational simplicity.

Jeffreys prior for pij

When there is no real prior information about pij, as will frequently be the case in practice, a

noninformative prior is needed. Also in some applications, especially politically charged ones

such as Census undercount estimation, one might prefer objective and automatic methods

that require as little human decision-making as possible, such as setting of tuning parameters.

In this case as well, a noninformative prior would be desirable. A widely used method to de-

rive a noninformative prior is that of Jeffreys (1961), which is to choose π(θ) ∝ [det I(θ)]1/2,

where I(θ) is the Fisher information matrix −Eθ[∂
2 log f(Y|θ)/∂θ2]. As noted in Berger

(1985), an attractive feature of the Jeffreys prior is that, when dealing with restricted param-

eter spaces, one of the situations where noninformative priors are useful, it is not affected by

the restriction. From the terminal node distribution (6) of Ti, it is straightforward to obtain

I(θi) ∝ [Ikl]2×2 where

I11 = 1/pi1 + pi2/(1− pi1)− (1− pi2)
2/(pi1 + pi2 − pi1pi2),

I12 = I21 = −1/(pi1 + pi2 − pi1pi2),

I22 = 1/pi2 + pi1/(1− pi2)− (1− pi1)
2/(pi1 + pi2 − pi1pi2).

So the Jeffreys prior of θi = (pi1, pi2), denoted by πJ , has the form

πJ(pi1, pi2) ∝ (1− pi1)
−1/2(1− pi2)

−1/2[1− (1− pi1)(1− pi2)]
−1/2. (7)
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With some calculus, we can show πJ is proper so that it is well suited for our Bayesian treed

model selection. Then the marginal prior density on pij is

πJ(pij) =
1

π log 2

arcsin
√

1− pij

1− pij

, for j = 1, 2

and the normalizing constant for πJ is indeed 2π log 2. This constant cannot be ignored

when comparing trees with different numbers of terminal nodes.

Under the prior (7) and the likelihood (6) for Ti, we express the integral in (4) as

f(Y|T ) =
b∏

i=1

{
K ·

∫ 1

0

∫ 1

0

exp [wi(pi1, pi2)] dpi1dpi2

}
(8)

where K = 1/(2π log 2), and wi(pi1, pi2) is given by

wi = Ai1 log pi1 +Bi1 log(1−pi1)+Ai2 log pi2 +Bi2 log(1−pi2)−Ci log(pi1 +pi2−pi1pi2) (9)

and Ai1 = ni1, Bi1 = ui2−1/2, Ai2 = ni2, Bi2 = ui1−1/2, and Ci = Mi +1/2. To solve these

analytically intractable integrations in (8), we resort to the Laplace method to approximate

f(Y|T ) (Tierney & Kadane 1986, Smith 1991, Kass & Raftery 1995, CGM 2002, etc.):

f̃(Y|T ) =
b∏

i=1

{
2πK ·

∣∣∣−H̃i

∣∣∣
−1/2

· exp [wi(p̃i1, p̃i2)]

}
(10)

and

f̃(Y|T ) = f(Y|T ) · [1 + O(1/ min
i

Mi)]. (11)

In (10), Hi = w′′
i (pi1, pi2) and H̃i is Hi evaluated at (p̃i1, p̃i2) where wi peaks; (p̃i1, p̃i2)

satisfies ∂wi/∂pij = 0, j = 1, 2, which can be simplified to the following two equations:

(Ai1 + Bi1 − Ci)(Ai2 + Di)p
2
i1 − [(Ai1 + Ai2)(Ai1 + Bi1 − Ci)

+Ai1Ai2 + Di(Ai1 − Ci) ] pi1 + Ai1(Ai1 + Ai2 − Ci) = 0 (12)

Ai1/pi1 − Ai2/pi2 −Di = 0 (13)

where Di = (Ai1 + Bi1)− (Ai2 + Bi2) is reduced to zero here. Obviously, (12) and (13) can

be analytically solved. Further, it is not hard to show the following results for any Ti:

1. For any ui1 ≥ 0, ui2 ≥ 0 and mi ≥ 0,
∫ 1

0

∫ 1

0
exp [wi(pi1, pi2)] dpi1dpi2 exists.
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2. If ui1 > 0, ui2 > 0 and mi > 0, (12) and (13) have a single pair of roots in the region

[0, 1]2, and wi achieves the global maximum at these roots.

3. If Mi > 0 but ui1 ui2 mi = 0, then the global maximum of wi is +∞ achieved at the

boundary of the region [0, 1]2. In this case, the Laplace approximation (10) cannot be

applied, so a 2-dimension numerical integration need to be performed.

It is notable that the computation required for the marginal via (10) is indeed minimum and

the results are often surprisingly accurate.

