Critical elements that districts need in place to effectively implement RTI Fidelity checklist-circle the criteria that are met to the right of each critical element

Check if all
criteria are
met

Key stakeholders (teachers, administrators, parents, students) understand RTI	Administrators and teachers receive professional development on RTI	School staff determine the basic structure for how RTI will 'look' at the school	Parents and students are informed about how RTI will ‘look' at the school	Administrators and teachers have ongoing discussions about RTI procedures and processes in order to strengthen the system
Well- functioning, school-based problem-solving teams	PS teams meet on a frequent and scheduled basis	PS teams use objective data to guide discussion	Team member roles are selected and utilized	
School wide screening system	Needs to be technically adequate	Screening data is entered into an electronic system and discussed in a timely manner at the school, grade, and individual basis	Decision-making rules are applied to screening data	
Examine current core academic programs	Data is utilized to examine how current core programs are functioning for students	Fidelity of implementation of the core program is addressed		
Identify evidence-based interventions for Tiers 2 and 3 and a schedule for implementation of the tiered interventions	Interventions are selected from verified, scientifically-based sources	A schedule for intervention time is developed that maximizes staff resources and includes at least 30 minutes of intervention time per day, in addition to core instruction	Fidelity of intervention implementation is assessed on a regular, scheduled basis	
Progress monitoring of students in Tiers 2 and 3	Goals are set for students in Tiers 2 and 3	Progress monitoring occurs no less than once per month for students in Tier 2 and once a week for students in Tier 3	Student data is discussed on a frequent, scheduled basis (no less than once every 6 weeks) and data decisionmaking rules are applied	Changes in instruction are made as the data indicate and these changes are documented

RTI implementation timeline

Critical Element	Date	Who is responsible	Activity	Goal
Key stakeholders (teachers, administrators, parents, students) understand RTI				
A school-based problemsolving team is developed and utilized effectively				
School wide screening and progress monitoring system is chosen and implemented				
Nochoolwide-screening data is used FWS to examine current core programs				
Evidence-based interventions for Tiers 2 and 3 are identified, along with a schedule for implementation				
A routine for progress monitoring of students in Tiers 2 and 3 is established and data is discussed routinely using data decision rules				

Treatment fidelity self-monitoring-to be completed (circle one):

Weekly Bi-monthly Monthly

Topic:
The following mathematics topic is being implemented at this time: \qquad
Place a check next to each step as you complete it for a given lesson.
___ Provide an objective for the lesson in concrete and measureable terms.
___ Provide students a rationale for the strategy that you will be teaching them.
\qquad Introduce and practice mathematics vocabulary relevant to the lesson
___Introduce the strategy through modeling.
____Use the strategy with the students with several problems (guided practice)
\qquad Have the students repeat back the steps in the strategy
\qquad Have students work independently or in pairs to implement the strategy as they work on some problems together
Teach for generalization
\qquad Teach for maintenance

On a scale from 1-10, I implemented the lesson with this degree of fidelity (defined as implementing the lesson utilizing the given steps or sequence):

1	2	3	4	5	6	7	8	9	10

Low fidelity
High fidelity

DIBELS ${ }^{\oplus}$ Math Early Release / Computation Grade 3 Benchmark 1 / Form A

$\begin{array}{r} 56 \\ +10 \\ \hline \end{array}$	$\begin{array}{r} 670 \\ +\quad 21 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ \times 0 \\ \hline \end{array}$	$\begin{array}{r} 21 \\ \times \quad 4 \\ \hline \end{array}$
$\begin{array}{r} 19 \\ \times \quad 2 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 4 \\ \hline \end{array}$	$\begin{array}{r} 617 \\ -214 \\ \hline \end{array}$	$1 \longdiv { 3 }$	$\begin{array}{r} 96 \\ -\quad 4 \\ \hline \end{array}$
$\begin{array}{r} 66 \\ +17 \\ \hline \end{array}$	$8 \longdiv { 5 6 }$	$\begin{array}{r} 4 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r} 786 \\ +116 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ \times \quad 9 \\ \hline \end{array}$
$\begin{array}{r} 280 \\ -\quad 92 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ -27 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ \times 5 \end{array}$	$3 \longdiv { 2 4 }$	$\begin{array}{r} 9 \\ \times 3 \\ \hline \end{array}$
$\begin{array}{r} 277 \\ +146 \\ \hline \end{array}$	$\begin{array}{r} 32 \\ \times \quad 2 \\ \hline \end{array}$	$\begin{array}{r} 832 \\ -169 \\ \hline \end{array}$	$3 \longdiv { 9 }$	$\begin{array}{r}3 \\ \times 2 \\ \hline\end{array}$

