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ABSTRACT

An abrasive waterjet nozzle wear monitoring and
compensating mechanism using the frequency domain acoustic
signals generated by the jet exiting the nozzle, as input, is
proposed. An artificial neural network which forms the critical
part of this system is developed using the back-propagation
algorithm. The trained network is capable of determining the
nozzle diameter corresponding to any unknown sound signal,
instantaneously. The proposed system can be used for continuous
monitoring of nozzle wear in real-time.

1 INTRODUCTION

As a commercial system, even though it was first introduced in
1983 for cutting glass, abrasive waterjet (AWJ) cutting currently
finds application for machining a wide range of metals and non-
metals like cast iron, stainless steel, mild steel, aluminum, copper,
titanium and its alloys, high carbon steels and tool steels,
concrete, ceramic and different types of composite materials. In
this process, the material removal takes place primarily through
the erosive action of abrasive particles which are accelerated by a
thin stream of high velocity waterjet directed through an AWJ
nozzle. Thus the role of the nozzle in AWJ machining can be
considered to be analogous to that of the cutting tool in traditional
machining; the difference being that there is no tool-workpiece
contact here. However, like a conventional cutting tool, AW]J
nozzle is also subjected to constant wear as machining progresses.
As a result, the inside diameter (ID) of the nozzle increases
gradually which can be used as an indicator to quantify nozzle
wear.

The increased wear of the AWJ nozzle makes the clearance
between the abrasive waterjet mixture and the nozzle larger. This
causes incomplete mixing of the abrasive particles with the high
velocity waterjet which results in reduction in cutting ability and
poor product quality. The width of cut increases as nozzle wear
progresses, which affects the precision of machining causing
undesirable changes in work geometry. The surface quality
deteriorates considerably with nozzle wear. Beyond the optimum
nozzle diameter, the depth of penetration of AWJ also reduces
with nozzle wear. Even though proper selection of nozzle
material, type of abrasive and machining conditions can reduce
the rate of AWJ nozzle wear, it cannot be completely eliminated.
Replacing the nozzle too often before it is worn completely will
increase the downtime of the machine and prove to be very un-
economical. Hence, from process automation point of view, it is
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very essential to devise suitable sensing techniques to monitor the
progress of AWJ nozzle wear during machining in order to ensure
uniform product quality at desirable level and replacement of the
worn nozzle at the right time.

There have been several investigations on AWJ nozzle wear
monitoring through direct and indirect sensing techniques. The
direct sensing techniques (Kovacevic, 1988) are primarily based
on measuring the nozzle ID at its tip or measuring the material
loss of the nozzle by radiometric techniques. Even though few of
these direct sensing techniques are close to on-line, they need
extensive instrumentation and set-up, prior to the experiment.
Indirect sensing techniques are based on measuring some
parameter such as jet diameter (Kovacevic, 1991), workpiece
normal force (Kovacevic, 1989), sound energy, vibration, etc.
which varies with change in nozzle ID. However, parameters like
workpiece normal force can be used only in the case of AW]J
turning or milling operation, as cutting through the workpiece can
destroy the dynamometer (force sensor). Some preliminary
studies were conducted by Merchant and Chalupnik (1987) on the
AW]J sound power measurement. Recently, Kovacevic, et al.
(1993) conducted extensive investigation for detection of nozzle
wear using acoustic signature analysis. The results showed that
there is a co-relation between the AWIJ nozzle wear and auto
regressive moving average (ARMA) model coefficients of the
acoustic signals. Here, the time domain signals were used for
analysis. Even though acoustic signals are generated on-line,
considerable time need to be spent on ARMA modeling before
the AWIJ nozzle ID can be identified. Thus, nozzle wear
monitoring cannot be executed in real-time. In the current
investigation, a technique is developed for on-line monitoring of
AWI] nozzle wear using artificial neural network.

Artificial neural networks (ANN) have been investigated for
several years in the area of image processing and pattern
recognition with an aim to achieve human-like performance. Due
to the high computational rates provided by massive parallelism
of simple processing clements ANN hac proven to be very
effective in process monitoring applications also. It can provide
greater degree of robustness or fault tolerance compensating for
minor variability in data and is capable of making weaker
assumptions regarding the shape of distribution of the data due to
the non-parametric nature of the network. The ability of ANN to
adaptation and continuous training provides an opportunity to
gradually build intelligence to the network. These advantages
have motivated several investigations in tool condition
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FIG. 1. NEURAL NETWORK ARCHITECTURE FOR
BACK-PROPAGATION ALGORITHM

monitoring in machining operations (Rangwala et al.,, 1987,
Jammu et al., 1993, Tansel et al., 1993). As a controlling
technique, neural controlling is finding applications in various
manufacturing processes (Karsai, et al., 1992, Wu, 1992, Garrett,
et al., 1993, Sbarbaro, et al., 1993, Skitt, et al., 1993). ANN is
used as a signal classifier in non-destructive evaluation (Damarla,
et al, 1992) and GMA welding (Matteson, et al., 1992).
However, until today there has been a limited application of ANN
in non-traditional manufacturing arena.