Beta prior for pij

There exist situations where prior information about capture probabilities is available from

direct knowledge or previous surveys. For example, field biologists may know some species

are hard to catch so want to concentrate the prior on small capture probabilities. Such

information can be incorporated into the analysis by using an informative prior. Following

Castledine (1981) and George & Robert (1992), we consider the beta prior, denoted πB, in

which pi1 and pi2 are a priori independent, namely

pij ∼IID Beta(aj, bj), for i = 1, . . . b; j = 1, 2. (14)

This reduces the choice to two priors Beta(a1, b1) and Beta(a2, b2). Both Castledine (1981)

and George & Robert (1992) assume the priors of capture probabilities for different capture

occasions are exchangeable so that only one prior is needed. The reason that we allow

separate priors for the two capture occasions is the experimenter sometimes expends more

sampling effort on one occasion than the other. A typical example is U.S. Census undercount

estimation, where the first occasion is the well-publicized Census operation and the second

is a less extensive sampling operation.

Computing the marginal f(Y|T ) under πB using the Laplace approximation is essentially

the same as that under πJ . Formulas (8), (11), (12) and (13) hold for πB if we redefine the

related quantities in this way: K = Γ(a1 + b1)Γ(a2 + b2)/{Γ(a1)Γ(b1)Γ(a2)Γ(b2)}, Ai1 =

ni1 +a1−1, Bi1 = ui2 + b1−1, Ai2 = ni2 +a2−1, Bi2 = ui1 + b2−1, and Ci = Mi. Similarly,

we have the following results for Ti under πB:
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1. For any uij ≥ 0, mi ≥ 0 and aj > 0, bj > 0, j = 1, 2,
∫ 1

0

∫ 1

0
exp(wi) dpi1dpi2 exists.

2. If Ai1 > 0, Bi1 > 0, Ai2 > 0, Bi2 > 0 and mi + a1 + a2 > 2, (12) and (13) have a single

pair of roots in the region [0, 1]2, where wi achieves the global maximum. In most

cases, these conditions hold so the Laplace approximation (10) can be applied easily.

3. If any of Ai1, Bi1, Ai2 or Bi2 ≤ 0 or mi + a1 + a2 ≤ 2, then the global maximum of

wi is +∞ and achieved at the boundary of the region [0, 1]2. In this case, a numerical

integration or a sampling-based integration is necessary.

The hyperparameters (aj, bj) (j = 1, 2) can be flexibly chosen to incorporate available sub-

jective prior information into our treed models. A special case is aj = bj = 1 where (14)

becomes a flat prior so can be used as an alternative to noninformative priors. On the other

hand, one can obtain these hyperparameters from prior predictions if historical data exist

(Meyer & Laud, 2002). At this stage, the treed CRM is not necessarily used. For example,

one might build a conditional logistic regression model (Alho, 1990) on historical data using

the common covariates in both studies, and use this model to predict the capture probabili-

ties of the individuals observed in the current study; then a natural way of specifying (aj, bj)

is that, for each j, let the prior mean of pij be the sample mean of the predicted probabilities

at the j−th occasion, let the prior variance be the corresponding sample variance, and solve

for aj and bj. For historical data containing no covariates, an analysis based on the homo-

geneous assumption can still guide the choice of (aj, bj). In this case, it may be reasonable

to simply set the prior mean of pij at p̂j estimated from historical data because the capture

probabilities in different strata may balance so that p̂j still provides a rough estimate of the

prior mean; however, one should select the prior variance larger than the variance estimated

under the homogeneous assumption to allow a reasonable spread in the interval [0,1].

Normal prior for logit(pij)

In many practical cases, capture probabilities in the first and second capture periods are

correlated and people may have prior information about the correlation structure of (pi1, pi2),

obtained from previous studies or expert knowledge. Whenever available, such information

should be used to help reduce the correlation bias in estimating N . Although flexible in
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shape, the beta prior assumes independence between pi1 and pi2. That’s why we further

consider the normal prior based on the logit transformation (Castledine 1981), which can

easily incorporate a correlation structure. Define ψij = log[pij/(1−pij)] and ψi = (ψi1, ψi2)
T ,

and consider the bivariate normal prior on ψi, denoted πN , with mean µ and covariance

matrix Σ. Under this normal prior, we express the integral in (4) as

f(Y|T ) =
b∏

i=1

{
L ·

∫

R2

exp [vi(ψi) + λi(ψi)] dψi

}
, (15)

where L = 1/(2π|Σ|1/2) and

vi(ψi) = ni1ψi1 + ni2ψi2 −Mi log
[
eψi1 + eψi2 + eψi1+ψi2

]
,

λi(ψi) = −(ψi − µ)TΣ−1(ψi − µ)/2.

