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• Measurement modeling of survey questionnaire 
responses is completed for various purposes, e.g., 
estimate respondent latent traits, estimate item 
parameters, or to improve survey instrumentation.  

• Survey respondents are often sampled such that 
sampling weights are necessary analytically for 
statistical representation of sampled subpopulations.   

• Are sampling weights important when modeling 
survey question item parameters? 
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Why should we model survey item responses? 

• By item design, an item response is generated by an 
underlying hypothetical process. 

• Responses to items are used to estimate respondent 
characteristics. 

• Therefore, item psychometrics should be known. 

Survey Item Response Modeling 
(briefly) 

Presenter
Presentation Notes
Note Michael Rodriquez’s upcoming workshop
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The Dichotomous Response Model  

Survey Item Response Modeling 
(briefly) 

Presenter
Presentation Notes
Emphasize the item parameters that are estimated, and the concept of model fit.



slide 5 Spring 2014 CORE Survey Methodology 
Colloquium Series 

Survey Item Response Modeling 
(briefly) 

World Values Survey (dichotomous response)  

Presenter
Presentation Notes
This is an example of a dichotomous response format.
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Survey Item Response Modeling 
(briefly) 

Presenter
Presentation Notes
This is an illustration of the model fitted to the dichotomous response items.  As use of news sources increase, the probability of using a specific source changes.  News broadcasts are likely to be used even use is low.  Use must be high before books are used as a news source.
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Polytomous Response Model  

Survey Item Response Modeling 
(briefly) 

Graded Response Model (Samejima, 1997) 
for m categories 
there are m-1 
category  
thresholds 

Presenter
Presentation Notes
Emphasize the complexity of this model.  Specifically, there are threshold parameters associated with propensity to respond in increasingly higher response categories, e.g., 1 to 2 or higher, 2 to 3 or higher, 3 to 4.  
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World Values Survey (polytomous response)  

Survey Item Response Modeling 
(briefly) 

Presenter
Presentation Notes
This is an example of a polytomous response format.
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Survey Item Response Modeling 
(briefly) 

Having ancestors from my country  

Presenter
Presentation Notes
Illustration of the model fitted to the data.  Note that increasing leniency increases the probability of this requirement being unimportant.  Compare the level of leniency needed for equal levels of unimportance for each requirement.  Abiding by laws requires much more leniency before it becomes unimportant.
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Survey Item Response Modeling 
(briefly) 

Being born on my country’s soil  

Presenter
Presentation Notes
Compare to having ancestors in this country (previous slide).
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Survey Item Response Modeling 
(briefly) 

Adopting the customs of my country  

Presenter
Presentation Notes
Dramatic shift, it takes much more leniency to treat this as unimportant.
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Survey Item Response Modeling 
(briefly) 

Abiding by my country’s laws  

Presenter
Presentation Notes
This is the most important requirement, i.e., very high levels of leniency are required before this is regarded as unimportant.  Only persons who are very lenient will rate this as unimportant.
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Survey Item Response Modeling 
(briefly) 

Sample Invariant Parameter Estimates 

• Item response model parameters are expected to be 
sample invariant with respect to trait level. 

• Samples that vary with respect to trait level are 
expected to provide equivalent parameter estimates. 

Question. Are parameter estimates invariant with 
respect to group identity, e.g., sex, ethnicity? 

Presenter
Presentation Notes
This is a key concept for this research.  If the weights change representation of subsamples and if the items are biased with respect to subsamples, then the estimates are biased in both cases.  The weighted data provides a better basis for testing for sample invariance.
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Survey Sampling Weights  
(briefly) 

What are sampling weights? 

• Survey data are often collected using a nonrandom 
sampling procedure, e.g., cluster sampling, stratified 
sampling, multistage sampling; subpopulations may 
have been over- or under-sampled. 

• With known probability of being included (inclusion 
probabilities), sampling weights can be computed 

• Sampling weights are the inverse of the inclusion 
probability of being selected given the sampling 
design. 
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Survey Sampling Weights  
(briefly) 

Why use sampling weights? 

• They provide unbiased parameter estimates 

• They provide relatively accurate standard errors 
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Survey Sampling Weights  
(briefly) 

Why don’t we use sampling weights?. 

• Weights are often unavailable. 

• Not all computing software enables use of weights. 