DIBELS ${ }^{\oplus}$ Math Early Release / Computation Grade 3 \# of digits correct $\left.\right|_{\text {score }}$ Benchmark 1 / Form A
in the final answer \mid score

Problems Skills Assessed
1 Add two two-digit numbers, without renaming, resulting in a sum of 100 or less.
11 Add two two-digit numbers, with renaming from ones to tens, resulting in a sum of 100 or less.
10 Subtract a one- or two-digit number from a two-digit number, without renaming.
17 Subtract a two-digit number from a two-digit number of 20 or more, with renaming.
2 Add two two- or three-digit numbers, without renaming, resulting in a sum of 1000 or less.
14, 21 Add two two- or three-digit numbers, with renaming from ones to tens and tens to hundreds, resulting in a sum of 1000 or less.
13, 25 Multiply a one-digit number by a one-digit number, resulting in a product of 20 or less.
7,20 Multiply a one-digit number by a one-digit number, resulting in a product between 21 and 50 .
3 Multiply a one-digit number by a one-digit number, resulting in a product of 51 or more.
18 Multiply a one-digit number by itself
4 Multiply a one-digit number by 0 or 1

Problems Skills Assessed
9, 24 Divide a one-digit dividend by a one-digit divisor, resulting in a one-digit quotient and no remainder.
12, 19 Divide a two-digit dividend by a one-digit divisor, resulting in a one-digit quotient and no remainder.
8 Subtract a two- or three-digit number from a three-digit number, without renaming.
16, 23 Subtract a two or three-digit number from a three-digit number, with renaming from tens to ones and hundreds to tens.
15 Multiply a one-digit number by a two-digit multiple of 10 .
5, 22 Multiply a one-digit number by a two-digit number, without renaming, resulting in a product of less than 100.
6 Multiply a one-digit number by a two-digit number, with renaming, resulting in a product of less than 100.
(To expedite the process, prepare answers to the first three questions in advance.)

- Who is the student we need to discuss and why (stated in concrete and measureable terms)?-1 minute For instance, "We need to discuss Joe because his reading screening score indicated that he is in the bottom $25^{\text {th }}$ percent of his class." Or, "We need to discuss Maddie's performance in mathematics because she has scored an average of 70% on her last 5 weekly assignments, while the rest of her class has scored an average of 93%."
- What data do we have to use as we discuss this student? $\mathbf{- 2}$ minutes If no data is available or data is only anecdotal, need to wait until data is available. What are some examples of data?
o Curriculum-based Measurement screening or progress monitoring scores
o Graphed behavioral data
o Percentage correct on quizzes
o Categorized miscues from running records
- What could be the cause of this low academic performance?-3 minutes

As you are answering this question, try to remain as objective as possible (i.e., discussing specific classroom observations, work samples, etc.) Prior to changing instruction, the team should ask:
a. Could the intensity of the instruction be increased? T/S ratio, curriculum used, time engaged
b. Has the instruction been delivered with fidelity? The instruction has been delivered as prescribed and the teacher or someone else has monitored his/her implementation.
c. Is the instruction/intervention evidence-based? References are provided or someone has checked on this.
d. Has the duration of the instruction been lengthy enough? Perhaps the intervention has not been in place long enough to see effects.

- Utilizing our decision-making rule, which was \qquad is a change in instruction needed at this time and if so, what is it? If not, why? Be specific. -3 minutes
This change should be clearly tied to the causes discussed earlier. This may not be the original concern that was discussed.
a. What change is needed and why? Be specific.
b. Is the change evidence-based? How do we know?
c. Who will assist with implementation (if needed)?
d. How will student progress be monitored following the change? (i.e., CBM progress monitoring, graphed behavioral data, scores on assignments)
- When will we discuss this student again? Six to eight weeks? Sooner? What is our decision-making rule?-1 minute
Base your decision on the type of difficulty student is encountering, as well as the intervention that you've put into place.

Copyright © 2008 by NCS Pearson, Inc. All Rights Reserved. Patent No. 7,311.524

Some Special Sums

Students practice doubles and doubles-plus-one addition facts. They record their current level of mastery of the addition facts on their personal addition charts.

\square Learning Objectives

Students will:

- identify doubles and doubles-plus-one addition facts
- practice selected addition facts
- add new facts (as appropriate) to their personal addition charts

Materials

Crayons
Number cubes
Paper
Facts I Know Activity Sheet
Tossing Sums Activity Sheet

Instructional Plan

Call two students to the front of the room and ask the class how many noses they see. Ask for a volunteer to write the number sentence that shows that on the board. [$1+1=2$.] Now ask the class how many eyes they see, and call for a volunteer to write that number sentence [$2+2=4$] on the board directly under the previous equation. Now, have each of the two students in the front of the room hold up three fingers, then have a volunteer record the relevant number sentence $[3+3=6]$. Then ask both students to hold up four fingers, then five fingers, and then six fingers. Call on a volunteer to write each number sentence on the board.