Current investigation is based on the principle of AWJ nozzle
wear monitoring through artificial neural network. Frequency
domain acoustic signals are used as input to the neural network.
This ANN is developed using the back-propagation algorithm.

Initially, the neural network is trained by inputting several sets of
acoustic signals and corresponding nozzle diameters as expected
output. After training, the neural network is capable of
determining instantaneously the nozzle diameter corresponding to
any unknown acoustic signal. A real-time AWJ nozzle wear
monitoring and compensating mechanism, based on artificial
neural network is proposed.

2 ARCHITECTURE OF ARTIFICIAL NEURAL
NETWORK

Artificial neural networks have a large set of processing nodes
(or neurons) and the data is supplied parallel to the nodes in the
input layer. The output nodes provide the network classification
and the intermediate nodes are used for data analysis. The pre-

selected signal set, known as the training set, consisting of data -

belonging to distinct categories, is utilized for training the ANN.
Fh1 0108 PO G I )

Based on the arrangement of the neurons, their
interconnection and training algorithms used, ANN can be
classified into different types. Among these, the most widely used
network is the back propagation (BP) network (Lippmann, 1987)
where the nodes are arranged in different layers. Each processing
node in the intermediate layers (also known as hidden layers)
makes a decision according to the training paradigms used when
presented with a set of data from the input layer. The decision
taken by each node in the first hidden layer is passed on to the
next layer and so on, until the output layer is reached. The
unknown signals are classified into different pre-defined
categories by the output nodes. These types of neural networks
“which utilize training sets are also called supervised network.

Sufficient knowledge-base of the signals (training data) is
necessary for training any supervised network. The training data
consists of signals that are representative of the different
classification desired. Inaccurate or incomplete knowledge-base
leads to faulty classification. Hence, it is necessary to ensure that
the training data consists of signals which are true representative
of the various classes. Thus, selection of training data is very
critical in supervised learning of the neural network.

A brief description of the back propagation algorithm adopted
in this paper is given here for the sake of completeness. A
detailed analysis of BP network can be found in Rumelhart, et al.
(1986). Fig. | shows the general architecture of the neural
network for back propagation algorithm. It consists of multilayer
nets namely input layer, hidden layer(s) and output layer with
cach layer consisting of several nodes. The output of a node in BP
network is usually modeled by a sigmoidal function which is
given for the j th neuron in the & th layer as
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where, @f is the threshold value, and Of-“l, the output of the ith
neuron in the (k-1)th layer, is connected to the jzi neuron through
a link whose weight is wj",

During the learning process, the network is supplied with a set
of input patterns {X{,Xp,....... ’XNF}’ known as training patterns
and the corresponding outputs of the network, {0},0;,....... Oy 1,

5 P
are compared with the desired (known) output patterns
{dudoyiin ,de}, where, Np denotes the total number of input
patterns. Each input pattern, X; is given by X; = {x;1.X;0000- by
where, n denotes the number of sampling points and also

determines the number of input nodes. If the number of output
nodes is given by N, then the output vector O; corresponding to

input vector X; is given by O; = {0;,0,........,0;y }. The network

is considered to be trained if the summed square of the error, E is
within the desired error limit, €, where, E is given by,

N, N,
4

E_izlz(dpj_opj) <eg, and, 0<e<0.1 2)
p=1 j=

If E is not within a specified limit, the link weights are
adjusted in order to minimize the error, E. Adjustments are
carried out according to a gradient search technique employing a
convergence parameter, 1), which is empirically determined
(Lippmann, 1987). Weight adjustment at the (#+1)th iteration
step is given by,

I £y JoE
wh(e+1) = wh(o) - “3}}. ©)
where, 0 <M < 1. Then from equations (1) and (3),
wh(e+1) = wh(n) + n8,0f! @

where, Sj is the error term for node j. If node j is an output node?
then

ﬁj =041 - Oj)(dj -0) (5)

where, dj‘and Oj are the desired and actual output values of the

output node j, for a given input pattern. If node j is an internal
node, then...