Applying the Laplace method to (15) yields

f̃(Y|T ) =
b∏

i=1

{
2πL ·

∣∣∣−G̃i

∣∣∣
−1/2

· exp
[
vi(ψ̃i) + λi(ψ̃i)

]}
, (16)

where ψ̃i is the posterior mode that maximizes vi+λi, Gi = v′′i +λ′′i and G̃i is Gi evaluated at

ψ̃i. However, unlike (p̃i1, p̃i2) under πJ or πB, ψ̃i cannot be analytically solved from the first-

order conditions. To avoid the need for calculating ψ̃i via an optimization algorithm, we take

an approach similar to that of Raftery (1996), which substantially reduces the computational

burden of tree posterior exploration. First apply the one-step Newton’s method to obtain

ψ̃i ≈ ψ̂i + Ĝ−1
i Σ−1 · (ψ̂i − µ), (17)

where ψ̂i is the MLE of ψi and Ĝi is Gi evaluated at ψ̂i, namely

ψ̂i =


 log(mi/ui2)

log(mi/ui1)


 , Ĝi =


 −ui2ni1/Mi ui1ui2/Mi

ui1ui2/Mi −ui1ni2/Mi


−Σ−1 .

Then noting G̃i ≈ Ĝi and inserting this and (17) in (16) yields an approximation for f(Y|T )

f̃(Y|T ) ≈
b∏

i=1

{
2πL ·

∣∣∣−Ĝi

∣∣∣
−1/2

· exp

[
vi(

̂̃
ψi) + λi(

̂̃
ψi)

]}
, (18)
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where
̂̃
ψi is the right hand side of (17). Because of the Newton’s step, (18) appears less

accurate than the Laplace approximation (16). But the error remains O(1/ mini Mi) and

(18) works equivalently well as (16) especially when mini Mi is reasonably large.

As described for πB, when historical data exist, specifying the hyperparameters (µ, Σ)

can be easily done through prior predictions for capture probabilities, combined with the

moment estimation method based on the logit transformation.

4 Posterior Exploration with Parallel Tempering

Due to the huge size of the tree space, it is infeasible to calculate the posterior distribu-

tion over all possible trees. CGMs proposed an MH algorithm to stochastically search for

high posterior trees, which iteratively simulates a Markov chain with limiting distribution

f(T |Y) ∝ f(Y|T ) π(T ). A drawback of this algorithm, as mentioned in CGMs, is that

the simulated chains tend to quickly gravitate towards a region where the tree posterior is

large and then stabilize, move locally in that region for a long time. To reduce the time

for the chains to move away from local maxima, different methods have been proposed in

the existing literature, such as search with multiple starting points (CGM 1998 and 2002),

parallel tempering (Geyer & Thompson 1995), evolutionary MCMC (Liang & Wong, 2000),

dynamic weighting (Liu et al. 2001), and many others. In this paper, we adopt parallel

tempering (PT) to our BTCRMs due to its better performance than using multiple starts

and its simplicity. The basic idea of the PT method is, instead of using a single long run,

it simulates a set of Markov chains in parallel, and updates them by both within-chain and

across-chain operations in each iteration. An important feature of such parallel chains is

that each of them uses a different temperature; a high temperature can make the limiting

distribution with sharp peaks become flat so help a chain escape from local maxima, while

a low temperature can make a chain quickly move to peaks nearby. Moreover, instead of

letting chains run independently, the system can be substantially mixed by passing useful

information among chains via exchange operations. Under the context of the tree models, a

new MH sampler with implementation of PT is outlined by the following steps:

1. Initialize a set of chains T0 = {T 0
1 , . . . , T 0

R} with the null tree (i.e., the single node

12



tree), and specify a temperature ladder τ = {τ1, . . . , τR} where 1 = τ1 < · · · < τR and

τr is associated with the r−th chain, r = 1, . . . , R.

2. For each member of the population Ti at the i−th iteration (say member r), run the

following MH algorithm to generate a sample T i+1
r .

(a) Generate a candidate value T ∗
r from T i

r with probability distribution q(T i
r , T

∗
r ) that

randomly chooses among four actions: GROW, PRUNE, CHANGE, and SWAP

(for a detailed description of these actions, see CGM1998).

(b) Set T i+1
r = T ∗

r with probability

φ(T i
r , T

∗
r ) = min





[
f̃ (Y|T ∗

r ) π(T ∗
r )

f̃ (Y|T i
r) π(T i

r)

]1/τr

q(T ∗
r , T i

r)

q(T i
r , T

∗
r )

, 1



 . (19)

Otherwise, set T i+1
r = T i

r .

3. Exchange T i+1
l with T i+1

k for R pairs of (l, k) with probability

φE(T i+1
l , T i+1

k ) = min





[
f̃ (Y|T i+1

k )π(T i+1
k )

f̃ (Y|T i+1
l )π(T i+1

l )

]1/τl−1/τk

, 1



 (20)

where l is sampled uniformly on {1, · · · , R}; for 1 < l < R, k = l ± 1 with probability

0.5, for l of 1, k = 2, and for l of R, k = R− 1.

4. Repeat step 2 and 3 for the (i + 1)-th iteration until the chains converge.

To actually estimate the total population size N , we must choose a specific tree from all

of those visited by the parallel chains. It is natural to use posterior probabilities to rank

trees. However, this suffers from the dilution phenomenon discussed in CGM 1998, so is not

a good selection criterion. Instead, the “best” tree can be determined by choosing the tree

with the highest marginal likelihood f(Y|T ). This is equivalent to using Bayes factors as

the selection criterion. Here, we should note that trees visited under different tree priors are

comparable with regard to their marginal likelihoods. So in practice, it may be appropriate

to explore the tree space under several (α, β) choices to accommodate various reasonable

beliefs about tree size, then find a single “best” tree over all the choices.