Ask the class what these kinds of facts are called. [Doubles.] Then point to the calendar and ask how many days are in two weeks, then add the doubles fact $7+7=14$ to the list on the board. Next, call on eight students to wave their arms and ask someone else in the class to tell how many hands the class can see. Record $8+8=16$ on the board. Finally, put $9+9=$ on the board and ask the students what the answer will be [18]. Then, repeat with $10+10=$. Ask the students to look at the sums to see whether they notice a pattern. [Possible answers are that all the sums are even or that the sums increase by 2.]

Next to $2+2=4$, write $2+3$ =, and ask the students what the answer will be [5]. Call on volunteers to explain how they know. Repeat with other doubles-plus-one facts up to $9+10=$. Encourage the students to say both the doubles and doubles-plus-one facts aloud.

Now assign the students to groups of four students each, and give each group two number cubes and a copy of the Tossing Sums activity sheet. Tell them to take turns rolling the number cubes and making an X in the column that shows which sum they rolled, beginning at the bottom of the sheet. As they play, you may wish to move around the room, noticing which students can name the sum immediately, which students count on their fingers, and which students need to use counters or other external aids, such as manipulatives.

Tossing Sums Activity Sheet

After the students have played for several minutes, call the students together and ask them what sums came up most often. Then have them identify the sums that can be obtained only by getting doubles [2 and 12]. Now, assign each group one of the other even sums $(4,6,8$, or 10$)$ and have them list all the ways they could get that sum. Then, ask them to circle the double. Encourage them to share their work with the class. Repeat with odd sums, having them circle doubles-plus-one sums.

Next, ask them to return to their seats and take out their personal addition charts. Ask them to add to their charts any facts that they now know from memory. Then have pairs of students exchange charts and ask each other the facts that are marked on the chart. If a student misses a fact, ask the partner to make a small dot or check mark by the fact to indicate that he or she needs to practice it further.

As a record of this lesson, have the students write two addition facts that they have recently learned and two facts that they wish to learn next.

Questions for Students

What sums can you get when both numbers are the same? What are these facts called? How can knowing doubles help you learn the addition facts?
[The sums are both even; they are called doubles.]
What happens when one addend is one more than the other? What do we call these facts?
[The sum is odd; these are called doubles-plus-one facts.]
What is the sum when one addend is zero? How can knowing this help you learn the addition facts?
[The sum is the other addend.]
What is alike about $6+5$ and $5+6$? What is different?
[The addends and the sum are the same; the order of the addends is different.]
Write the sums you say when you skip count by twos to 20 .
$[2,4,6,8,10,12,14,16,18,20$.

\square Assessment Options

1. Asking the Questions for Students is one means of gathering data about the students' current level of functioning.
2. Document student progress on the Class Notes recording sheet.

\square Teacher Reflection

- Which students have only a few addition facts learned? What activities should I plan for them?
- What extension activities are appropriate for the students who have learned all or almost all their addition facts?
- What adjustments will I make the next time that I teach this lesson?

\square NCTM Standards and Expectations

Number \& Operations Pre-K-2

1. Develop fluency with basic number combinations for addition and subtraction.
2. Understand the effects of adding and subtracting whole numbers.
3. Develop and use strategies for whole-number computations, with a focus on addition and subtraction.

This lesson prepared by Grace M. Burton.
Taken from: pre-K-grade 2, Let’s Learn those Facts. Lessons from: http://illuminations.nctm.org/LessonsList.aspx?grade=1\&standard=1

