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Abstract

We generalize the de�nition of a concomitant of an order statistic in the multivariate

case, develop general expressions for its density, and establish related properties. The

concomitant of a normal random vector is studied in detail, and methods for calculating

its moments are discussed. Furthermore, we apply the theory to develop new estimators

of the mean from a judgement post-strati�ed sample, where post-strata are formed by

rank classes of auxiliary variables. Our estimators are shown to be more e�cient than

existing ones and robust against violations of the normality assumption. They are also

well suited to applications requiring cost e�ciency.
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1 Introduction

Let (Xh, Yh)
H
h=1 be H independent random vectors from a common bivariate distribution.

Denote by X(r:H) the rth ordered X-variate, 1 ≤ r ≤ H. The concomitant of the rth

order statistic of X is de�ned to be the Y -variate paired with X(r:H) and is denoted Y[r:H].

Properties of concomitants have been studied by many authors (e.g., Bhattacharya 1974; Sen

1976, 1981; David et al. 1977; Yang 1977; Goel and Hall 1994, Nagaraja and David 1994);

see David and Nagaraja (2003, Section 6.8) for an overview. Applications of concomitants

include their use in estimating correlation (Barnett et al. 1976), in ranking and selection

(Yeo and David 1984; David 1993), and ranked set sampling (Stokes 1977).

In this article, we extend the de�nition of concomitants to the multivariate case, develop

general expressions for their distributions, and establish related properties. That is, we

study the distribution of a Y -variate associated with ordered components of an absolutely

continuous X-vector. For example, suppose Xh contains the scores of the hth employee on

two pre-employment screening measures and Yh his or her score on a later job-performance

measure, for a sample of H employees. Our theory would allow evaluation of the distribution

of the job-performance measure for an employee ranked, say, best on both screening tests.

It would also allow comparison of that distribution to the concomitant job-performance

measure for an unscreened employee or to one scoring best on a single screening measure, in

order to evaluate our selection procedure.

Our theory was motivated by an application of concomitants to judgement post-strati�cation

(JP-S) (MacEachern et al. 2004), a method closely related to ranked set sampling (RSS).

Both are useful when the variable of interest, Y , is expensive to measure, but can be ranked,

at least approximately, much more cheaply. The ranking is referred to as judgement rank-

ing. Both RSS and JP-S allow better estimation of the mean of Y , where the reduction in

variance is provided by strati�cation. A ranked set sample can be thought of as a strati�ed

sample, where judgement ranks de�ne the strata. A judgment post-strati�ed sample can be

thought of as a simple random sample (SRS), where judgement ranks de�ne the post-strata.
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This makes JP-S more practical than RSS for some applications, where the researcher may

be amenable to beginning with an SRS with the option of using auxiliary data later, but

reluctant to beginning with a non-standard design, such as a RSS (MacEachern et al. 2004).

A common method of judgement ranking in RSS is via an accessible auxiliary variable

X, making Y a concomitant. We introduce a similar idea for JP-S in Section 5. As in

conventional post-strati�cation, one can use multiple auxiliary variables for forming post-

strata. When the ranks of these auxiliary variables jointly de�ne post-strata, we need the

theory and properties of the concomitant of multivariate order statistics in order to develop

and compute JP-S estimators of the mean and investigate their properties.

The article will proceed as follows. In Section 2, we introduce concomitants of bivariate X-

vectors and present analytical results. In Section 3, we apply these results to the normal case,

and show how to compute means and variances of the concomitant. In Section 4, we extend

our methods with straightforward modi�cations to the higher-dimensional case. Section 5

�rst reviews methods of mean estimation that have been suggested for JP-S samples using

ranking information from more than one auxiliary variable. Then we propose new estimators

with attractive properties, which are available when certain distributional assumptions about

the data can be made. Results of simulation and empirical studies comparing the estimators

are reported. We conclude with a brief discussion in Section 6.

2 Concomitant of Bivariate Order Statistics

2.1 The General Theory

Let (Xh1, Xh2, Yh)
H
h=1 be an iid random sample from a trivariate distribution, where the

random variables X1 and X2 are absolutely continuous. Denote the order of Xh1 among

X11, . . . , XH1 by Rh:H , and the order of Xh2 among X12, . . . , XH2 by Sh:H . We consider

the random variable Yh given the ranks Rh:H = r and Sh:H = s, called the concomitant

of the rth order statistic of X1 and the sth order statistic of X2 and denoted by Yh[r,s:H].

3



For simplicity, we ignore the subscripts H and h and denote the concomitant as Y[r,s], its

pdf as f[r,s](y), the rank random variables as R and S, and the bivariate rank distribution

Pr[Rh:H = r, Sh:H = s] as πrs, whenever no ambiguity exists.

Theorem 1. Suppose (X1, X2, Y ) follows a trivariate distribution with a joint pdf f(x1, x2, y).

Let m(X1, X2) and v(X1, X2) denote the conditional mean and variance of Y , E[Y |X1,X2]

and V ar[Y |X1, X2], respectively. Then, the distribution of the concomitant Y[r,s] among the

H iid random vectors, is given by

f[r,s](y) =

∑U
k=L Ck

∫ ∫
X θk

1θ
r−1−k
2 θs−1−k

3 θH−r−s+1+k
4 f(x1, x2, y)dx1dx2∑U

k=L Ck

∫ ∫
X θk

1θ
r−1−k
2 θs−1−k

3 θH−r−s+1+k
4 f(x1, x2)dx1dx2

(1)

where U = min(r−1, s−1) and L = max(0, r+s−H−1), X is the support of the distribution

of the X-vector,

Ck =
(H − 1)!

k!(r − 1− k)!(s− 1− k)!(H − r − s + 1 + k)!

θ1(x1, x2) = Pr(X1 < x1, X2 < x2) ; θ2(x1, x2) = Pr(X1 < x1, X2 > x2);

θ3(x1, x2) = Pr(X1 > x1, X2 < x2) ; θ4(x1, x2) = Pr(X1 > x1, X2 > x2).

The mean and variance of Y[r,s] can be expressed by

µ[r,s] = E
[
m(X1(r,s), X2(r,s))

]
(2)

σ2
[r,s] = E

[
v(X1(r,s), X2(r,s))

]
+ V ar

[
m(X1(r,s), X2(r,s))

]
(3)

where (X1(r,s), X2(r,s)) are bivariate order statistics of (X1, X2).

Proof. First, we can write

f[r,s](y) =

∫ ∫
X f(y|x1, x2, r, s)p(r, s|x1, x2)f(x1, x2)dx1dx2

πrs

=

∫ ∫
X f(x1, x2, y)p(r, s|x1, x2)dx1dx2

πrs

, (4)
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since f(y|x1, x2, r, s) = f(y|x1, x2). In the spirit of David et al. (1977), it can be shown that

p(r, s|x1, x2) =
U∑

k=L
Ckθ

k
1θ

r−1−k
2 θs−1−k

3 θH−r−s+1+k
4 , (5)

yielding the numerator of (1). Similarly, we can show that its denominator, the bivariate

rank distribution, is

πrs =

∫ ∫

X
p(r, s|x1, x2)f(x1, x2)dx1dx2

=
U∑

k=L
Ck

∫ ∫

X
θk
1θ

r−1−k
2 θs−1−k

3 θH−r−s+1+k
4 f(x1, x2)dx1dx2 (6)

Further for the mean of Y[r,s], we have

µ[r,s] =

∫

Y
y f[r,s](y)dy =

∫ ∫

X
m(x1, x2)f(r,s)(x1, x2)dx1dx2 = E

[
m(X1(r,s), X2(r,s))

]

where Y is the support of the distribution of Y , and f(r,s)(x1, x2) is the joint pdf of (X1(r,s), X2(r,s)),

i.e., f(x1, x2|R = r, S = s). Similarly, the variance of Y[r,s] can be written as (3).