• Complex methods may be needed to properly use 
survey weights, e.g., multilevel regression modeling, 
computation of normalized weights rather than raw 
weights. 
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2007 National Household Education Surveys Program 
Parent and Family Involvement in Education Survey 
(http://nces.ed.gov/nhes/surveytopics.asp)  

Complex Sampling Design  
Subsampling of telephone numbers  
2-phase stratification by minority 
Phase 1—over sampling areas with high % of Black or 
Hispanic 
Phase 2—within minority stratum mailable 

Item Response Modeling and  
Sampling Weights 

http://nces.ed.gov/nhes/surveytopics.asp


slide 18 Spring 2014 CORE Survey Methodology 
Colloquium Series 

2007 National Household Education Surveys Program 
Parent and Family Involvement in Education Survey 
(http://nces.ed.gov/nhes/surveytopics.asp)  

Case Level Sampling Weights 
80 replicates (80 subsamples) 
Full sample weight (average of the 80 replicates) 

Item Response Modeling and  
Sampling Weights 

http://nces.ed.gov/nhes/surveytopics.asp
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Methods 

• 10,681 Children Attending Public or Private School 
• Unweighted (13.3% in private school, N=1,687) 
• Weighted (11.1% in private school) 

• Item Response Modeling. Satisfaction with School 
Features; Graded response model parameter 
estimation 

• Test of Measurement Invariance using SEM with 
unweighted and weighted samples 

Item Response Modeling and  
Sampling Weights 
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Item Response Modeling and  
Sampling Weights 

2007 Parent and Family Involvement in Education Survey  
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Item Response Modeling and  
Sampling Weights 

Odds That Respondents from Private Schools are 
Satisfied Compared to Respondents from Public 
Schools 

Clearly, respondents from private schools are more satisfied. 

Presenter
Presentation Notes
These are the raw data. The odds of being satisfied are much greater for the private school respondents compared to the public school respondents.  But, do all items function invariantly, and does the test of invariance (DIF) change when the data are weighted?
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Item Response Modeling and  
Sampling Weights 

Unweighted Data 
Model Information Fit Statistics for Model Comparison 

best fitting model 

Presenter
Presentation Notes
The null constrains all parameters to be the same.  For each model, that items parameters are free to be estimated.  The best fitting model is when the parameters for public and private school respondent are free to be estimated for the satisfaction with standards question.  This indicates possible DIF for the standards question.
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Item Response Modeling and  
Sampling Weights 

Weighted Data 
Model Information Fit Statistics for Model Comparison 

best fitting model 

Presenter
Presentation Notes
The null constrains all parameters to be the same.  For each model, that items parameters are free to be estimated.  The best fitting model is when the parameters for public and private school respondent are free to be estimated for the satisfaction with standards question.  This indicates possible DIF for the standards question.
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Item Response Modeling and  
Sampling Weights 

Satisfaction w/Teachers Parameters by School Type 

Presenter
Presentation Notes
Within sample across weighted and unweighted data, the parameter estimates are similar, standard errors with the unweighted data are larger.
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Item Response Modeling and  
Sampling Weights 

Satisfaction w/Standards Parameters by School Type 

Presenter
Presentation Notes
For the public school sample, the parameter estimates are very are very similar across unweighted and weighted data.  The standard errors are larger with the weighted data.  For the private school sample, the parameter estimates and standard errors are different.  For both the unweighted and the weighted data, the public and private school parameter estimates are different, the private school estimates tend to be larger.
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Item Response Modeling and  
Sampling Weights 

Satisfaction with Teachers (unweighted) 

Presenter
Presentation Notes
With unweighted data, the operating characteristic curves are very similar and practically overlapping.  The item appears to function equivalently for both respondents using public and private schools.
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Item Response Modeling and  
Sampling Weights 

Satisfaction with Teachers (weighted) 

Presenter
Presentation Notes
With weighted data, the operating characteristic curves are less imilar thant with the unweighted data, but for this item (satisfaction with teachers), the curves are practically overlapping.  The item appears to function equivalently for both respondents using public and private schools.
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Item Response Modeling and  
Sampling Weights 

Satisfaction with Standards (unweighted) 

Presenter
Presentation Notes
With unweighted data, the operating characteristic curves are very similar and practically overlapping.  The item appears to function equivalently for both respondents using public and private schools.
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Item Response Modeling and  
Sampling Weights 

Satisfaction with Standards (weighted) 

Presenter
Presentation Notes
The distance between curves indicate lack of sample invariance.  When weighted data are used, this item may not function equivalently for the two samples. 
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Item Response Modeling and  
Sampling Weights 

Question. Are survey sampling weights relevant when 
estimating item response parameters? 

• Parameter estimates are affected by weights, they will 
theoretically be less biased. 

• Parameter standard errors tend to be affected by 
weights; they tend to increase. 

• Whether estimating parameters or testing for 
measurement invariance, use sampling weights when 
possible. 

Presenter
Presentation Notes
What is a ‘variable’?
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Item Response Modeling and  
Sampling Weights 

Question. Are survey sampling weights relevant when 
estimating item response parameters? 

• If the weights change representation of subsamples and 
if the items are biased with respect to subsamples, then 
the estimates are biased in both cases.  The weighted 
data provides a better basis for testing for sample 
invariance. 

• Be sure to use software that accommodates weights 

Presenter
Presentation Notes
What is a ‘variable’?
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Presenter
Presentation Notes
What is a ‘variable’?
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