Once a tree is selected, it is straightforward to use the Sekar and Deming estimator

N̂SD for estimating N . For a final tree with b terminal nodes, this is given by N̂SD =
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∑b
i=1 ni1ni2/mi and an estimate for the asymptotic variance is V̂ (N̂SD) =

∑b
i=1 ni1ni2ui1ui2/m

3
i

(Sekar & Deming 1949). The advantage of this classical approach is that it is computationally

simple, and at least for the Census undercount application, a well-understood estimator. The

tree model can be viewed as simply a rational and data-based post-stratification mechanism.

This is the estimator we examine in the paper.

In other applications, however, one might be interested in a Bayesian analysis for each

Ni that can incorporate useful prior information into the data. In this case, calculations

leading to the posterior distribution π(Ni|Yi) are necessary so that N̂i can be the posterior

mean or mode and the posterior variance of N |Y can be given by
∑b

i=1 V (Ni|Yi). Note un-

der the homogeneity assumption, there have been comprehensive Bayesian inferences about

population size (e.g., George & Robert 1992, Castledine 1981, Smith 1991).

Before we end this section, one implementation detail of the search algorithm is worth

noting. A tree having at least one node with mi equal to zero is not permitted in a run.

In contrast, a tree having one or more nodes with ui1 or ui2 equal to zero can be visited

during a run. However, once such trees are visited, none of the nodes with ui1 or ui2 equal

to zero is allowed to split for two reasons. First, splitting such nodes would not help us to

estimate N because N̂SD would remain unchanged by doing so. Second, such operations

cannot avoid numerical or sampling-based integration to obtain the marginals, which slows

down the algorithm greatly. In many applications, people may be able to set reasonable and

realistic constraints on any of mi, ui1, ui2, ni1, ni2 when splitting a terminal node. Such

constraints, when available, are recommended to use for avoiding trivial cases and achieving

fast computing speed.

5 Examples

In this section, we illustrate Bayesian treed CRMs and evaluate their performance in es-

timating total population sizes on three examples. The first example uses data simulated

from a true tree structure, so we expect BTCRMs to do well on it. We use this example to

show that using parallel tempering improves the effectiveness of stochastic search, compared

to the strategy of using multiple starts for the MCMC algorithm. We also consider various
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Figure 1: A capture-recapture tree
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choices of hyperparameters and investigate their effects on estimation. Although such effects

could vary from one dataset to another, our hope is that the results can shed lights on typical

cases. The second example deals with data simulated from logistic regression models, where

we show that BTCRMs with high posteriors can provide reasonable approximations to the

true model and identify important predictors to produce good estimates. The third exam-

ple demonstrates how BTCRMs perform under the null case, where the population under

consideration is homogeneous.

5.1 First Simulated Example

In this experiment, we extended aspects of the simulation setup in Section 6 of CGM 1998

for BTCRMs. First, we simulated a population of size N = 5000 with capture probabilities

following a tree structure depicted by Figure 1. For the k−th individual in the population,

the covariates xk1 and xk2 were simulated uniformly from {1, 2, . . . , 10} and {A,B, C, D},
respectively. Then the indicators of capture status, zkj, j = 1, 2, were generated from

Bernoulli(1, pkj) independently. Note this tree has the same splitting rules as the one in

CGM 1998 and tends to elude identification by some “short-sighted” greedy algorithms.

We begin by applying our approach to the “visible” capture data where zk1 + zk2 6=
0. To illustrate the behavior of the PT algorithm for our treed setup, we performed a

comparison of three strategies: (1) one long run with 20,000 iterations, (2) 5 restarts with

4000 iterations for each restart, and (3) PT with 5 parallel chains having a temperature

ladder τ = {1, 1.5, 2, 2.5, 3} and 4000 iterations for each chain. These temperatures were
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chosen so that we can control the PT sampler to yield reasonable acceptance rates: the

overall local updating rate was about 0.25, and the exchange rate was about 0.4. All the

strategies are based on the noninformative Jeffreys prior on capture probabilities, and the

tree prior π(T ) with α = 0.95 and β = 0.5, which assigns a prior mass of approximately

0.80 to trees with less than 10 terminal nodes. Each panel of Figure 2 displays the log

marginal likelihoods for visited trees under one of the strategies, with a line drawn at the

log marginal likelihood of the true tree. As Figure 2 shows, the strategy of using a long

run was worst; the algorithm quickly got to a region of high posterior probabilities, and

then was trapped in that region for a long time. The strategy of using multiple starts was

much better than that of using a single run; the fourth restart luckily found trees with

likelihoods only a bit lower than the “optimal” value. The PT strategy performed best in

this example and correctly identified trees with the “optimal” likelihood. Its second chain

with temperature 1.5 first visited such trees, and passed these via the exchange operations

to the first chain with temperature 1 that reflects the true posterior. The other three chains

were also helpful in sense that they accepted trees with less rigid standards and passed good

candidates through several exchange operations to the second chain that led to finding the

“optimal” trees. Overall, it appears that the PT strategy improves the effectiveness of the

MH sampler, compared to using multiple starts, due to the attractive features of sampling

along a temperature ladder and exchange of useful information among chains.