Remark 1. If (X1, X2) and Y are independent, i.e., f(x1, x2, y) = f(x1, x2)f(y), then it

follows from (1) immediately that f[r,s](y) = f(y).

Remark 2. Suppose there exists a monotonic function ψ(·) such that X2 = ψ(X1). In this

case, f(x1, x2) = f(x1)I (x2 = ψ(x1)) and f(x1, x2, y) = f(x1, y)I (x2 = ψ(x1)), where I(·) is
the indicator function. Based on (1), it is easy to verify that both πrs and f[r,s](y) degenerate

to the univariate case. When ψ(·) is increasing (or decreasing), if r = s (or r = H + 1− s),

then πrs = 1/H and

f[r,s](y) =

∫

X1

f(y|x1)f(r)(x1)dx1 = f[r,¦](y),

where f[r,¦](y) is the distribution for Y[r,¦], the concomitant of the rth order statistic of X1

while f(r)(x1) is the distribution for X1(r), the rth order statistic of X1; otherwise, πrs = 0

and f[r,s](y) does not exist.
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Consider the application of concomitants to ranking and selection of employees. Remarks

1 and 2 formalize the intuitive notion that if the screening tests are unrelated to the perfor-

mance measure, then using them for selection is of no bene�t, or if the screening tests are

identical, the second one is of no marginal bene�t.

Example 1. Suppose U1, U2, Y ∼Uniform(0,1) and iid. Let Xi = (Y +Ui)/2 for i = 1, 2. We

illustrate Theorem 1 by deriving f[1,1](y) and f[1,2](y) for H = 2, where we condition on the

ranks of X = (X1, X2). The theorem requires both joint f(x1, x2, y) and marginal f(x1, x2)

densities. The former can be determined to be uniform over the region J : 0 ≤ y ≤ 1 and

y/2 ≤ x1, x2 ≤ (y + 1)/2; i.e.,

f(x1, x2, y) = 4IJ(x1, x2, y). (7)

The marginal density is found by integrating the joint density over the appropriate region

to obtain:

f(x1, x2) =





8x2 AreaA

8x1 AreaD

4(2x2 − 2x1 + 1) AreaB

4(2x1 − 2x2 + 1) AreaE

8(1− x1) AreaC

8(1− x2) AreaF

(8)

where areas A through F are shown in Figure 1. To �nd f[1,1](y), �rst compute from (6)

π11 =
∫ ∫

X θ4f(x1, x2)dx1dx2, where θ4 must be determined separately for each area of

Figure 1 (for example, in Area A, θ4 = 1 − 2x2
1 − 2x2

2 + 4x1x
2
2 − 4x3

2/3). The result is that

π11 = 1/3. The numerator of (1) becomes

f(y, R = 1, S = 1) =

∫ y+1
2

y
2

∫ y+1
2

y
2

4θ4dx1dx2,

which, after some calculation, can be shown to be

f[1,1](y) =
1

20
(43− 45y − 30y2 + 50y3 − 15y4) (9)
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Figure 1: The Sampling Space of f(x1, x2)
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for 0 ≤ y ≤ 1. Noting that π12 = 1/2− π11 = 1/6, a similar calculation yields

f[1,2](y) =
1

10
(7 + 15y − 30y3 + 15y4). (10)

Suppose that (X1, X2, Y ), with joint distribution (7), denote scores on two screening tests

and a performance measure for an employee. The advantage in performance expected from

an employee who performs best (in this case, the lowest value, as for speed tests) on one

screening test can be measured by the selection di�erential, which Nagaraja (1982) de�ned

as
η[1] =

µ[1,¦] − µy

σy

, (11)

where µy = E(Y ), σ2
y = V ar(Y ) and µ[1,¦] = E(Y[1,¦]). From (9) and (10),

f[1,¦](y) =
π11f[1,1](y) + π12f[1,2](y)

π11 + π12

=
1

3
(5− 3y − 3y2 + 2y3),

for 0 ≤ y ≤ 1, yielding µ[1,¦] = 23/60 and

η[1] =

(
23

60
− 1

2

)
/

√
1

12
≈ −0.40.

Generalizing the selection di�erential (11) to the bivariate concomitant, we compute

η[1,1] =

(
13

40
− 1

2

)
/

√
1

12
≈ −0.60

from (9). Comparing these two shows that the additional screening test improves selectivity

by about 50%.
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It is sometimes straightforward to calculate moments of the concomitant directly from

the density (1), as in Example 1. In other cases, calculation is easier using (2) and (3), an

example of which will be given in Section 3.

2.2 Simplifying Properties

Computing densities of concomitants using Theorem 1 is tedious. However, symmetry in the

distribution of (X1, X2, Y ) can be exploited to reduce the number of calculations required

to obtain densities and moments for the set of all concomitants. In this section, we present

some useful results for that purpose.

First we make some observations about the rank distribution πrs. For convenience, let

r̄ ≡ H + 1− r and s̄ ≡ H + 1− s.

Property 1: A monotonically increasing transformation on X1 or X2 does not change πrs.

A monotonically decreasing transformation on X1 leads to π
′
rs = πr̄s, and a

monotonically decreasing transformation on X2 leads to π
′
rs = πrs̄, where π

′
rs is

the bivariate rank distribution based on the transformed variables.

Property 2: If the joint pdf f(x1, x2) of X1 and X2 is symmetric, i.e., f(x1, x2) = f(x2, x1),

then πrs = πsr.

Property 3: If f(x1, x2) = f(−x1,−x2), then πrs = πr̄s̄.

Property 1 is obvious from observing that the rank of any observation is invariant to a

monotonically increasing transformation. The other two are proved in David et al. (1977).

Example 2. Example 1 (con't.) Properties 1�3 can be used to calculate π21 and π22.

Observe from (8) that f(x1, x2) = f(x2, x1); thus π21 = π12 = 1/6 from Property 2. De�ne

Zi = Xi− 1/2 for i = 1, 2. According to Property 1, (Z1, Z2) has the same rank distribution

as (X1, X2). Since the joint density of Z1 and Z2 satis�es g(z1, z2) = g(−z1,−z2), Property

3 yields π22 = π11 = 1/3.
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Next, we observe some properties of the concomitant distribution that follow directly

from Theorem 1.

Corollary 1. Suppose there exist monotonic functions ψ1(·) and ψ2(·) such that Z1 =

ψ1(X1), Z2 = ψ2(X2), and the joint pdf of Z1, Z2, Y satis�es g(z1, z2, y) = g(z2, z1, y).

Then (1) if both ψ1 ↑(increasing) and ψ2 ↑ or both ψ1 ↓ (decreasing) and ψ2 ↓, then

f[r,s](y) = f[s,r](y); (2) if ψ1 ↑ and ψ2 ↓ or ψ1 ↓ and ψ2 ↑, then f[r,s](y) = f[s̄,r̄](y).

Corollary 2. Suppose there exist monotonic functions ψ1(·) and ψ2(·) such that Z1 =

ψ1(X1), Z2 = ψ2(X2). Then (1) if the joint pdf of Z1, Z2, Y satis�es g(z1, z2, y) =

g(−z1,−z2, y), then f[r,s](y) = f[r̄,s̄](y); (2) if g(z1, z2, µy + d) = g(−z1,−z2, µy − d), then

f[r,s](µy + d) = f[r̄,s̄](µy − d).

Example 3. Example 1 (con't.) From (7), f(x1, x2, y) = f(x2, x1, y). Thus Corollary 1

yields f[2,1](y) = f[1,2](y). Since the joint density of Z1, Z2 and Y satis�es g(z1, z2, 1/2+d) =

g(−z1,−z2, 1/2−d), Corollary 2 yields f[2,2](1/2+d) = f[1,1](1/2−d). Let y = 1/2+d, then

f[2,2](y) = f[1,1](1− y) = (3 + 15y + 30y2 + 10y3 − 15y4) /20.