Nk+l

8= 0k1-0H> skt 6)
i

where, N, | is the number of nodes in the (k+1)th level.

; A modified form of the above BP algorithm is adopted here,
in which the training of the network is conducted by applying one
pattern at a time, and the error is computed to adjust the weights
before the next pattern of the training set is applied (Lippmann,
1987). Training is said to be complete if the error of all the
patterns lie within the pre-defined value. It is found, in general,
that signals, even though they belong to the same category, differ

-

e §
-

from each other slightly. Hence, selection of training data should

ensure that a fair combination of all sets of data corresponding to
that category is considered for training. Once the network is
trained, the remaining signals in the test data set are applied
sequentially for classification in the respective categories.

3 EXPERIMENTAL SETUP AND PROCEDURE

‘The experimental setup consists of an AWJ cutting system,
microphone, amplifier, A/D convertor, PC/AT with suitable
software and workpiece. The AWIJ cutting system used for
conducting the experiment consists of a high pressure intensifier
pump, AWJ cutting head, abrasive metering and delivery system,
abrasive hopper with garnet as abrasive, catcher tank and X-Y-Z
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FIG. 2. SCHEMATIC OF EXPERIMENTAL SETUP

TABLE 1. PROCESS PARAMETERS

Abrasive Waterjet Cutting

Abrasive material - Garnet
Abrasive mesh size - 80 (0.180 mm)
Abrasive particle shape - angular(random)
Orifice material - Sapphire
Orifice diameter -0.33 mm
Nozzle length - 76.2 mm
Method of feed - suction
Condition of abrasive -dry
Angle of Jet - 90 degrees
Waterjet Pressure - 276 MPa
Stand-off Distance - 6.00 mm
Traverse Speed - 1 mm/s
Abrasive Flow Rate -6g/s

Workpiece Details
Material - Aluminum Al 2024
Material thickness -25.4 mm
Length of cut - 50.8 mm

Experimental Variables
Range of Nozzle diameter - 1 to 1.7 mm
Experimental Conditions - Waterjet Flow, AWJ Flow
& AW]J Cutting

positioning system controlled by a CNC controller. A schematic
of the experimental setup is shown in Fig. 2.

The experiment is conducted by varying the nozzle diameter
keeping all other parameters constant. The constant process
parameters are given in Table 1. A 6.35 mm condenser
microphone is utilized to measure the generated sound signal. The
microphone is kept at about 10 cm from the tip of the nozzle and
is directed towards the nozzle exit. During the cutting process, the
microphone also travels along with the cutting head so that it is
always at the same distance from the cutting head. In order to
investigate the feasibility of nozzle wear monitoring using the
sound generated by the flow of waterjet or abrasive waterjet
mixture or during cutting, separately, the experiments were
conducted at three different conditions. The first set of
measurements were taken when pure waterjet was forced through
the nozzle (without cutting). The second set of measurements
were taken when the mixture of abrasive waterjet was forced
through the nozzle (without cutting). For the third set of
experiments, linear cuts were made on an aluminum plate and the
generated acoustic signal is measured using the microphone as
the cut progresses. The frequency of the measured sound signals
range from O to 40 KHz at an interval of 100 Hz. Thus the
sampling time for a single sweep of the frequency range was 10
ms. The amplified signal is analyzed using an FFT spectrum
analyzer. Twelve (12) data sets were used for averaging in the
frequency domain. For each experiment, ten (10) sets of averaged
frequency domain data corresponding to each nozzle diameter
were acquired for analysis. The measurements were repeated until
the AWJ nozzle was worn up to 70%.
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FIG. 3. TYPICAL FREQUENCY DOMAIN SIGNAL - FLOW
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4 RESULTS AND DISCUSSION

The frequency domain acoustic signals obtained for three
different experimental conditions namely with the flow of high
velocity waterjet, with the flow of abrasive waterjet mixture and
during AWJ cutting are analyzed separately. The effectiveness of
nozzle wear monitoring system developed using the acoustic
signals generated under each experimental condition is evaluated
for relative comparison. The accuracy of the neural network in
predicting the nozzle diameter when the test data is applied to the
input layer, is quantified in terms of the relative error. It should be
noted that the results obtained using the signals generated by the
flow of waterjet or abrasive waterjet mixture are general in nature
i.e. independent of the workpiece material and method of
machining; whereas that of the acoustic signals generated during
cutting depends upon the type of cutting (i.e. whether it is through
cutting or milling) and workpiece material. However, once the
experimental conditions and details of workpiece material are
known, a few set of training data are sufficient for developing the
network.