Now we report results from a sensitivity analysis of various prior choices for capture

probabilities. What we considered in the analysis are the Jeffreys prior, the flat prior, and

informative beta priors including Beta(0.5, 0.5), Beta(1, 2), Beta(1.5, 1.5) and Beta(2, 1) for

both pi1 and pi2, or for one of pi1 and pi2 while the other uses the flat prior Beta(1, 1).

Note these beta priors represent very different subjective prior information: Beta(0.5, 0.5)

is symmetric convex, Beta(1.5, 1.5) is symmetric concave, Beta(2, 1) is a line with a positive

slope, and Beta(1, 2) is a line with a negative slope, each of which is in favor of different

probability values in [0,1]. In total, there were 14 prior distributions on (pi1, pi2) tested.

For each of these priors, we considered three sets of the hyperparameters (α, β) of the tree

prior π(T ): (i) (α, β) = (0.95, 1.5), (ii) (α, β) = (0.95, 0.5) and (iii) (α, β) = (0.95, 0.25).

This gives 14× 3 = 42 possible prior settings. Here, (i) expresses the prior belief that small
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Figure 2: Comparison of the strategy PT with no restart and multiple restarts
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trees should yield adequate fits to the data, giving 2.8 expected terminal nodes; (ii) is in

favor of medium trees, giving 6.5 expected terminal nodes; and (iii) induces a loose prior

that puts a lot of weight on large trees, giving 11.8 expected terminal nodes. Note in this

example α is fixed at 0.95 so that the root node has a large chance to split, which reflects

the prior belief that the null tree would not fit the data adequately. For each of the 42 prior

settings, to search for promising trees over the induced posterior, we ran the PT sampler

with the temperature ladder τ = {1, 1.5, 2, 2.5, 3} for 4000 iterations; then we selected the

tree with the highest marginal likelihood as the “best” and report this in Table 1 along with

the null tree and the true tree. Finally, for each of the 14 prior distributions on (pi1, pi2), we

selected the most likely tree denoted T̂ over the small, medium and large tree priors, and its

characteristics are displayed in Figure 3. The left panel shows log Bayes factors for the true

tree and each T̂ , the middle panel is for size of T̂ with a line drawn at the size of the true

tree, and the right panel shows predictive loss of T̂ with a line drawn at the predictive loss of

the true tree. Here, the Bayes factor for tree T is defined as BFT = f(Y|T )/f(Y|T0) where

T0 is the null tree; the predictive loss is defined as L =
∣∣∣N̂SD −N

∣∣∣ /N where N = 5000 in

this example.

From Table 1 and Figure 3, we can see that the marginal likelihoods (or Bayes factors) for

17



Table 1: Results from Various Priors on Capture Probabilities
Prior Log Marginal Likehood

π(pi1, pi2) Null True Best Best Best
Tree Tree (S) (M) (L)

Jeff -3519.6 -3371.8 -3371.8 -3371.8 -3371.8
Beta(a1, b1, a2, b2)
(1.0,1.0,1.0,1.0) -3519.0 -3369.2 -3373.3 -3369.2 -3371.5
(1.0,1.0,0.5,0.5) -3519.5 -3370.9 -3374.6 -3370.9 -3373.5
(1.0,1.0,1.0,2.0) -3518.9 -3368.3 -3368.3 -3370.2 -3370.2
(1.0,1.0,1.5,1.5) -3518.8 -3368.5 -3368.5 -3368.7 -3368.5
(1.0,1.0,2.0,1.0) -3519.2 -3371.0 -3375.5 -3377.5 -3374.2
(0.5,0.5,1.0,1.0) -3519.4 -3370.9 -3370.9 -3373.6 -3373.6
(1.0,2.0,1.0,1.0) -3519.4 -3370.4 -3377.1 -3372.7 -3375.1
(1.5,1.5,1.0,1.0) -3518.8 -3368.5 -3372.2 -3371.7 -3370.7
(2.0,1.0,1.0,1.0) -3518.8 -3369.1 -3371.4 -3375.4 -3369.0
(0.5,0.5,0.5,0.5) -3519.9 -3372.6 -3377.9 -3377.9 -3375.6
(1.0,2.0,1.0,2.0) -3519.3 -3369.5 -3374.0 -3374.6 -3371.4
(1.5,1.5,1.5,1.5) -3518.6 -3367.8 -3369.9 -3368.1 -3369.9
(2.0,1.0,2.0,1.0) -3518.9 -3370.9 -3375.2 -3373.8 -3375.2

Note: S, M and L stand for the small, medium and large tree prior, respectively.