In the following theorem, we establish properties of the mean µ[r,s] and variance σ2
[r,s] of

a concomitant, where the distribution of Y is not required to be symmetric.

Theorem 2. Suppose there exist monotonic functions ψ1(·) and ψ2(·) such that (1) Z1 =

ψ1(X1), Z2 = ψ2(X2) and their joint pdf is symmetric about 0, i.e., g(z1, z2) = g(−z1,−z2);

and (2) E(Y |Z1 = z1, Z2 = z2) is a linear function of z1 and z2. Then the mean of the

concomitant of bivariate order statistics of (X1,X2) satis�es

µ[r,s] + µ[r,s] = 2µy (12)

for r ∈ {1, · · ·H} and s ∈ {1, · · ·H}. Furthermore, if V ar(Y |z1, z2) = V ar(Y | − z1,−z2),

then the variance of the concomitant satis�es

σ2
[r,s] = σ2

[r,s]. (13)

Proof. See Appendix A.
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Note that in Theorem 2, if H is odd, then µ[(H+1)/2,(H+1)/2] = µy.

Example 4. Consider a type of regression setup: Y = β0 + β1X1 + β2X2 + ε where ε is

independent of X1 and X2 and follows a distribution with mean 0. Also, assume X1 and X2

can be linearly transformed so that their joint pdf after transformation is symmetric about

0. Then (12) and (13) hold.

More results about µ[r,s] and σ2
[r,s] can be obtained easily from Corollary 1 and 2. For

example, equations (12) and (13) follow directly from the second part of Corollary 2.

3 The Normal Case

Here we discuss the special case of the concomitant of the order statistics of a bivariate normal

random vector. Let (X1, X2, Y ) be trivariate normal with means µ1, µ2 and µy, variances

σ2
1, σ2

2 and σ2
y, and correlations ρ12, ρ1y and ρ2y. Properties of the normal distribution allow

the conditional mean and variance of Y given X = (x1, x2) to be written as

m(x1, x2) = µy + (τ1z1 + τ2z2)σy

v(x1, x2) = (1− τ1ρ1y − τ2ρ2y)σ
2
y,

where τ1 = (ρ1y − ρ2yρ12)/(1 − ρ2
12), τ2 = (ρ2y − ρ1yρ12)/(1 − ρ2

12), and zj = (xj − µj)/σj,

j = 1, 2. From (2),
µ[r,s] = µy + σy

[
τ1E(Z1(r,s)) + τ2E(Z2(r,s))

]

= µy + σy

[
τ1E(Z1(r,s)) + τ2E(Z1(s,r))

]
(14)

where (Z1, Z2)
T has the standard bivariate normal distribution with correlation ρ12, and

(Z1(r,s), Z2(r,s)) are the bivariate order statistics of (Z1, Z2) with joint density g(r,s)(z1, z2).

The second line follows since E(Z2(r,s)) = E(Z1(s,r)). From (3),

σ2
[r,s] =

[
τ 2
1 V ar(Z1(r,s)) + τ 2

2 V ar(Z1(s,r)) + 2τ1τ2Cov(Z1(r,s), Z2(r,s)) + 1− τ1ρ1y − τ2ρ2y

]
σ2

y

(15)
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Noting that τ1 and τ2 are the standardized regression coe�cients, (14) and (15) suggest

that the concomitant and related order statistics retain the same linearity as in multiple

regression.

To calculate µ[r,s] and σ2
[r,s] using (14) and (15), values of the means, variances, and

covariances of the bivariate standard normal order statistics are needed. Tables of these

moments for H = 2, 3 and 4 are available in Wang and Stokes (2005). The method we used

to obtain these tables is brie�y outlined here. To calculate the mean, one must evaluate

E(Z1(r,s)) =

∫ ∫

R2

z1g(r,s)(z1, z2)dz1dz2 =

∫ ∫
R2 z1p(r, s|z1, z2)φ(z1, z2)dz1dz2

πrs

=

√
2

π

∑U
k=L Ck

∫ ∫
R2 u1θ

k
1θ

r−1−k
2 θs−1−k

3 θH−r−s+1+k
4 e−(u2

1+u2
2)du1du2

πrs

, (16)

where φ(·, ·) is the joint pdf of the standard bivariate normal distribution, and θi ≡ θi(
√

2µ1,
√

2ρ12µ1 +
√

2(1− ρ2
12)µ2), for i = 1, ..., 4. The second line follows from (5) after the change

of variables z1 =
√

2u1 and z2 =
√

2ρ12u1+
√

2(1− ρ2
12)u2. Similar expressions can be written

for πrs, E(Z2
1(r,s)) and E(Z1(r,s)Z2(r,s)). These were all evaluated numerically using Gaussian

quadrature. For example, the numerator of (16) was approximated by
√

2

π

U∑

k=L
Ck

M∑
j=1

M∑
i=1

{
ωiωjtiθ

k
1θ

r−1−k
2 θs−1−k

3 θH−r−s+1+k
4

}

where θl ≡ θl(
√

2ti,
√

2ρ12ti+
√

2(1− ρ2
12)tj) for l = 1, ..., 4, ti is the i−th zero of the Hermite

polynomial HM(t), and ωi is the i−th weight factor. Tables of ti and ωi are available for

M = 1 to 20 in Salzer et al. (1952).

Due to the symmetry of the normal density, the properties in Section 2.2 can be used

to reduce the number of numerical evaluations needed to obtain µ[r,s] and σ2
[r,s]. Prop-

erty 1 shows (by standardizing X1 and X2) that πrs is related only to ρ12, so can be

calculated based on Z1 and Z2. From Properties 2 and 3, πrs = πsr = πr̄s̄. Theorem

2 shows that E(Z1(r,s)) + E(Z1(r̄,s̄)) = 0, so one need only calculate elements in the up-

per triangular matrix of
[
E(Z1(r,s))

]
H×H

. The number of covariance (variance) calcula-
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Figure 2: An example for the normal case; the left panel shows selection di�erential for
pairs of moderately e�cient (ρ1y = ρ2y = 0.5) screening tests; the right panel shows ratio of
selection di�erential for one and two screeners, when one test is perfect.
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tions needed is reduced by observing that Cov(Z1(r,s), Z2(r,s)) = Cov(Z1(s,r), Z2(s,r)) and

Cov(Zk(r,s), Zl(r,s)) = Cov(Zk(r̄,s̄), Zl(r̄,s̄)) for any k, l = 1, 2, the latter of which is an in-

termediate result in the proof of Theorem 2.

Example 5. Suppose that (X1, X2, Y ), whose joint distribution is trivariate normal, denote

scores on two screening tests and a performance measure for an employee. The advantage in

performance expected from an employee who performs best (in this case, the lowest value,

as for speed tests) on both screeners among H =2, 3, or 4 competitors can be measured by

the selection di�erential. It can be written, using (14), as

η[1,1] =
µ[1,1] − µy

σy

=
ρ1y + ρ2y

1 + ρ12

E(Z1(1,1)). (17)

This expression shows that the selection di�erential increases in magnitude as screening tests

grow more e�ective (larger values of ρ1y, ρ2y) and as the number of competitors increases

(since E(Z1(1,1)) is an increasing function of H). One would also expect less advantage as

screening tests become more similar (ρ12 increases), but this is not clear from (17) since
∣∣E(Z1(1,1))

∣∣ increases in ρ12. The left panel of Figure 2 displays
∣∣η[1,1]

∣∣ for H = 2, 3, and 4

as functions of ρ12 for two moderately e�ective screening tests (ρ1y = ρ2y = .5). It con�rms

that the second test is less useful for selection as it becomes more similar to the �rst.