An artificial neural network is developed for each set of
experimental condition using the back propagation algorithm as
described in section 2. Among the ten sets of averaged frequency
domain data per nozzle ID, eight sets were used for training the
neural network and two sets were used as test data. As there are
400 data points per input acoustic signal- (at an interval of 100
Hz), the input layer of the ANN consists of 400 nodes. All the
data points corresponding to 0 to 40 KHz frequency range were
used for designing the neural network. The output layer of the
neural network consists of a single node which gives the nozzle
diameter corresponding to the respective input signal. After the
network is trained using the training data, once the error measure
is within the specified limit (1% of the corresponding nozzle ID),
the effectiveness of the network is evaluated using the test data.
The number of nodes in the hidden layer and the number of
hidden layers are varied and the results are evaluated to determine
the optimum design of the ANN. The results corresponding to
the different experimental conditions are given in Table 2, 3 and
4. The number of nodes adopted for each hidden layer is also
given. For example, a figure of "10/3" indicates that there are 10
nodes for the first hidden layer and 3 nodes for the second.

4.1 Flow of Waterijet

Typical frequency domain signals obtained when high pressure
waterjet is forced through nozzle for four different diameters are
given in Fig. 3. For single phase flow it is known (Lush, 1971)
that sound power is proportional to the square of the inside
diameter of the nozzle. Hence it is natural to expect that sound
pressure level will increase with the nozzle diameter which is
indicated by Fig. 3. However, this trend is more obvious for
frequencies between 20 KHz and 40 KHz. Artificial neural
networks of different designs are obtained by varying the number
of hidden layers and their nodes. The results obtained for the
various trials are given in Table 2. From this table it could be
concluded that the relative error of the predicted nozzle diameter
is less than 2% for all the designs of the neural network. Hence,
the frequency domain acoustic signals generated by the flow of
waterjet in the nozzle is very effective for nozzle wear
monitoring.
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TABLE 2. RESULTS OF ANN - FLOW OF WATERJET

g Predicted Diameter (mm)
L
E S 2l 54 1 Hidden Layer 2 Hidden Layers
=R -0
= [SE
Z e 5 & Number of Nodes
2 z

S 1 10e RS20 |225 | 10/3

1.02| Test 1{1.02 | 1.02{1.02 {1.02 [1.02 | 1.03 |{1.02 [1.02 | 1.02
Test 2{1.02 | 1.02{1.02 [1.02 |1.02 |1.02 {1.02 | 1.01 |1.01

40/1(50/14

—

2. | 1.14|Test 1{1.14 | 1.141.14
Test2|1.14 | 1.14]1.14

1.14 |1.14 [1.14 | 1.14 | 1.15 | 1.15
1.14 | 1.14 | 1.14 |1.15 [1.15 [ 1.15

3.| 1.40|Test 111.39 | 1.39(1.39 {1.39 | 1.40 {1.39 |1.40 |1.40 | 1.40
1 1 1

Test 2]1.40 | 1.40(1.40 [1.40 |1.40 [1.39 {1.40 |{1.40 |1.40
4. | 1.73|Test 1{1.71 | 1.71{1.70 {1.71 |1.71 | 1.72 {1.71 | 1.70 | 1.71
Test2{1.72 | 1.71{1.71 [1.71 |1.71 |1.70 | 1.71 | 1.71 | 1.72
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4.2 Flow of Abrasive Waterjet Mixture

A three phase flow exists in the abrasive waterjet (water,
abrasive and air) which creates a turbulence while passing
through the nozzle. This flow generates sound while exiting from
the AWJ nozzle. The pattern of this generated acoustic signal can
be expected to vary with nozzle diameter. From Fig. 4, it can be
noted that sound pressure level gradually increases with increase
in nozzle diameter which is more prominent at frequencies
between 20 KHz and 40 KHz. These signals (0 to 40 KHz) were
used to design the neural network. The results of the various
designs of the network are given in Table 3. From this table, it
can be noted that the neural network is capable of predicting the
nozzle diameter with an accuracy of 97% and above indicating
that acoustic signal generated by the flow of abrasive waterjet
mixture can also be used for nozzle wear monitoring.