Figure 3: Sensitivity Analysis of Various Priors on Capture Probabilities
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the null tree, the true tree or the “best” trees are not sensitive to the prior choice; instead,

they are quite resistant to the prior change. As shown in the left panel of Figure 3, the true

tree has the highest likelihood under every prior setting. In about half of cases including the

Jeffreys and flat priors, the true tree was selected as the “best” tree while in the other cases

with only one exception, trees with one more terminal nodes were identified as the “best”.

However, the predictive losses of N̂ from the “best” trees under all prior settings are very

close to that of the true tree (5.0%), much better than that of the null tree (15.8%). This

is because the “best” trees selected by this Bayesian approach often have subtrees with the

same splitting rules of the true tree, so their predictive performance is as good as that of the

true tree, as indicated in the right panel of Figure 3.
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In this example (the sample size M = 3373), each run of 4000 iterations using the PT

sampler with five temperatures (i.e., total 20,000 iterations) took about 40 seconds (1.8GHz

Xeon processor and 1GB of RAM).

5.2 Second Simulated Example

Treed models are often powerful and robust as they can provide convenient but reasonable

approximation to reality in a wide range of applications. However, whether BTCRMs, as a

new class of treed models, can achieve this remains an open question. To address this, we

deliberately simulated data from populations in which each individual has capture proba-

bilities following logistic regression models instead of a binary tree. And we tested how well

BTCRMs would perform even when the underlying assumptions were not satisfied.

Following Caples (2000), we used actual data for a particular post-stratum (minority

home-owner households) from the 1990 U.S. Census and Post-Enumeration Survey to con-

struct populations. The data contains the following descriptive variables for 46,794 indi-

viduals: Age, Sex, Marital Status (MS), Household size (HS), Percent Non-Owner in block

(PNO), Percent Multiunit Structure in block (PMS), Vacancy Rate in block (VR), and two

interaction terms Age*Sex and PNO*PMS. To generate capture rates, we used the same

model as in Caples (2000), given by the equations

Capture: logit(pk1) = η1 + 0.1528 Sex− 0.3027 HS− 0.0967 PMS

Recapture: logit(pk2) = η2 + 0.2036 Sex− 0.1998 HS− 0.0475 PMS.

(21)

The regression coefficients in (21) are the MLEs fitted for the above model based on the

entire post-stratum and actual capture status data. But the constant terms were modified

to create two populations having capture rates similar to ones associated with model I and

II in Alho (1990). For population I, η1 = 0.3688 and η2 = 1.3619, which yield pk1’s with

mean 0.608, SD 0.075, and pk2’s with mean 0.810, SD 0.038. For population II, η1 = −0.5312

and η2 = −1.082, which yield pk1’s with mean 0.392, SD 0.070, and pk2’s with mean 0.275,

SD 0.042. The size of both populations is 46,794. For each population, to simulate capture

status indicators, individuals were sampled according to (pk1, pk2) calculated from (21).

In this example, preliminary runs indicated that the “best” trees selected under different
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Figure 4: A Selected Tree for Population II
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Note: p̄ is the average of true probabilities and p̂ is the classical MLE under a terminal node.
Covariates were standardized in this example. The predictive loss of this tree is 0.79%.

tree priors yield similar log marginal likelihoods and predictive losses, and they performed

equally well in estimating N . As a result, many different trees can provide good approxi-

mation to the true logistic models. Usually, such trees contain splitting rules for the right

covariates SEX, HS or PMS or others correlated to these three, an example of which is shown

in Figure 4 for population II.

To further investigate the predictive performance of BTCRMs, we generated 50 samples

from each population and repeated our procedure for each sample under the noninformative

Jeffreys prior for (pi1, pi2) and the tree prior of (α, β) = (0.95, 0.5). In a run, we employed the

PT sampler with the temperature ladder τ = {1, 2, 3, 4, 5} for 4000 iterations. With these

temperatures, the overall acceptance rate of local updating was about 0.3, and the overall

exchange rate was about 0.15 for Population I and 0.3 for Population II. For comparison,

we also applied conditional logistic regression models (Alho, 1990) for each dataset. Table

2 compares the performance of BTCRMs with classical CRMs and Alho’s logistic regression

models. The predictive losses show that the BTCRMs performed well. They are substantially

better than classical CRMs and close to Alho’s logistic models. Note that we cannot expect

BTCRMs to outperform Alho’s logistic models since they were the models from which the

data were simulated. Also, the performance of Alho’s models reported in Table 2 is optimistic

because we fitted the model with the correct variables directly instead of using any variable
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Table 2: Comparison of Bayesian Treed CRM with Classical CRM and Alho’s Logistic
Regression based on 50 Samples of Simulated Census Data
(N=46794) Pop I (η1 = 0.3688, η2 = 1.3619) Pop II (η1 = −0.5312, η2 = −1.082)

Alho Null Best Alho Null Best
Logistic Tree Tree Logistic Tree Tree

AVG(Size) – 1 9.9 – 1 5.2
AVG(Log BF) – 0 362.0 – 0 86.2
AVG(Pred. Loss) (%) 0.17 0.60 0.18 0.71 2.79 0.78
AVG(N̂) 46785.6 46514.3 46759.7 46771.6 45489.2 46526.8
SD(N̂) 96.3 87.3 97.6 402.7 370.8 397.8
AVG(σ̂(N̂)) 91.2 81.7 92.4 478.3 412.2 468.0

Note: the averages and SDs were calculated based on 50 samples from each population.

selection procedure. In contrast, our BTCRMs automatically involved variable selection

among the 9 variables.