One might expect that if the �rst screening test were perfect (ρ1y = 1), then the second
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one would provide no advantage in the selection process. This is incorrect. To see why, note

�rst that ρ2y = ρ12 in this case. Then from (17), η[1,1] = E(Z1(1,1)), while η[1] = E(Z(1)),

where Z(1) is the �rst order statistic of a standard normal random variable. The right panel

of Figure 2 shows the ratio η[1,1]/η[1] as a function of ρ12 for H = 2, 3, 4. The ratio is always

larger than 1, but the advantage is greatest when the second screener has a correlation

of around .70 with the performance measure. Its advantage diminishes to 0 as ρ12 (=ρ2y)

increases to 1. An intuitive explanation is that even perfect ranking information does not

provide complete information about the mean. The second ranking variable, to the extent

that its information di�ers from that of the �rst, can still improve estimation. Note also

that the �ner are the perfect ranker's post-strata (larger H), the less additional information

remains for the second ranker to provide.

4 Extension to the Multivariate Case

In the previous sections, we have investigated the concomitant of bivariate order statistics.

We now seek analytic expressions for the general case, the concomitant of multivariate order

statistics where the number of X variables ≥ 2.

Let (Xh, Yh)
H
h=1 be an iid random sample from a multivariate distribution with a joint

pdf f(x, y), where XT
h is an absolutely continuous vector of length m. Denote the order of

Xhi among X1i, . . . , XHi by Rhi, and the rank vector associated with Xh by RT
h = (Rhi)

m
i=1.

Given a �xed H, we consider the concomitant of multivariate order statistics of Xh, i.e., the

random variable Yh given Rh. To obtain its density, (4) can be generalized as

f[r](y) =

∫
X f(x, y)p(r|x)dx

πr

, (18)

where πr =
∫
X p(r|x)f(x)dx. Only p(r|x) is needed, which can be computed by recursion.

To illustrate the idea, we describe the method for deriving p(r|x) for m = 3 from that for

m = 2.

13



As in David et al. (1977), we represent the ways in which the compound event Rh1 = r1

and Rh2 = r2 given Xh1 = x1 and Xh2 = x2 can occur in the following 2× 2 table,

Xh′2 < x2 Xh′2 > x2

Xh′1 < x1 k r1 − 1− k r1 − 1

Xh′1 > x1 r2 − 1− k H − r1 − r2 + 1 + k H − r1

r2 − 1 H − r2 H − 1

Then p(r1, r2|x1, x2), can be obtained from the multinomial distribution with the four out-

comes de�ned by the cells of the table. We split each of the four cells further by a third

variable, as shown below.

Xh′2 < x2 Xh′2 > x2

Xh′3 < x3 Xh′3 > x3 Xh′3 < x3 Xh′3 > x3

Xh′1 < x1 l0 k − l0 l1 r1 − 1− k − l1 r1 − 1

Xh′1 > x1 l2
r2 − 1−
k − l2

r3 − 1−
(l0 + l1 + l2)

H − r1 − r2 − r3+

2 + (k + l0 + l1 + l2)
H − r1

r2 − 1 H − r2 H − 1

After splitting, label the eight cells 1,...,8 and denote the number of observations in the j−th
cell by tj, 1 ≤ j ≤ 8 (i.e., t1 = l0, t2 = k−l0, t3 = l1,...,t8 = H−r1−r2−r3+2+k+l0+l1+l2).

Thus,
p(r1, r2, r3|x1, x2, x3) =

∑

k,l0,l1,l2∈A

{
Ck,l0,l1,l2

8∏
j=1

[θj(x1, x2, x3)]
tj

}

where A is an integer set {k, l0, l1, l2| k ≥ 0; l0 ≥ 0; l1 ≥ 0; l2 ≥ 0; tj ≥ 0, for 1 ≤ j ≤ 8},
Ck,l0,l1,l2 ≡ (H − 1)!/{∏8

j=1 tj!}. De�ne θj(x1, x2, x3) as the corresponding probability in the

j−th cell; that is, θ1(x1, x2, x3) ≡ Pr(X1 < x1, X2 < x2, X3 < x3), θ2(x1, x2, x3) ≡ Pr(X1 <

x1, X2 < x2, X3 > x3), etc.

Similarly, p(r|x, xm+1) can be derived from p(r|x) by partitioning each of the 2m cells

into 2 subcells based on the value of xm+1 and then applying the multinomial distribution

with 2m+1 possible outcomes. From (18), we can obtain an analytic expression for f[r](y)
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when the length of x > 2 by recursion. With trivial modi�cations, the properties discussed

in Section 2 can be generalized to m > 2.

Consider the normal case, where

(X, Y )T ∼ N







µx

µy


 , diag (σx, σy)




ρx ρxy

ρT
xy 1


 diag (σx, σy)


 . (19)

The mean and variance of the concomitants can be expressed as generalizations of (14) and

(15), as
µ[r] = µy + σyρ

T
xyρ

−1
x E

(
Z(r)

)
(20)

σ2
[r] = σ2

y + σ2
yρ

T
xyρ

−1
x

[
Cov

(
Z(r)

)
ρ−1

x − I
]
ρxy (21)

where Z(r) is a vector of multivariate order statistics of Z that follows the standard multi-

variate normal distribution with the correlation matrix ρx. Calculation of the moments of

the standard normal multivariate order statistic involves p(r|z), for example

E(Z1(r)) =

∫
Rm z1p(r|z)φ(z)dz

πr

,

which can be evaluated numerically using Gaussian quadrature, similar to the method used

in the bivariate case.

5 Application to Judgement Post-strati�cation

Here we apply the theory of the previous sections to suggest new estimators of the mean

from judgment post-strati�ed samples, and to examine their properties.

5.1 Background

MacEachern et al. (2004) introduced JP-S sampling as an alternative to ranked set sampling

for estimating the mean of Y , which is expensive to quantify, but relatively cheap to rank by

judgement. To obtain a JP-S sample, one �rst draws an SRS of n units from a population
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and records the value of Y for each, denoted yi, 1 ≤ i ≤ n. For each measured unit i,

an additional sample of size H − 1 is chosen at random and the order of yi among the H

units is assessed by some inexpensive, and likely imperfect, ranking method not requiring

measurement of the H − 1 units. This rank information is used to classify the n measured

units into H post-strata. MacEachern et al. (2004) proposed as an estimator of µy

µ̂y =
1

H

H∑

h=1

∑n
i=1 yiIih∑n
i=1 Iih

(22)

where Iih = 1 if yi is assigned into the stratum of rank h, otherwise Iih = 0.

Ranked set sampling di�ers from JP-S sampling in that in the former, judgment ranking

of the group of H sample units occurs �rst, and then a speci�ed rank is designated for

measurement from the group. Ranking of groups of size H continues until some speci�ed

number of units of each judgement rank are quanti�ed. The unweighted mean of such a

sample can be shown to be unbiased for µy and to have smaller variance than an SRS of an

equal number of measured observations (Dell and Clutter 1972). MacEachern et al. (2004)

show that the asymptotic relative e�ciency of µ̂y to this RSS estimator is 1.

Although RSS is described as using subjective judgement in ranking, applications have

often used the rank of an easily observed auxiliary variable as a proxy for the rank of Y . But

what if information about the rank of more than one auxiliary variable should be available?

It is di�cult to use this information in RSS, since one cannot guarantee that any particular

vector of ranks will occur, so prespecifying sample sizes from strata de�ned by joint ranks is

infeasible unless a multiple-layer design of RSS is used (Chen and Shen 2003). By contrast,

JP-S uses rank information only for estimation, not for sample design. Our goal is to use

such rank information along with the measured yi to estimate µy. An example of such data

is discussed in Chen (2002) for estimating mean age of a population of �sh. Aging a �sh

is expensive; but the rank of its length and width, which are correlated with age, among a

group of H �sh can be easily obtained.