4.3 Abrasive Waterjet Cutting

The acoustic signal generated during AWJ cutting is more
realistic for on-line monitoring, as this signal can be measured
without affecting the production process. The frequency domain
acoustic signals obtained for cutting the aluminum plate is given
in Fig. 5. This, being a cutting operation, the microphone
measures the total sound generated from the workpiece and the
nozzle. As a result, the amplitude of the sound pressure level is
higher in this case compared to the previous two cases (without
cutting) which is reflected in Fig. 5. Here also the sound pressure
level increases with increase in nozzle ID. Interestingly, this
trend is noticeable at all frequencies. The peak amplitude for all
the cases is observed at around 10 KHz. The results obtained
from the various trained neural networks are given in Table 4.
From this table it could be concluded that, in this case, the
relative error in predicting the nozzle diameter is less than 4% for
all the neural network designs. Thus, frequency domain acoustic
signal generated during AWJ cutting process is a very reliable
parameter for on-line monitoring of nozzle wear.
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TABLE 3. RESULTS OF ANN - FLOW OF AWJ MIXTURE

g Predicted Diameter (mm)
$-FEal s
5 g E E % 1 Hidden Layer 2 Hidden Layers
& | | Ex Number of Nodes
] s &=
< 5 | 10] 15| 20 | 25 [10/3 |20/5

1.02{Test 1{1.02 | 1.02{1.02 {1.02 |1.02 |1.02 {1.02 {1.02 | 1.02
Test2]1.02 | 1.02{1.02 |1.02 [1.02 {1.02 |{1.02 | 1.01 | 1.02

2. 5L TSt TERTS ] T ESHI S 1S | 1154115 £ 1.1S 1S 1115
Test 21 LIS KL ISHL IS 1 1LS FLIS | 195 1. 15 $L15 }1.15

1.39 11.39 [1.40 {1.40 | 1.41 | 1.40
1.40 | 1.40 | 1.40

—

3. | 1.40|Test 1{1.40 | 1.39/1.39
Test 2|1.40 | 1.39{1.40 [1.40 | 1.40 | 1.39

4.1 1.73|Test 1|1.72 | 1.72{1.72 |1.72 {1.72 | 1.73 | 1.71 | L.71 | L.71
Fest 21 1.73 B2 RT2 |1.73 | 1.72 731192 ] 1.72 | 1.71
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TABLE 4. RESULTS OF ANN - AWJ CUTTING

‘;; Predicted Diameter (mm)
= G
21E _| B | Hidden Layer 2 Hidden Layers
EIRE; 28
Z El £ EC Number of Nodes
e s | 10| 15| 20 | 25 [10/3 |20/5 |40/1050/10

1.02|Test 1{1.03 | 1.03{1.01 {1.00 | 1.01 | 1.01 | 1.01 | 1.01 |1.00
Test 2|1.02 | 1.01/1.03 | 1.02 {1.02 {1.03 [1.04 {1.03 | 1.04

2.| 1.14|Test 1|1.11 | 1.16{1.15 | 1.15 | 1.15 {1.15 | 1.13 | 1.12 |1.12
Test2|1.13 | 1.17{1.15 | 1.15 {1.16 {1.15 | 1.17 | 1.13 | 1.17

3. | 1.40|Test 1]1.36 | 1.37{1.38 {1.40 |1.41 |1.38 |1.36 |1.38 | 1.38
Test 2{1.40 | 1.40|1.40 {1.40 {1.40 |1.40 |1.39 |1.38 |1.44

—

4. | 1.73| Test 111.68 | 1.68|1.69 [{1.70 | 1.68 | 1.69 | 1.74 | 1.66 | 1.72
Test 2|1.71 | 1.70/1.70 |1.70 {1.70 {1.70 {1.73 |1.67 | 1.70

4.4 AWJ Nozzle Wear Monitoring and
Compensating Mechanism

Using the neural network developed for the case of cutting by
AW]J, an AWJ nozzle wear monitoring and compensating system
is proposed. A closed-loop controls the AWJ nozzle position by
compensating for the wear of nozzle ID. The closed-loop control
system (shown in Fig. 6) consists of the AWJ cutting system,
microphone, amplifier, A/D convertor, a computer which includes
a signal processor and the trained neural network, and a piezo-
electric actuator which is connected to the AWJ cutting head. The
sound generated by the flow of waterjet or AWJ mixture or
during cutting can be used for monitoring. This acoustic signal is
measured using the microphone. It is amplified and sent to the
computer through the A/D convertor. The acoustic signal is
analyzed using the signal processor and the averaged frequency
domain signal is inputted to the trained ANN. The neural network
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FIG. 6. AWJ NOZZLE WEAR MONITORING AND
COMPENSATING MECHANISM USING
ARTIFICIAL NEURAL NETWORK
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FIG. 7. LINEAR CUTS PRODUCED WITH AND WITHOUT
ANN COMPENSATION

instantaneously determines the corresponding nozzle ID and this
information is used to control the position of the AWJ cutting
head using the piezo-electric actuator. Thus, the closed-loop is
completed.

