Exploring Science

Student Learning Outcome: Students will demonstrate an ability to engage in scientific inquiry with respect to the natural world.

The Value of Exploring Science

Scientific inquiry is a systematic process that can be used to explore the natural world through a <u>hypothesis</u>-driven collection and analysis of evidence that results in informed and reproducible conclusions/judgments. Scientific analysis is the process of breaking complex topics or issues into parts to gain a better understanding of them. Many of the issues of the modern world rely on effective understanding and critical interpretation of scientific subject matter. These courses will provide students

1. Students will describe and contextualize a problem /issue in the natural world.

2. Students will recognize, identify, and organize evidence necessary to analyze or solve a problem in the natural world.

- 1. Courses in this category focus on observable phenomena in the natural world.
- Courses in this category emphasize the collaborative nature of scientific inquiry, including <u>peer</u> review.
- 3. Courses in this category give students the <u>framework/tools</u> to gather and assess <u>empirical</u> <u>evidence</u> and use that evidence to develop and test hypotheses.
- 4. Courses in this category develop students' <u>quantitative literacy</u> with the goal of interpreting empirical evidence.
- 1. **Empirical evidence**: Information acquired by observation, i.e., using the senses, or by experimentation. Validation of empirical evidence requires carefully designed frameworks, including appropriate controls and sufficient repetition.
- 2. **Falsifiable**: A property of a hypothesis where there is a test that could refute the hypothesis. As a result, scientific progress is made through the repetitive collection of disconfirming evidence that results in revision of scientific ideas and hypotheses.
- 3. Framework: A set of methodologies and tools whose sequencing, purpose, and execution are clearly defined. The exercise of this process is necessary to guarantee the reliability of gathering evidence, proposing hypotheses, conducting tests, analyzing data, and reproducing results in the practice of scientific inquiry. Examples include: Mathematical proof: an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The preferred way for students to learn this framework is through laboratory exercises.
- 4. Hypothesis: A well-defined and specific prediction of the possible outcomes of a research question. A hypothesis must leverage existing scientific data and be falsifiable. A properly designed research project is rooted in the hypothesis and is constructed in a manner where the frameworks and tools of the study will result in data that is either consistent with, or falsifies, the central hypothesis. A hypothesis should be under constant revision as new scientific data or results accumulate.

with the necessary skills sets to make educated decisions using the empirical process as applied to issues in the natural world. They are designed to produce scientifically literate individuals who understand that scientific <u>methods</u> can be leveraged for the implementation of effective decision-making in a number of domains.

Supporting Skills

3. Students will analyze and /or solve a problem in the natural world, providing an explanation and summary of the analysis and/or solution.

Course Content Criteria

- 5. Courses in this category develop students' understanding of the role of science and its impact on the world.
- 6. Courses in this category include an assessment assignment that requires students to demonstrate each of the skills in the Exploring Science Assessment Rubric (below). This assessment assignment should be one of the following: an objective exam, an essay question on an exam, an essay, or a research paper.

Glossary

- Method: The process of careful observation, formulation of testable and falsifiable hypotheses, use of experiment or measurement to test deductions from the hypotheses, and refinement or elimination of hypotheses based on experimental findings.
- 6. **Observable phenomenon**: Any occurrence in the physical world that can be detected, described, measured, and recorded directly by people (i.e., by sight, sound) or indirectly through appropriate instrumentation (i.e., with a microscope, telescope).
- 7. Peer review: The process of critically evaluating scientific work, research, or ideas via the scrutiny of others who are experts in the same scientific discipline. It functions to encourage members of the scientific community to meet the accepted high standards of their discipline and to control the dissemination of unsubstantiated claims, unacceptable interpretations, or personal bias in the scientific literature.
- Quantitative literacy: The ability to interpret and communicate numerical and mathematical information. It involves familiarity with the research methods that are used to gather, utilize, and analyze data, allowing one to make sense of the charts, graphs, tables, and statistics that are encountered in daily life.
- 9. **Tool**: A self-contained instrument or practice whose utilization is adopted to meet the needs or goals of a framework for scientific inquiry.

Exploring Science Assessment Rubric

Supporting Skills	Exemplary	Accomplished	Developing	Beginning
	4	3	2	1
Describe and contextualize a	Provides a highly accurate, clearly	Provides a generally accurate,	Provides a generally accurate,	Provides a vague, incomplete,
problem/ issue in the natural	contextualized, comprehensive	contextualized, description of the	limited description and	and/or inaccurate description and
world.	description of the problem / issue.	problem/ issue. Some key aspects	contextualization of the problem/	contextualization of the problem /
	Key aspects of the problem/ issue,	of the problem/ issue, such as its	issue. Key aspects of the problem,	issue. Key aspects of the problem,
	such as its scope, impact, and	scope, impact, and relevance, are	however, such as its scope, impact,	such as its scope, impact, and
	relevance, are clearly explained; the	explained, although not always	and relevance, are missing or	relevance, are missing; the overall
	overall description and	clearly: the overall description and	unclear: the overall description and	description and contextualization fail
	contextualization provide a clear	contextualization provide a general	contextualization provide a limited	to provide any insight into the
	and thorough overview of the	overview of the problem/ issue.	overview of the problem/ issue.	problem/ issue.
	problem/ issue.			
Recognize, identify, and organize	Displays a superior ability to	Displays a strong ability to	Displays a general ability to	Displays a limited ability to
evidence necessary to analyze or	recognize evidence related to a	recognize evidence related to a	recognize evidence related to	recognize evidence related to
solve a problem in the natural	problem in the natural world:	problem in the natural world:	problem in the nature world: not all	problem in the natural world: misses
world.	identifies a wide range of relevant	identifies multiple types of relevant	evidence gathered may be relevant:	significant critical evidence and
	evidence and organizes and	evidence but evidence may contain	misses some critical evidence	evidence that is gathered may not
	categorizes the evidence in a highly	minor omissions or lack depth in	necessary to support analysis	be relevant: evidence is
	logical and coherent manner	certain areas: evidence is organized	organization of evidence may lack	disorganized and lacks clarity and
	logical and concrete manner.	in a clear and effective manner, but	clarity and /or coherence	coherence
		there may be minor issues with logic	clarity and for concrence.	
		and flow		
Analyze and/or solve a problem in	Clearly effectively and accurately	Accurately analyzes or solves	Offers a general somewhat limited	Struggles to analyze or solve
the natural world providing an	analyzes or solves problem(s) in the	problem(s) in the natural world in	analysis of or solution to problem(s)	problem(s) in the natural world in
explanation and summary of the	natural world in terms of the given	terms of the given information: ideas	in the natural world in terms of the	terms of the given information: ideas
analysis and/or solution	information: ideas are logically	are generally structured in a logical	aiven information: ideas are lessely	are disorganized illegical and
analysis and/or solution.	atrustured and presentation of	menner and summary of analysis	given information, lueas are loosely	unclear, and there is limited or no
	structured, and presentation of		structured and not entirely logical,	unclear, and there is inflited of no
	well supported with gradible and	and lorgely supported with concrelly	and summary of analysis and /of	summary of analysis of solution,
	weil-supported with credible and	and largely supported with generally	Solutions is somewhat vague of	evidence is not relevant or credible,
	relevant evidence.	credible and relevant evidence.	illogical and not entirely supported;	and may be altogether absent.
			evidence may lack relevance and	
			/or credibility.	