MacEachern et al. (2004) also cite the ability to use more than one ranker as an advantage

16



for JP-S over RSS. In the case that assessments of ranks are available from m rankers (or

auxiliary variables) they propose as an estimator of µy

µ̂
(m)
M =

1

H

H∑

h=1

∑n
i=1 yip̂ih∑n
i=1 p̂ih

, (23)

where p̂ih is the proportion of rankers who classify yi as having rank h. That is, they

prorate the measured value among the post-strata receiving any �votes� from a ranker. This

estimator requires no distributional assumptions for its justi�cation. When m = 1, µ̂
(m)
M

degenerates to (22).

5.2 New Estimators of Mean

In this section, we propose several new estimators of µy based on data from a JP-S sample,

where post-strata are de�ned on ranks of m auxiliary variables. Our proposed estimators

are designed to take advantage of knowledge of the distribution of the concomitant. Here,

we restrict attention to the most tractable yet important case, the multivariate normal

distribution. We �rst assume that σy, ρxy and ρx in (19) are known, and then examine the

performance of the estimators in the practical case in which they are estimated. Methods for

extension to the nonnormal case (with some mild distributional assumptions) are discussed

in Section 6.

JP-S again begins with selection of a random sample of n units on which Y is measured.

In addition, m related and easily ranked characteristics X are available on each unit. For

each i, an additional H − 1 units are randomly selected and the ranks of the components of

Xi among its H comparison units are determined. The vector of ranks is denoted by Ri =

(Ri1, · · · , Rim). There are thus Hm post-strata jointly grouped by the ranks R = (Ri)
n
i=1.

Let PSr denote the post-stratum in which Ri = r, and πr, nr and Ȳ[r] denote the probability,

number and sample mean of observations falling in PSr. Let µ[r] and σ2
[r] denote the mean

and variance within the post-stratum; that is µ[r] = E(Yi|Ri = r), σ2
[r] = V ar(Yi|Ri = r).

De�ne δ[r] as the di�erence between µ[r] and µy, i.e., δ[r] ≡ µ[r] − µy. Finally, let Iir be the
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indicator variable such that Iir = 1 if Ri = r ; otherwise Iir = 0.

We consider a class of linear JP-S estimators of the form

µ̂(m) =
∑

r

wr(n)
(
Ȳ[r] − cr

)
, (24)

where the summation is over all Hm realizations of the rank vector Ri, n is the random

vector containing the counts of Y in the Hm post-strata, wr(·) is a weight associated with

PSr that can be a function of n; and cr is a constant associated with PSr that can be used

for bias correction. This class, denoted by E , contains familiar members, as well as useful

new ones. The SRS estimator Ȳ is in E , with wr = nr/n and cr = 0. It obviously makes use

of neither auxiliary nor distributional information. A version of the classical post-strati�ed

estimator that does use distributional knowledge is µ̂
(m)
S =

∑
r πrȲ[r] ∈ E . The πr's can be

calculated for normal data. A nonparametric variant of µ̂
(m)
S that is also a member of the

class is µ̂
(m)
vS =

∑
r π̂r(n)Ȳ[r] where π̂r(·) is an estimate of the cell probability πr based on

n. The cell probabilities can be estimated by the raking procedure (Deming and Stephan

1940), since the marginal probability for each auxiliary variable rank is known to be 1/H

due to characteristics of order statistics. The estimator of MacEachern et al. (2004) is also

a member of E , since we can rewrite (23) as

µ̂
(m)
M =

∑
r

ar(n)Ȳ[r]; ar(n) =
1

H

H∑
i=1

brinr∑
r′ br′inr′

where bri is the count of rank i in the row vector r. Now we examine several new estimators

in this class suggested by commonly-used estimation methods. Each of them makes use of

the distributional knowledge through the structure of the moments of the concomitant of

multivariate order statistics.

We �rst consider the ordinary least squares estimator of µy, denoted µ̂
(m)
oLS, and de�ned

as the estimator minimizing the sum of squared distances from each yi to the mean of its

post stratum; namely
min
µy

n∑
i=1

∑
r

Iir

[
yi − (µy + δ[r])

]2
. (25)

Under the normality assumption, we have from (20) that δ[r] = σyρ
T
xyρ

−1
x E

(
Z(r)

)
. Solving
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(25) yields
µ̂

(m)
oLS =

∑
r

nr

n

(
Ȳ[r] − δ[r]

)
.

Since E(µ̂
(m)
oLS|n) = µy and V ar(µ̂

(m)
oLS|n) =

∑
r nrσ

2
[r]/n

2, we have E
(
µ̂

(m)
oLS

)
= µy and

V ar
(
µ̂

(m)
oLS

)
= V ar

[
E

(
µ̂

(m)
oLS

∣∣∣n
)]

+ E
[
V ar

(
µ̂

(m)
oLS

∣∣∣n
)]

=
1

n

∑
r

πrσ
2
[r]. (26)

Next consider the weighed least squares estimator, denoted µ̂
(m)
wLS, which minimizes the

sum of the weighted squared distances to the post-strata means, namely

min
µy

n∑
i=1

∑
r

Iir

[
yi − (µy + δ[r])

σ[r]

]2

. (27)

Solving (27) yields
µ̂

(m)
wLS =

∑
r

nr/σ
2
[r]∑

r nr/σ2
[r]

(
Ȳ[r] − δ[r]

)
, (28)

where in the normal case σ2
[r] is given by (21). It is easy to show that µ̂

(m)
wLS is unbiased, and

V ar
(
µ̂

(m)
wLS

)
= E




(∑
r

nr/σ
2
[r]

)−1

 , (29)

where the nr is multinomial with parameters n and πr for all Hm possible r.

In addition, one might naturally think of the best linear unbiased estimator, whose

weights are constant (i.e., not functions of random variables). In our JP-S setting, this

estimator, denoted µ̂
(m)
BLU , minimizes the variance of a subclass of E , the unbiased estimators

of the form
∑

r wr(Ȳ[r] − δ[r]), where the weights wr's are restricted to be constant and sum

to 1. µ̂
(m)
BLU has the form

µ̂
(m)
BLU =

∑
r

1
σ2
[r]

E(1/nr)∑
r

1
σ2
[r]

E(1/nr)

(
Ȳ[r] − δ[r]

)

with
V ar

(
µ̂

(m)
BLU

)
=

[∑
r

1

σ2
[r]E(1/nr)

]−1

.

Now we proceed to compare the three unbiased estimators, µ̂
(m)
oLS, µ̂

(m)
wLS and µ̂

(m)
BLU that are

all in E . First, µ̂
(m)
wLS has the smallest variance among the three, as will be seen in Theorem 3.
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Second, µ̂
(m)
oLS is easier to compute, especially when the number of post-strata Hm is large,

since it does not require the variances σ2
[r]. Last, µ̂

(m)
wLS and µ̂

(m)
BLU have similar expressions

as µ̂
(m)
BLU can be obtained by replacing 1/nr by E(1/nr) in (28); they also have the same

asymptotic variance (n
∑

r πr/σ
2
[r])

−1. However, µ̂
(m)
BLU is not quite satisfactory. It is not

applicable when the sample size n is small compared to the number of strata Hm. In this

case, there are many empty cells with inestimable means and this would cause trouble since

µ̂
(m)
BLU assigns a prespeci�ed nonzero weight to each cell. In contrast, µ̂

(m)
oLS and µ̂

(m)
wLS are both

data-adaptive by assigning nonzero weights to nonempty cells only. Even if no empty cell

occurs, the performance of µ̂
(m)
BLU is very sensitive to n and is much worse than that of µ̂

(m)
oLS

and µ̂
(m)
wLS, as will be shown in our simulation.

The following theorem establishes an optimal property for µ̂
(m)
wLS.

Theorem 3. µ̂
(m)
wLS has the least mean square error (MSE) among the class of estimators of

the form (24).