Delinda van Garderen

Cathy Newman Thomas

Melissa Stormont

Erica S. Lembke

University of Missouri

Mathematics Resources

Big Simple Talking Calculator	http://www.softpedia.com/progDownload/Big-Simple-Talking-Calculator-Download-120088.html
Brainingcamp	http://www.brainingcamp.com/resources/math/
Countdown	http://countdown.luc.edu/
Create a Graph	http://nces.ed.gov/nceskids/createagraph/
eGFI: Dream Up the Future: For Teachers	http://teachers.egfi-k12.org/
Federal Resources for Educational Excellence: Math	http:// free.ed.gov/subjects.cfm?subject_id=33
Figure This: Math Challenges for Families	http://www.figurethis.org/index.html
Get the Math	http://www.thirteen.org/get-the-math/teachers/overview-of-the-lessons/26/
How Many? A Dictionary of Units of Measurement	http://www.unc.edu/ ~rowlett/units/index.html
Function Visualizer	http://www.abhortsoft.hu/functionvisualizer/functi onvisualizer.html
Glencoe Math Manipulatives	http://www.glencoe.com/sites/common_assets/mat hematics/ebook_assets/vmf/VMF-Interface.html
Illuminations: Resources for Teaching Math	http://illuminations.nctm.org/
Interactivate	http://shodor.org/interactivate/
Intermath	http://intermath.coe.uga.edu/
Learning Mathematics with Virtual Manipulatives	http://www.cited.org/index.aspx?page_id=151
The Learning Toolbox	http://coe.jmu.edu/Learningtoolbox/
Mathtools	http://www.mathforum.org/mathtools/
Real World Math Using Google Earth	http://www.realworldmath.org/Real_World_Math/ RealWorldMath.org.html
Time for Time	http://www.time-for-time.com/swf/myclox.swf
TinkerPlots	http://www.keypress.com/x5715.xml
Virtual Probabilities in Mathematics and Statistics	http://www.math.uah.edu/stat/
Visual Fractions	http://www.visualfractions.com/
Youth Education: Hitting the Fundamentals	http://www.actuarialfoundation.org/programs/yout h_education.shtml
Best Evidence	http://www.bestevidence.org/
Center on Instruction	http://www.centeroninstruction.org/index.cfm
Concrete Representational Abstract Instructional Approach	http://www.k8accesscenter.org/training_resources/ documents/CRAApplicationFinal_000.pdf
The CBM Warehouse at Intervention Central	http://www.interventioncentral.org/cbm_warehouse
Doing What Works	http://dww.ed.gov/
Hot Math	http://kc.vanderbill.edu/casl/casl7.pdf
Intervention Central	Interventioncentral.org
Jitendra, A. (2008). Solving Math W ord Problems: Teaching Students With Learning Disabilities Using	

Schema-Based Instruction. Austin, TX: Pro-Ed.	
Lesson plans from NCTM	Illuminations.nctm.org
Mathematics curriculum focal points (NCTM):	http://nctm.org/standards/focalpoints.aspx?id=298
Mnemonic Instruction to Facilitate Access to the General Curriculum	http://www.k8accesscenter.org/training_resources/ Mnemonics.asp
National Center on RTI	Rti4success.org
National Center on Student Progress Monitoring Webinars	http://www.studentprogress.org/library/Webinars
National Council of Teachers of Mathematics. (2011). Achieving fluency: Special education and mathematics. Edited by Francis (Skip) Fennell. Reston, VA: Author.	
National Math Advisory Panel report	http://www2.ed.gov/about/bdscomm/list/mathpan el/index.html
Peer-assisted learning strategies (PALS)	http://kc.vanderbilt.edu/pals/
Riccomini, P. J. \& Witzel, B.S. (2010). Response to intervention in math. Corwin Press: Thousand Oaks, CA.	
Sileo, J. M., \& van Garderen, D. (2010). Creating optimal opportunities to learn mathematics: Blending co-teaching structures with research-based practices. Teaching Exceptional Children, 42(3), 14-21	
What Works Clearinghouse Practice guides	wwc.ed.gov
Doabler, Cary, Jungjohann, Clarke, Fien, Baker, Smolkowski, \& Chard (2012). Enhancing core mathematics instruction for students at risk for mathematical disabilities. Teaching Exceptional Children, 44, 48-57.	
Geary, Hoard, \& Bailey (2012). Fact retrieval deficits in low achieving children with mathematical learning disability. Journal of Learning Disabilities, 45, 291-307.	
K-5 Math Teaching Resources	http://www.k-5mathteachingresources.com/
Math Chimp	$\underline{\text { http://www.mathchimp.com/ }}$
Math Playground for common core state standards	http://www.mathplayground.com/common core st ate standards for mathematics grade 3.html

PERIOD:

Quiz Over Simplifying Polynomials and Distributive Property

1. $6(3)-2=$

2. $-2+6=$

3. $-2(4+2)=$

4. Which of the following are not like terms?

a. $3 x^{2}$ and $-4 x^{2}$
b. $2 x y z$ and $x y z$
c. $3 y^{3}$ and $3 y^{2}$
d. $4 x^{2} y$ and $x^{2} y$
5. Group the pairs of like terms from the following polynomial using the underlining technique:

$$
\sqrt{2 x^{2}+3 x-x^{2}+4-5-x}
$$

Simplify:
 32102345
7. $2 x^{2}-3-3 x-x^{2}+6 x+4=$

10. $2(2 x+3)=$

11.
$2\left(x^{2}+4\right)+3(2 x-3)=2 x^{2}+6 x-1$ $2 x^{2}+9=6 x-9$

Nothing was confusing for me. (1) What is great about this short answer? I. like how she had her shart Highigh their answer WITHOUT restating the proof)
supports the Highlight the EXPLANATION in BLUE (only if they explain HOW the proof Highlight the PROOF in PINK (only if it supports their answer)

 7! $9 \exists$ dәad.