In this example, each run of 4000 iterations for population I using the PT sampler with

five temperatures (the average sample size M̄ is about 43,000 ) took about 24 minutes, and

for population II (M̄ is about 26,000 ) it took about 14 minutes (1.8GHz Xeon processor

and 1GB of RAM).

5.3 The Null Case

Like previous tree-based models, a treed CRM is subject to the potential criticism that

it may overfit and find complicated structures when there is none. We now examine how

our Bayesian search for treed CRMs will perform when the true model is indeed homo-

geneous. To do this, we first constructed a dataset with 1000 records and six possible

explanatory variables to represent a population of size 1000 in a capture-recapture ex-

periment. The pairs (x1k, x2k) were evenly spaced on a grid over (0,1)×(0,1), the triples

(x3k, x4k, x5k) were generated from a multivariate normal with mean (0, 0, 0)T and covari-

ance matrix [(1.0, 0.2,−0.4), (0.2, 1.0, 0.7), (−0.4, 0.7, 1.0)]T , and x6k were generated as in-

dependent Bernoulli with p = 0.5. For this population, we considered three pairs of

capture probabilities: (i) small-small combination: (p1, p2) = (0.2, 0.1); (ii) large-small:

(p1, p2) = (0.8, 0.2); (iii) large-large: (p1, p2) = (0.9, 0.75). For each pair (p1, p2), we gener-

ated 100 samples of capture data from the population, then for each sample we ran the PT

sampler with the same setting as in the first example. As usual, the “best” tree was selected
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Table 3: Simulation Study for The Null Case

Cap. Prob p1=0.2 p2=0.1 p1=0.8 p2=0.2 p1=0.9 p2=0.75
(N=1000) Null Best Best Null Best Best Null Best Best

Tree (M1) (M2) Tree (M1) (M2) Tree (M1) (M2)
% Hits – 23 98 – 11 100 – 5 100
AVG(Size) 1 1.8 1.0 1 1.9 1 1 2.1 1
AVG(Log BF) 0 1.5 0.1 0 1.7 0 0 2.2 0
AVG(Pred. Loss) (%) 17.2 21.0 17.1 2.6 2.8 2.6 0.5 0.5 0.5
AVG(N̂SD) 1049.0 1109.4 1047.6 996.7 1002.9 996.7 999.7 1000.1 999.7
SD(N̂SD) 225.6 288.6 224.5 31.8 34.9 31.8 6.0 6.3 6.0
AVG(σ̂(N̂SD)) 210.6 245.2 210.4 31.2 35.8 31.2 6.1 6.4 6.1

Note: the averages and SDs were calculated based on 100 samples for each pair of (p1, p2).

as the one with the highest log marginal likelihood. Here, we also considered another selec-

tion procedure suggested in CGM 2003: first identify the most frequently visited tree size,

then for this size choose the tree with the highest log marginal likelihood. We refer to the

former method as “M1” and the latter as “M2”. Turning to the choice of the priors, we

used the Jeffreys prior on (p1, p2) and the tree prior with (α, β) = (0.95, 0.5). As mentioned

before, this tree prior indicates that the null tree would not fit the data adequately, as will

be typically what people believe when they try BTCRMs.

Table 3 shows the proportion of correct T̂ = T0 hits, the average size and the average

Bayes factors for T̂ selected by M1 and M2 respectively over the 100 samples for each pair

of (p1, p2). It also compares T̂ with the null tree T0 for each case. Our findings, shown in

Table 3, are that the BTCRMs performed well in all cases. The selection procedure M2

gave nearly 100% correct identification of T0 in all cases. In contrast, the M1 procedure

tended to incorrectly select trees with two nodes, especially when p1 and p2 are both large.

Such selected trees have (usually slightly) higher marginal likelihoods than that of T0. Even

so, except for small p1 and p2, T̂ selected by M1 achieved similar values for predictive loss,

sample mean and SD of N̂SD as T0 did. So overfitting would only become a problem for

estimation when small capture probabilities are involved. In this case, N̂SD calculated from a

tree with more than one node tends to overestimate N , as shown in Appendix A theoretically.