Proof. It is obvious that µ̂
(m)
wLS 's weights w∗

r(n) = (nr/σ
2
[r])/

∑
r nr/σ

2
[r] minimize V ar(µ̂(m)|n) =

∑
r w2

r(n)σ2
[r]/nr. Since E(µ̂

(m)
wLS|n) = µy, we have V ar[E(µ̂

(m)
wLS|n)] = 0. Thus V ar(µ̂(m)) ≥

E[V ar(µ̂(m)|n)] ≥ E[V ar(µ̂
(m)
wLS|n)] = V ar(µ̂

(m)
wLS) and MSE(µ̂(m)) ≥ MSE(µ̂

(m)
wLS), since

µ̂
(m)
wLS is unbiased.

This theorem assures us that µ̂
(m)
wLS is the most e�cient among the estimators discussed,

not limited to µ̂
(m)
oLS, µ̂

(m)
wLS and µ̂

(m)
BLU . However, its variance (29) is not expressed in a closed

form so is hard to compute. In the following corollary, we provide an upper bound by

comparing it with µ̂
(m)
oLS and also a lower bound by considering its asymptotic variance.

Corollary 3. Lower and upper bound for the variance of µ̂
(m)
wLS are, i.e.,

1

n

(∑
r

πr/σ
2
[r]

)−1

≤ V ar
(
µ̂

(m)
wLS

)
≤ 1

n

∑
r

πrσ
2
[r]. (30)

The lower bound (i.e., the asymptotic variance) provides a good approximation to the

variance of µ̂
(m)
wLS when n is reasonably large. It also works well for small n if the di�erence
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Figure 3: Asymptotic e�ciency of µ̂
(2)
wLS over µ̂

(1)
wLS for pairs of equally e�ective rankers
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between the upper and lower bound is small, which occurs for normal data in many cases.

Finally, the following theorem justi�es our intuition that for both µ̂
(m)
wLS and µ̂

(m)
oLS, adding

an extra ranking variable improves estimation e�ciency, at least in an asymptotic sense.

Theorem 4. Suppose µ̂
(m+1)
wLS (µ̂(m+1)

oLS ) is the weighted (ordinary) least squares estimator with

ranking variables (X, Xm+1); µ̂
(m)
wLS (µ̂(m)

oLS) is the corresponding estimator using the �rst m

ranking variables X only. Then µ̂
(m+1)
wLS is more e�cient than µ̂

(m)
wLS for large n; and µ̂

(m+1)
oLS

is more e�cient than µ̂
(m)
oLS for any n (see Appendix B for the proof).

Though the theorem establishes that the addition of ranking variables is helpful, a prac-

tical question is just how much gain can be expected. We investigated this for the special

case of adding a second auxiliary variable to the �rst. The asymptotic relative e�ciency

ARE = limn→+∞
[
V ar(µ̂

(1)
wLS)/V ar(µ̂

(2)
wLS)

]
was computed from the lower bound in (30),

(15) and Eqn (6.8.3b) of David and Nagaraja (2003, Chapter 6.8) for ρ12 = 0.25, 0.5, 0.75

and H = 2, 3, 4, and a range of values of ρ1y and ρ2y. Figure 3 shows the results for two

equally e�ective rankers (i.e, ρ1y = ρ2y) and the three values each of ρ12 and H. We see that

the gain from the second ranker can be substantial; it increases as either the ranking quality

or the number of ranking classes increases, and decreases as the two rankers become more

similar. We also computed the RE for µ̂
(2)
oLS over µ̂

(1)
oLS, in which we observed the tightness of

the two bounds in (30). As a result, the values of the RE were virtually identical to those

of the ARE for the weighted one, so are not shown in Figure 3.
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5.3 Simulation

We have demonstrated that under the normality assumption with known σy, ρxy and ρx,

the weighted least squares estimator µ̂
(m)
wLS is the most e�cient among the class E including

members Ȳ , µ̂
(m)
M , µ̂

(m)
S , µ̂

(m)
vS , µ̂

(m)
wLS, µ̂

(m)
oLS and µ̂

(m)
BLU . In practice, however, these parame-

ters will not be known, and the distributional assumptions may not hold exactly. Thus we

designed a simulation study for two purposes: (1) to compare the performance of the esti-

mators when σy, ρxy and ρx are unknown and must be estimated from the data; (2) to test

their robustness when the normality assumption is violated. In our preliminary simulations,

we found that the MacEachern et al. (2004) estimator performed consistently best among

the three �sampling� estimators (µ̂(m)
M , µ̂

(m)
S , µ̂

(m)
vS ). Hence, we included only µ̂

(m)
M , µ̂

(m)
wLS, µ̂

(m)
oLS

and µ̂
(m)
BLU in the full study presented here, along with Ȳ as a benchmark estimator.

In our �rst experiment, we simulated JP-S samples from the standard multivariate nor-

mal distribution for Y and two auxiliary variables (X1, X2) for four sets of (ρ1y, ρ2y, ρ12):

(0.9, 0.9, 0.65), (0.8, 0.8, 0.5), (0.8, 0.5, 0.5) and (0.5, 0.5, 0.5). We set H to be 2, 4 or 10 and

n to be 10, 20, 50 or 100. Since m is �xed at 2, we omit the superscripts in the discussion

below. When calculating µ̂wLS, µ̂oLS and µ̂BLU from each sample, we substituted estimates

for σy and the ρ's, computed using standard methods. Table 1 reports the simulated rela-

tive e�ciency of the four JP-S estimators to the SRS estimator Ȳ for each setting. Here,

e�ciency is de�ned as the ratio of the variance of Ȳ to MSE of each JP-S estimator, where

MSE is estimated from 20,000 replicates.

The results in Table 1 show that the two least squares estimators outperform the other

two in all cases, even though they use estimates of σy and the ρ's. The performance of µ̂wLS

is at most only slightly better than that of µ̂oLS. Both estimators perform well even for small

n. The improvement from the two parametric estimators over the nonparametric one µ̂M is

considerable, especially when n is small and H large, as long as the ranking variables are

e�ective. By contrast, µ̂BLU performs poorly overall. Its performance is sensitive to sample

size and is not applicable when empty cells occur. Hence, we do not consider µ̂BLU further.
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Table 1: Comparing e�ciency of the JP-S Estimators with estimated parameters. Note that
due to the empty-cell problems, µ̂BLU is not applicable when n is small compared to H2.

H=2 H=4 H=10
Mean Sample Size Sample Size Sample Size

(ρ1y, ρ2y , ρ12) Est. 10 20 50 100 10 20 50 100 10 20 50 100
µ̂wLS 1.55 1.55 1.56 1.56 2.51 2.55 2.63 2.67 4.82 5.32 5.53 5.57
µ̂oLS 1.54 1.54 1.55 1.56 2.48 2.51 2.57 2.61 4.62 5.04 5.28 5.24

(0.9,0.9,0.65) µ̂M 1.38 1.44 1.47 1.48 1.80 2.11 2.29 2.35 1.82 2.74 3.94 4.21
µ̂BLU 1.28 1.35 1.44 1.51 � � 2.09 2.24 � � � �
µ̂wLS 1.42 1.41 1.43 1.44 2.01 2.06 2.09 2.14 2.90 3.22 3.35 3.39
µ̂oLS 1.41 1.41 1.43 1.44 2.00 2.04 2.07 2.12 2.87 3.17 3.29 3.33

(0.8,0.8,0.5) µ̂M 1.29 1.32 1.35 1.36 1.56 1.74 1.84 1.90 1.55 2.00 2.56 2.70
µ̂BLU 1.15 1.19 1.34 1.39 � � 1.57 1.80 � � � �
µ̂wLS 1.24 1.28 1.29 1.29 1.50 1.57 1.63 1.63 1.79 1.93 2.07 2.08
µ̂oLS 1.24 1.28 1.29 1.29 1.50 1.56 1.62 1.62 1.78 1.92 2.06 2.07