\cdots

kow

Below is the work Julio used to solve the following equation. Use the equation, Julio's work, and Julio's solution to write a Short Answer paragraph using the APE strategy. Use your notes on the APE strategy from your notebook to guide your writing. A quality answer has to fit inside the box below and should be at least 4 or more sentences.

$$
\begin{aligned}
7 x-5 & =-2 x+13 \\
7 x+2 x-5 & =-2 x+2 x+13 \\
9 x-5 & =13 \\
9 x-5+5 & =13+5 \\
9 x & =18 \\
\frac{9 x}{9} & =\frac{18}{9} \\
x & =2
\end{aligned}
$$

STARR SHORT ANSWER READING QUESTIONS EXAMPLE OF RESPONSE BOX

7. How many boxes of stuffed animals can be made with $\$ 5,000$? Make sure to use complete sentences and be specific.

STUDENTS MAY NOT WRITE OUTSIDE THE BOX
you can get.
\qquad

Learning Walk Focus Teacher:

1. Instruction Method Used
2. Thinking Rigor Level
3. Questioning Techniques Used
4. What is done for Engagement
5. Literacy task in the Content

Learning Walk Focus Student:

1. Work in response to instruction
2. Work in response to Rigor
3. Response to Question
4. Observation of Engagement
5. Content-Learned as a result of Lit task

Walker's Observations
Teacher: \qquad Class Period: \qquad Date: \qquad

RIGOROUR INSTRUCTION

What was the Instructional Method Used by the teacher? How did the students respond to the lesson?

What was the Thinking Rigor Level obtained by the teacher? How did the students respond to the Rigor being required of them?

What was the Questioning Technique used by the teacher? How did the students respond to the teacher's questioning?

What was done in order to obtain student engagement? How were the students engaged in this lesson?

DISCIPLINARY LITERACY

How was the execution of the Literary Task used by the teacher in order to demonstrate deep-content knowledge?

What was observed to be the students' response and level of content-learned as a result of the Literary Task?

What are your wonderings?

Thank you for participating in the learning walk. What suggestions can you give us in order to improve the learning walk

Disciplinary Literacy - (what was observed)

Look fors include - ACTUAL CONTENT WRITING that improves thinking, deep content knowledge
Writing folders
Answer - Prove - Explain (APEs)
Essays - especially Argumentative, Expository, or Analytical
Quick-writes
Other literacy work (reading, writing, thinking, questioning) that develops deep content knowledge Document Based Question work (AP / Advanced Academics)

Instruction (types observer would want to see) - (from Curriculum Projects)

1. Foster Connections at the $\mathrm{B}, \mathrm{M}, \mathrm{E}$ of the lesson
2. Cultivate Thoughtfulness
3. Strengthen understanding and blending modalities
4. Guide Quality through continuous feedback
5. Nurture Focus
6. Encourage consolidation of core concepts and skills at the end of every lesson (from Learning Focus)
7. Lesson segmentation that provides for content deepening (chunking)

Thinking Rigor (Levels of Rigor according to Blooms plus questioning stems) (from Curriculum Projects)

1. Knowledge - to recall (remember, list, recount, recognize, restate)
2. Comprehension - to understand (explain, describe, express, clarify, paraphrase)
3. Application - to use (classify, summarize, apply, distinguish, compare)
4. Analysis - to examine (isolate, determine, compare, contrast, speculate)
5. Creative Thinking - to change (generate, hypothesize, adapt, imagine, speculate)
6. Critical Thinking - to justify (judge, conclude, decide, infer, interpret)

Model Questioning Strategies (not questioning level but method to obtain input from student) (from Curriculum Projects)

1. Cognitive Verb in Questioning
2. Cognitive Verb in Questioning and recognizing student
3. Simultaneity in Questioning types
a. Pair/Share
b. Choral Response
c. Visual Cue
d. Quick Write
e. Time Thinking
4. Randomness (with computer, popsicle sticks)
5. Wait Time plus coaching student

Engagement (from Schlechty Center on Student Success in Engagement)

1. Actual Engagement - meaningful
2. Strategic Compliance - to get a good grade/to get a grade
3. Ritual Compliance - compliant behavior but not engaged
4. Retreat-ism - do not participate, are not on task
5. Rebellion - student is acting out