A simple way to avoid the problem of overfitting for M1 in the null case is to check the

Bayes factor for T̂ vs. T0. Based on the guideline provided in Kass & Raftery (1995), the

evidence against T0 is strong if log(BF ) > 3 and Table 3 indicates no strong evidence at all.
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6 Discussion

In this paper, we have introduced a new class of treed models, BTCRM, to account for

population heterogeneity in a two-period recapture analysis. A Bayesian model selection

approach has been developed for finding BTCRMs that fit the data well. We have proposed a

variety of prior distributions on the parameter space and for each of them, we have presented

an approximation to the corresponding marginal density of the data. Under most nontrivial

cases, all these approximations can be obtained as explicit functions of the data (thus no

numerical optimization is required) and they are accurate, which reduces the computational

burden of the overall approach. Also, the use of parallel tempering in the stochastic search

greatly improves the mixing behaviour of MCMC.

The proposed BTCRMs are illustrated with several simulated examples here, one of

which attempts to capture features of Census undercount estimation, the application which

motivated this work. The following advantages of BTCRMs are especially important in that

application.

1. BTCRMs are simple in structure so have a meaningful and easily understandable

interpretation. They are easy to use with the Sekar-Deming estimator.

2. To approximate “nonstandard” relationships (e.g., nonlinear, nonsmooth, nonmono-

tone), methods using regression functions require great human effort in choosing a

transformation, creating interaction terms, and determining binning cut points. By

contrast, a BTCRM can be grown completely without human intervention, and still

provide an adequate description through a series of binary splits. This is especially im-

portant when many models are required, such as for all the states in Census undercount

estimation.

3. The performance of BTCRMs in estimating population size is robust in practice. They

can be applied in situations in which even the underlying treed assumptions are seri-

ously violated, as shown in our second example.

4. The availability of various prior distributions for BTCRMs not only allows for both

objective and subjective Bayesian inferences, but also gives practitioners flexibility in

choosing either a default and automatic procedure or a procedure with incorporation

of real prior information.

23



5. There often exist situations where plausible or irrelevant covariates are present. Our

approach to treed modeling automatically takes model uncertainty into account while

competing models such as Alho’s logistic regression require model selection beforehand.

Also, our approach can produce a set of good trees on which Bayesian model averaging

can be based.

6. With BTCRMs, one can easily incorporate additional rules when splitting a terminal

node. An example of when this might be useful is to implement a minimum size for

each post-stratum.

In summary, BTCRMs provide a potentially useful method for dual system estimation. We

end this paper by pointing out two limitations that we are aware of about BTCRMs. First,

like regression methods, BTCRMs can only model heterogeneity that can be explained by

observable covariates. Second, BTCRMs are based on the assumption of a closed population.

This may be restrictive in applications where birth/death or immigration/emigration occur.

Therefore, it would be of interest to consider treed models for open populations.

A Biases From Over-stratification

We show below that if one incorrectly treats a homogeneous population as heterogeneous

with a strata, the Sekar-Deming estimator would be expected to increase when increasing a.

Suppose the population is partitioned into a subgroups labeled by {1, 2, . . . , a}. Let

N = (N1, N2, . . . , Na) where Nl is the number of subjects assigned to group l, l = 1, 2, . . . , a.

Define n1l, n2l and ml as the number of subjects in group l captured in the first occasion, the

second occasion and both occasions respectively. Let u1l = n1l−ml, u2l = n2l−ml, q̂l = ml/m

and ql = Nl/N . Also, for notational simplicity, let A be the event {N,n1, n2,m, ml > 0,∀l}.
For each l, we have that u1l|N, Nl, u1 ∼ Hypergeometric(N,Nl, u1), u2l|N,Nl, u2 ∼ Hypergeo-

metric (N, Nl, u2), and ml|N, Nl,m ∼ Hypergeometric (N, Nl,m). So E(u1l|N,Nl, u1) = u1ql,

E(u1l|N, Nl, u1) = u2ql and

E(
1

q̂l

|N, Nl,m, ml > 0) =
1

ql

+
E

(
(q̂l − ql)

2 |N,Nl,m
)

q3
l

+ O
(
m−3/2

)

=
1

ql

+
(N −Nl)(N −m)

mN(N − 1)
· 1

q2
l

+ O
(
m−3/2

)
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Also notice that for the stratified MLE , denoted by N̂a, we have

E
(
N̂a|A, N

)
= E

(
a∑

l=1

n1ln2l

ml

|A, N

)
= n1 + n2 −m + E

(
a∑

l=1

u1lu2l

ml

|A, N

)

= n1 + n2 −m +
a∑

l=1

E(u1l|N,Nl, u1)E(u2l|N, Nl, u2)E(
1

ml

|N, Nl,m, ml > 0)

Therefore

E
(
N̂a|A

)
=

n1n2

m
+

u1u2

m

[
a− 1

m
· N −m

N − 1
+ O

(
m−3/2

)]
(22)

Similarly, we can show if we do post-stratification (i.e., the observed individuals are randomly

assigned into a subgroups), then

E
(
N̂a|A

)
=

n1n2

m
+

u1u2

m

[
a− 1

m
+ O

(
m−3/2

)]
(23)

Equation (22) and (23) together show that for a homogeneous population, no matter whether

we use pre- or post-stratification, the Sekar-Deming estimate would be expected to increase

if we use more strata.
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