(0.8,0.5,0.5) µ̂M 1.15 1.20 1.22 1.22 1.23 1.34 1.42 1.43 1.19 1.34 1.61 1.67
µ̂BLU 1.03 1.08 1.21 1.25 � � 1.29 1.35 � � � �
µ̂wLS 1.10 1.10 1.13 1.16 1.12 1.21 1.24 1.24 1.13 1.28 1.34 1.37
µ̂oLS 1.10 1.10 1.13 1.16 1.12 1.21 1.24 1.24 1.14 1.28 1.34 1.37

(0.5,0.5,0.5) µ̂M 1.08 1.08 1.11 1.14 1.08 1.15 1.20 1.21 1.03 1.12 1.25 1.30
µ̂BLU 0.90 0.94 1.07 1.13 � � 0.94 1.04 � � � �

Table 2: Theoretical values of (asymptotic) relative e�ciency of µ̂wLS and µ̂oLS
Theoretical (0.9,0.9,0.65) (0.8,0.8,0.5) (0.8,0.5,0.5) (0.5,0.5,0.5)
Value H=2 H=4 H=10 H=2 H=4 H=10 H=2 H=4 H=10 H=2 H=4 H=10

ARE(µ̂wLS , Ȳ ) 1.56 2.63 5.56 1.44 2.14 3.41 1.29 1.65 2.13 1.14 1.26 1.38
RE(µ̂oLS , Ȳ ) 1.55 2.58 5.27 1.44 2.12 3.35 1.29 1.64 2.12 1.14 1.26 1.38

To examine the e�ect of estimation of the unknown correlations and variance more closely,

we computed asymptotic e�ciency for µ̂wLS over Ȳ using the lower bound in (30) and e�-

ciency for µ̂oLS over Ȳ using (26). Their theoretical values are reported in Table 2. Compar-

ing the simulated values in Table 1 to these, we observe that estimating these parameters

has a negligible e�ect when n ≥ 50. For smaller sample sizes, both µ̂wLS and µ̂oLS lose some

e�ciency by doing so, though they still perform better than µ̂M .

In the second experiment, we examine the performance of the JP-S estimators when

the normality assumption is violated. We considered three cases: (1) (log X1, log X2, Y ) are

generated from the standard normal distributions with the four sets of correlations as before;

(2) (log X1, log X2, log Y ) are generated from the same distributions as in (1); (3) (X1, X2, Y )

follows the multivariate uniform distribution described in Example 1. Here, we set H = 4

and generated 20,000 JP-S samples for each setting, and calculated µ̂wLS, µ̂oLS and µ̂M from

each. The former two estimators were computed as if (X1, X2, Y ) were multivariate normal,
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Table 3: Comparing e�ciency of the JP-S Estimators with estimated parameters (H = 4
only) when the normality assumption is violated

(log X1, log X2, Y ) ∼ MV N (log X1, log X2, log Y ) ∼ MV N Multivariate Uniform
Mean Sample Size Sample Size Sample Size
Est. (ρ′1y , ρ′2y, ρ′12) 10 20 50 100 10 20 50 100 10 20 50 100
µ̂wLS 2.30 2.49 2.50 2.51 1.73 1.61 1.55 1.45 1.49 1.57 1.62 1.64
µ̂oLS (0.9,0.9,0.65) 2.30 2.45 2.45 2.47 1.47 1.32 1.33 1.33 1.53 1.62 1.67 1.68
µ̂M 1.81 2.11 2.26 2.30 1.33 1.36 1.49 1.44 1.34 1.49 1.57 1.59
µ̂wLS 1.91 2.02 2.06 2.11 1.52 1.46 1.43 1.42
µ̂oLS (0.8,0.8,0.5) 1.91 2.01 2.05 2.09 1.33 1.25 1.24 1.26
µ̂M 1.56 1.76 1.85 1.92 1.25 1.31 1.33 1.33
µ̂wLS 1.45 1.54 1.60 1.59 1.26 1.30 1.28 1.32
µ̂oLS (0.8,0.5,0.5) 1.45 1.54 1.60 1.58 1.14 1.16 1.16 1.21
µ̂M 1.24 1.35 1.44 1.42 1.12 1.16 1.17 1.23
µ̂wLS 1.07 1.19 1.23 1.23 1.06 1.07 1.14 1.12
µ̂oLS (0.5,0.5,0.5) 1.08 1.19 1.23 1.23 1.01 1.01 1.11 1.09
µ̂M 1.04 1.16 1.20 1.20 1.00 1.07 1.11 1.11

but using estimated values for σy and ρ's. Table 3 reports the simulated e�ciency.

Several observations can be made from Table 3. When the ranking variables violate the

normality assumption but Y is still normal, µ̂wLS and µ̂oLS perform comparably and have

e�ciencies similar to those in the normal case. When both X and Y are log-normal, µ̂wLS

outperforms µ̂oLS, while the situation is reversed when (X1, X2, Y ) follow the multivariate

uniform distribution. As expected, the least squares estimators are less e�cient than in the

normal case when Y is no longer normally distributed. Surprisingly, µ̂M does not perform

as well as µ̂wLS in any of the cases considered, nor as well as µ̂oLS except when Y is heavily

tailed. This leads to our belief that even with moderate deviation from normality, µ̂wLS and

µ̂oLS may still achieve better performance than µ̂M , especially for small n.

5.4 An Empirical Study: Human Teeth Width

This section uses a real dataset to compare the JP-S estimators of the mean. To examine

their performance in both in�nite and �nite population settings, samples were selected with

and without replacement from a small population containing measurements on teeth widths

for 295 subjects in a health survey conducted in Seoul, Korea (Lee et al. 2006). All teeth

were measured by digital Vernier calipers, a process that requires three-week training to

master. Here, our goal is to estimate the mean width of teeth in the back of the mouth,
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using the middle ones as ranking variables. A practical justi�cation for doing so is that a

tooth close to the center is much easier to order than a tooth farther back.

The widths of the �rst upper incisors U1 (the �rst tooth from the center) and the �rst

upper canines U3 (the third tooth from the center) were used as ranking variables. Selection

of JP-S samples was simulated and estimates of the mean width of the �rst lower molars

L6 (the sixth tooth from the center) were calculated. The 295 subjects were treated as the

�true� population, and parameter estimates computed from their data were taken as the true

population parameters. These included ρ16 = 0.503, ρ36 = 0.540, ρ13 = 0.576, µL6 = 10.95

and σ2
L6 = 0.319. Standard diagnostic checking, performed on (U1, U3, L6) through the macro

%MULTNORM in SAS, did not reveal any gross violation of normality.

In this simulation, we set H = 5 and sample sizes n = 10, 15 · · · , 55. To obtain a JP-S

sample of size n with replacement, we repeated the following procedure n times: a set of

�ve subjects were randomly selected from all 295 subjects and bivariate ranking was done

based on U1 and U3 within the set; then one of the �ve subjects was randomly selected to

enter the sample. By contrast, to obtain a JP-S sample of size n without replacement, the

set of �ve subjects selected on each draw were excluded from the data set so they were not

available for the next selection. For each JP-S sample of size n, we calculated µ̂
(2)
wLS, µ̂

(2)
oLS

and µ̂
(2)
M with post-strata determined by ranks of U1 and U3, and µ̂

(1)
wLS, µ̂

(1)
oLS and µ̂

(1)
M with

post-strata determined by U3 only. All least squares estimators were computed using σy and

ρ's estimated from the sample.

Figure 4 shows values of the simulated relative e�ciency of the six JP-S estimators to Ȳ

for each sample size n. Here, MSE is estimated from 100,000 replicates. The �gure shows

that no matter whether sampling is with or without replacement, the least squares estimators

have almost identical performance and with the two ranking variables they have the best

performance among all. In addition, the results show that the bene�t from using a second

ranking variable when sampling without replacement is larger than from with replacement

samples. So it may be safe to use the least squares estimators for small populations.