Studying Student Work Reflection

1. List specific reasons the papers are considered:

Low	
Medium	
High	

2. What are possible causes for the differences between the HIGH and LOW papers?
3. What are the possible causes for the differences between the HIGH and MEDIUM papers?
(Possible examples for \#2 and \#3- student didn't revise/edit and rewrite, writing prompt wasn't clear to the student, LEP or SpEd concerns, modeling was not provided, ineffective feedback for rewrite, etc.)
4. Where are the student's weaknesses in the short answers? Please list specific issues addressing the following:

Answer	
Proof	
Explanation	
Other issues	

5. Where are the student's weaknesses in the essays? Please list specific issues addressing the following:

Thesis statement	
Determining the main points to be discussed	
Elaboration on their main points	
Introduction	
Conclusion	
Other issues	

The Short Answer APE Strategy:

Follow this strategy to answer short answer questions correctly and efficiently each time. Be concise but thorough. Read the text carefully.

Step 1:

Answer the question.

- The text uses \qquad (choose whichever fits your promptformula, hypothesis, facts, literary element, etc.) to (demonstrate or appropriate cognitive verb) the \qquad (answer) \qquad .
- DO NOT add anything after your answer- "because", "since", "so", "and", etc. do not belong here!!!
- Ex. The text uses the Pythagorean theorem to determine that side x is 2 inches long.
Step 2:

Prove your answer.

- Your proof for your answer should be a quote taken directly from the text. Lift the words directly from the text. The proof must prove or support your answer.
- You MUST embed your quote. YOU start this sentence with YOUR explanation, embed the quote to continue your explanation, then finish your thought.
- Ex. Steinbeck revealed "a dread of west and a love of east" in many of his works.
- Don't forget to put the quote in quotations marks.

Step 3:

Explain your proof.

- Explain how your quote successfully proves or supports your answer to the question.
- Why is this important in the text?
- What impact does it have on the outcome?
- Do not merely restate the quote or answer.

A= ANSWER THE
QUESTION

Peer Edit

On-your partner's paper, do the following.
Highlight the ANSWER in YELLOW
Highlight the PROOF in PINK (only if it supports their answer)
Highlight the EXPLANATION in BLUE (only if they explain HOW the proof supports their answer WITHOUT restating the proof)

What is great about this short answer?
What is confusing about this short answer?

No highlighters? No problem!!

Peer Edit

On your partner's paper, do the following:

CIRCLE THE ANSWER

UNDERLINE THE PROOF (only if it supports their answer)
Put a BOX around THE EXPLANATION (only if they explain HOW the proof supports their answer WITHOUT restating the proof)

What is great about this short answer?
What is confusing about this short answer?

Revise and Edit

Always revise Content first then edit grammatical mistakes

1. See what color is missing:

Yellow=Answer
Pink= Proof
Blue $=$ Explanation
Add the missing parts of the APE writing strategy.
2. Note what your Peer Editor mentioned is confusing about your answer and correct it.
3. CUPS-Capitalization, Usage, Punctuation, Spelling

No highlighters:
Revise and Edit
Always revise Content first then edit grammatical mistakes

1. See what is missing:

Circle=Answer
Underline= Proof
Box=Explanation
Add the missing parts of the APE writing strategy.
2. Note what your Peer Editor mentioned is confusing about your answer and correct it.
3. CUPS- Capitalization, Usage, Punctuation, Spelling

I. PREWRITING-15 minutes

1. BREAKDOWN THE PROMPT (2 minutes)
A. Carefully dissect the prompt by underlining or circling the key words and use a dictionary to understand the academic vocabulary.
B. Rephrase the prompt in your own words (as a question if possible).
2. BRAINSTORM and choose a topic (3 min .) A. Quickly list all of the ideas about the prompt you can.
B. Do not analyze each idea just put every thought on paper.
C. Once you have no more ideas, evaluate each and choose the best as your topic.
3. ORGANIZE YOUR THOUGHTS (10 min .)
A. Use the graphic organizer to organize your ideas about your topic that you want included in the essay. Make sure they each address the prompt.
B. Put your thoughts in order. Identify the main points that will be the Reasons/Ideas of each paragraph, and then add all of the supporting details, examples, and facts,

III. REVISING/EDITING-12 minutes

1. REVISE

A. Make sure you have not strayed from the prompt.
B. Look for mistakes on facts (dates, names, etc.)
C. Check for complete ideas, clear thoughts, and details.
D. Eliminate repetitive ideas.

3. EDIT

A. Proofread for spelling, punctuation, and capitalization errors- USE THE DICTIONARY!!
B. Correct Run-ons and Fragments.
C. Eliminate use repetitive of words and phrases.

II. DRAFTING-15 minutes

1. Keep your audience in mind and write to the audience.
2. Write a logical, well-organized essay using
your graphic organizer.

A. INTRODUCTION

- Introduce your topic by rephrasing the prompt or repeating key words from the prompt in your first sentence.
- Write a clear thesis statement as your second sentence- this is what your entire paper is about.

B. BODY (2-3 fully developed paragraphs)

- For each body paragraph, support your

Reason/Idea with details, examples and facts.

- Use APEPE:

Answer- your Reason/Idea
Prove- detail, example, or fact
Explain- how does your proof directly support your answer
Prove- detail, example, or fact
Explain- how does your proof directly support your answer

C. CONCLUSION

- Restate your thesis statement, don't simply repeat it.
- The type of essay will determine the last sentence of your essay (refer to graphic organizers)

IV. FINAL DRAFT- 10 minutes

1. Look at your rough draft and evaluate how long it is to ensure it will fit into the 26 line template. You can write smaller if necessary. Try not to eliminate important information.
2. Do NOT add lines to the box.
3. Do NOT write outside the lined box.
\qquad Period \qquad
Circle the box that represents the student's work:

Category	3	2	1	0
Answer	The question is restated and the answer is stated in the first sentence	Only the answer is stated in the first sentence.	----------------------	The answer is not stated.
Prove	There are at least 3 steps stated.	There are only 2 steps stated.	There is only 1 step stated.	No steps are stated.
Explain	Every "prove" has an explanation after the "because."	Only 1 sentence does not have an explanation after the "because."	Two sentences do not have an explanation after the "because."	Three or more sentences do not have an explanation at the because.
 Grammer (CUPS- Capitalization, Usage, Punctuation, Spelling)	Every sentence correctly uses capitalization, punctuation and spelling.	One sentence contains a misuse of capitalization, punctuation, or spelling.	Two sentences contain a misuse of capitalization, punctuation, or spelling.	Three or more sentences conatin a misuse of capitalization, punctuation, or spelling.

Algebra II - Essay Prompt

There are two forms of a Quadratic Function, the Vertex Form
$f(x)=a(x-h)^{2}+k$ and the Standard Form $f(x)=a x^{2}+b x+c$. Please explain how the values of a, h and k in the Vertex Form of a quadratic equation affects the transformation of the function's graph.
\qquad Period \qquad

Algebra II Essay Rubric
Circle the box that represents the student's work:
Short Essay

Category	3	2	1	0
Introduction	Information is restated and described using mathematical knowledge Vocabulary is defined	Information is restated and vocabulary is defined, but the information is not described using mathematical knowledge	Information is restated only	Does not describe the prompt at all
Proof and Explanation	$\begin{aligned} & \text { A(3 proofs), } \mathrm{h}(2 \\ & \text { proofs and } \mathrm{K}(2 \\ & \text { proofs) are stated } \\ & \text { with explanations } \\ & \text { and math } \\ & \text { terminolgy } \end{aligned}$	A(3 proofs), h(2 proofs and $\mathrm{K}(2$ proofs) are stated with exp lanations but without math terminology	A(3 proofs), h(2 proofs and K (2 proofs) are stated with no explanations of transformations	a, h and k are not stated/ explanation does not comply with the prompt (talked about something else)
Conclusion	Answer is stated in terms of the question and is explained	State answer in terms of the question but has no explanation	The answer is stated but not in terms of the question	Answer is not stated
 Grammer (CUPS- Capitalization, Usage, Punctuation, Spelling)	Every sentence correctly uses capitalization, punctuation and spelling.	One sentence contains a misuse of capitalization, punctuation, or spelling.	Two sentences contain a misuse of capitalization, punctuation, or spelling.	Three or more sentences conatin a misuse of capitalization, punctuation, or spelling.

Total Points: \qquad
\qquad Date

Write a paragraph about your favorite parent function. Please describe why it's your favorite, the shape of the graph, its domain and range and what the x and y intercepts are. Compare this parent function to another parent function that is similar and describe how they are similar.