25



Figure 4: An empirical study � Human Teeth Width
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6 Discussion

We have de�ned concomitants of multivariate order statistics and provided analytical ex-

pressions for their densities and moments. We have also illustrated use of the theory by

providing new estimators that use ranking information from more than one auxiliary vari-

able for improving estimation of the mean.

We note that the proposed least squares estimators do not require normality. They are

available when certain distributional assumptions about the data can be made: development

of µ̂oLS requires that δ[r] is not a function of µy (say, δ[r] ⊥ µy ) for each post-stratum; and

µ̂wLS requires that both δ[r] ⊥ µy and σ2
[r] ⊥ µy. Suppose for each ranking variable Xi (1 ≤

i ≤ m), there exists a monotonic function gi(·) such that Zi = gi(Xi) and Z = (Z1, · · · , Zm)

has a joint distribution f(z; Θ) with the parameter set Θ ⊥ µy (e.g., a special case is that

each Xi is from a location-scale distribution family). Let m(z; Θm) ≡ E(Y −µy|Z = z) that is

a function of z and a set of distributional parameters Θm; let v(z; Θv) ≡ V ar(Y |Z = z) that

is a function of z and a set of distributional parameters Θv. Then a su�cient condition for

δ[r] ⊥ µy is Θm ⊥ µy and a su�cient condition for σ2
[r] ⊥ µy is Θv ⊥ µy, which follow directly

from Theorem 1 and its higher-dimensional generalization. These su�cient conditions may

be milder than those assumptions in most regression setups as they do not require linearity

or any other functional form for the conditional expectations.

In fact, the result in Theorem 3 (i.e., the optimality of µ̂wLS among linear estimators)
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is rather general. Under the assumptions discussed above, it can be directly extended to

situations where the sampling space can be partitioned to strata, whether through sampling

design or post-strati�cation. However, obtaining the bias correction term δ[r] and the variance

σ2
[r] for each stratum is nontrivial. In our JP-S applications, these can be derived through

the theoretical developments in Sections 2�4, which greatly facilitate our computations of

the most e�cient linear estimator.

There are other examples in the concomitant literature in which a single ranked variable

is used to improve estimation of some parameter. The methods we have developed here could

be used in those applications as well. For example, Barnett et al. (1976) for obtaining linear

estimates of correlation coe�cients can be directly adapted when information is available

from two or more ranking variables, using the moment expressions (20) and (21).

Other useful applications will require additional theoretical development. For example,

the properties of concomitants of extreme order statistics have been a topic of study for its

use in ranking and selection (Yeo and David 1984; Arnold and Beyer 2005). The notion of

�extreme� order statistics of a vector of ranking variables can be de�ned in a variety of ways,

with the best way undoubtedly depending on its purpose.

Finally, we note that we have assumed that the number of ranking classes is the same

for all ranking variables. There are applications in which a generalization to the case in

which one ranking variable allows H classes while another allows H ′ may be needed. For

example, consider the employee selection problem in which not every candidate had the

complete battery of screening tests. In that case, it would be useful to have a way to

examine properties of the concomitant of multivariate order statistics, some of which are

partially ranked.
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Appendix A: Proof of Theorem 2

For notational clarity, let Y[r,s];z explicitly denote the concomitant of the rth order statistics

of Z1 and the sth order statistics of Z2 with mean µ[r,s];z and variance σ2
[r,s];z; let qrs denote

the bivariate rank distribution of Z1 and Z2; and let (Z1(r,s), Z2(r,s)) be the bivariate order

statistics of (Z1, Z2) with the joint density g(r,s)(z1, z2).

Since ψ1 and ψ2 are monotonic, to show (12) and (13), it is equivalent to show for

r ∈ {1, · · ·H} and s ∈ {1, · · ·H},
µ[r,s];z + µ[r̄,s̄];z = 2µy (A.1)

σ2
[r,s];z = σ2

[r̄,s̄];z. (A.2)

Under the conditions that (1) E(Y |z1, z2) is a linear function of z1 and z2, and (2) g(z1, z2) =

g(−z1,−z2), we can obtain

µ[r,s];z = µy + β1E(Z1(r,s)) + β2E(Z2(r,s)); (A.3)

σ2
[r,s];z =

∫ ∫

Z
V ar(Y |z1, z2)g(r,s)(z1, z2)dz1dz2 +

β2
1V ar(Z1(r,s)) + 2β1β2Cov(Z1(r,s), Z2(r,s)) + β2

2V ar(Z2(r,s)) (A.4)

where β1 and β2 are constants, and Z is the support of the distribution of (Z1, Z2).

Now consider E(Z1(r,s)), which can be expressed by

E(Z1(r,s)) =

∫ ∫

Z
z1g(r,s)(z1, z2)dz1dz2.

De�ne z∗1 = −z1 and z∗2 = −z2. Then

E(Z1(r,s)) = −
∫ ∫

Z
z∗1g(r,s)(z1, z2)dz∗1dz∗2 . (A.5)

Since g(z1, z2) = g(z∗1 , z
∗
2), qrs = qr̄s̄ so that

g(r,s)(z1, z2) =
q(r, s|z1, z2)g(z∗1 , z

∗
2)

qr̄s̄

.z∗2 . (A.6)

From (5), q(r, s|z1, z2) = q(r̄, s̄|z∗1 , z∗2) (A.7)
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by noticing that θ1(z1, z2) = θ4(z
∗
1 , z

∗
2), θ2(z1, z2) = θ3(z

∗
1 , z

∗
2), θ3(z1, z2) = θ2(z

∗
1 , z

∗
2), and

θ4(z1, z2) = θ1(z
∗
1 , z

∗
2). Inserting (A.7) in (A.6) and (A.8) in (A.5) yields

g(r,s)(z1, z2) = g(r̄,s̄)(z
∗
1 , z

∗
2) (A.8)

E(Z1(r,s)) + E(Z1(r̄,s̄)) = 0, (A.9)

respectively. Similarly, from (A.8) is obtained

E(Z2(r,s)) + E(Z2(r̄,s̄)) = 0,
∫ ∫

Z V ar(Y |z1, z2)g(r,s)(z1, z2)dz1dz2 =
∫ ∫

Z V ar(Y |z∗1 , z∗2)g(r̄,s̄)(z
∗
1 , z

∗
2)dz∗1dz∗2 ,

V ar(Z1(r,s)) = V ar(Z1(r̄,s̄)), V ar(Z2(r,s)) = V ar(Z2(r̄,s̄))

Cov(Z1(r,s), Z2(r,s)) = Cov(Z1(r̄,s̄), Z2(r̄,s̄))

(A.10)

Finally, combining (A.9), (A.10) with (A.3) and (A.4) yields (A.1) and (A.2), completing

the proof of (12) and (13).

Appendix B: Proof of Theorem 4

Since the weighted (ordinary) least squares estimators are unbiased, we only need to compare

their variances. We want to show for µ̂
(m+1)
oLS and µ̂

(m)
oLS,

∑
r

πrσ
2
[r] ≥

∑
r

H∑
s=1

πrsσ
2
[rs]; (B.1)

and for µ̂
(m+1)
wLS and µ̂

(m)
wLS

(∑
r

πr/σ
2
[r]

)−1

≥
(∑

r

H∑
s=1

πrs/σ
2
[rs]

)−1

(B.2)

where s denotes the rank of the extra ranking variable Xm+1. Noting

σ2
[r] =

H∑
s=1

πrs

πr

σ2
[rs] +




H∑
s=1

πrs

πr

µ2
[rs] −

(
H∑

s=1

πrs

πr

µ[rs]

)2

 ≥

H∑
s=1

πrs

πr

σ2
[rs] (B.3)
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yields (B.1). Now noting that {∑H
s=1 πrsσ

2
[rs]/πr}{

∑H
s=1 πrs/(πrσ

2
[rs])} ≥ 1 combined with

(B.3), we have
∑H

s=1 πrs/σ
2
[rs] ≥ πr/σ

2
[r] that leads to (B.2).
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