＊ұом ұиәрпұs 	廿еер ןеи！！pue＂вuи！ нелр ןеи！рие＂ви！ирра／ви！
sejduex］	suoipeloadx

Bu！！uM

	\％
suppead ssep suәəqoıd әлןоs＇suo！̣sənb дәмsue pue uossə tof peay－ 	su！̣peaı fo әэиәрйə әлеч 子snw （sdno， 3
	Suoļełวodx］

9NIOVヨy

	 'u!ur s -su!ped дәad дәмsue qrous - polazd ssejp ヨno -8u!unm kesso --unu st-0t -sutula demsue длочs :ssep ui әuop sit feql fu! If \#! to asuenodu! әч7 pueqs.apun :ssajo..d gulyin *	-
souqqis pәтеәдว quәpnis - of anp Ky!jenb paлолdu! uo snoos -	 Kesse I pue sesuodsad damsue मous OML τ 	5 N 1 1 1 y M
deגsomes ұиашฟиедәр Bu!peəy ว!!əəds әu!d!כs!a doןəләа dəuew "ueaw 'hes aut uaypauadis	 Iน!!!!!in кер s! :suon3do 3u!pezy	O N 1 0 \forall 3 y
s\|ivs תu!pum pue '8u!xu! \%и!	 : $У \exists 3 \mathrm{M} \mathrm{HOVI}$	8 7 \forall 0 9
	syəัм9 पว⿺3	

The coach will model teach the first class and observe/give feedback to the teacher			
from the second class.			
	22-Jan-14		
Coach	Teacher	Class Periods	Class
Briese	Drake	1st and 2nd	Alg. II
	Englehart	4th and 7th	Geom/H. Geom.
	Richardson	5th and 6th	H. Alg. II
Fowler	Castillo	1st and 2nd	H. Pre Cal
	Lara	3rd and 5th	Theory/M. Hist.
	Russell	4th and 7th	AP Eco.
Kuhl	Quear	1st and 2nd	AVTC
	Wright	3rd and 4th	H. Chem.
	Hill	5th and 6th	Money/Hum. Serv.
Nakamoto	Hawkins	1st and 3rd	W. Geo/ H. W. Geo
	Crouse	4th and 5th	W. Geo
	Hamiter	6th and 7th	Alg. I
Rodriguez	Tritten	2nd and 3rd	Chemistry
	Sanders	4th and 5th	BIM
	Basdeo	6th and 7th	Physics
Kinney	Hubble	1st and 5th	Eco
	Barger	2nd and 3rd	Biology
	Tatum	6th and 7th	Biology
	1/23/2014		
Fowler	Parada	1st and 2nd	Arch. Const.
	Cowen	4th and 6th	Physics
	Tezak-Daus	3rd and 7th	Art 1

Kinney Korn 1st and 4th Math Models Clardy 2nd and 3rd W Geo/US Alexander 5th and 7th Nutrition/Fam. CS

Short Answer Responses Focus
Do Now- Short answer- 15 minutes

1. Immediate teacher feedback-hovering-during Do Now
2. Peer editing- teacher MUST continue to hover- 10 minutes
3. Revise/Edit and Rewrites- Teacher facilitates- $10-15$ minutes

SHOGIE（чoea spouad ssep $I \varepsilon$	CHG JV səsuodsod dәmsur Hoys Kı！enb paseq snood Koriay！ 7 Kreu！｜d！̣s！a－syाeM Bupaneat	 	$8 \overline{2}$	PHO $\angle Z$
$t \bar{C}$	 	rHO IE（yoea spouxad SSEjP OMI IOf SIOYTE2I LITM YIOM $z z$	sulpag ratseurs puz $I Z$	Keg צTW TOOHOS ON OZ
 Ll	$\rightarrow 1$ わて／E S． $9 I$	 	カl－tて／Eて／ZZ－I dof ueld nnoqe $F I$	
01	6	8	L	9
ε	z	I		
1 N	ก4．	POM	Onl	UON
\cdots	Ковıә！！	THTMTH	d！9s！a $\mathfrak{L e}_{[}$	

$$
\begin{aligned}
& \text { †L0Z Kırnıqə }
\end{aligned}
$$

					I पs！oix 1ε	 unщ！u！u－би！̣peәy
－पoo raof jo asensuet 	87	20URYSISSE Iof suryper $L z$		 ςz	әoutysisse doy suaqoreq tz	ұои иəчм Бии！им pue Gu！pead dәay Ұәәм
aty 07 fred riaqt पreaq sduoxf eqf－8u！pear duox Z	$1 z$	02	61	8 L	LI	 unu！u！u－6u！peay
AON OCI Oq7 	TVGYG DNYAS	yYGeg onidds εI	XXGZGG ONTXAS $Z I$	XVヨyg DNİdS II	е реar pur xerəy XVEZG ONYXS 0I	unu！u！u－би！и！ yәәм 」ad әo！mı ！ unu！u！u－6иррезу
sanb xansur qroqs ${ }^{2}$ sq ponопог угомашточ 	4	Sutpeay－snoory 	 －дим рие कu！pear wed 	รяәอм 9 วт －ท！м pue sumpeas ue！d of zəour seproo Ta \downarrow	sщozм 9 วน －qun pur surpeay ured 	
q7oपs pnoqe						
7 ES	！	n41	POM	On」	UOW	uns