Nowadays, several standard software packages are available
which are capable of doing the FFT of time domain signals very
quickly. Once the neural network is trained, it can be used to
determine the nozzle diameter while the machining operation is
taking place (on-line monitoring). The piezo-electric actuator is
also capable of responding very fast. The improvement in the
machining accuracy depends upon the accuracy of the trained
neural network in predicting the nozzle diameter which is 96%.
The paths expected to be traced by AWJ nozzle with and without
nozzle wear compensation are given in Fig. 7. It can be noted that
AWIJ cutting with nozzle wear compensation using the ANN is
very close to the desired path, whereas without compensation it
produces a tapered cut. Thus, the proposed AWIJ nozzle wear
monitoring and compensating mechanism is very effective for
continuous monitoring in real-time. Even though discrete nozzle
diameters are chosen for training the neural network and
evaluating the effectiveness of this mechanism, the proposed
system is capable of measuring gradual nozzle wear by
interpolating the intermediate diameters. Ability to respond faster
and provide repeatable performance are the other advantages
offered by this system.

5 CONCLUSIONS

Frequency domain acoustic signals generated during the flow
of waterjet or abrasive waterjet mixture through the nozzle or
during AWIJ cutting are very reliable parameters for AWJ nozzle
wear monitoring. The flow of waterjet and flow of AWJ mixture
generates acoustic signals which vary sharply with the change in
nozzle diameter. This variation is more prominent in the
ultrasonic frequency range of 20 KHz to 40 KHz. Whereas for
AWIJ cutting this trend is noticeable for all frequencies.

The developed artificial neural network based on back-
propagation algorithm which uses the above acoustic signals as
inputs, is capable of predicting the AW] nozzle diameter with an
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accuracy of 96% and above for all the designs of the network
considered here. Thus, the ANN is a very useful tool for this
application as it can predict the nozzle diameter from the
unknown acoustic signal very quickly and accurately.

An AWJ nozzle wear monitoring and compensating
mechanism based on artificial neural network is proposed. This
mechanism, as a closed-loop control of the nozzle position, is
very promising for accurate machining by AWJ. The proposed
system can ensure continuous monitoring of nozzle wear in real-
time. It is also capable of responding fast and providing
repeatable performance.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Andrew F.Seybert for the
necessary help in the experimental work. The authors would also
like to thank the Center for Robotics and Manufacturing Systems,
University of Kentucky for the financial support in executing this
project and Flow International Inc., Kent, Washington, for
providing the AWJ cutting system.

REFERENCES

Damarla,T.Raju, Karpur,P and Bhagat,P.K., (1992), "A Self-
learning Neural Net for Ultrasonic Signal Analysis", Ultrasonics,
Vol.30, No.5, pp.317-324.

Garrett,James H. Jr., Case,Micheal P., HallJames W.,
Yerramareddy,Sudhakar, Herman,Allen, Sun,Ruofei, Ranjithan,S.
and Westervelt,James, (1993), "Engineering Applications of
Neural Networks", Journal of Intelligent Manufacturing, 4,

.1-21.
pp]ammu,V.B., Danai,K. and Malkin,S., (1993), "Unsupervised
Neural Network for Tool Breakage Detection in Turning", Annals
of the CIRP, Vo0l.42/1/1993, pp.67-70.

Karsai,Gabor, Andersen,Kristinn, Cook,George E. and
Barnett,R. Joel, (1992), "Neural Network Methods for the
Modeling and Control of Welding Processes", Journal of
Intelligent Manufacturing, (1992), 3, pp.229-235.

Kovacevic R., (1988), "Sensor for detecting the nozzle wear in
Abrasive Waterjet Cutting Systems", Invention Disclosure,
Syracuse University, Syracuse, NY, March.

Kovacevic R. and Chen G., (1989), "A Workpiece Reactive
Force as a Parameter for Monitoring the Nozzle Wear in Turning
Operation by Abrasive Waterjet", Proceedings of the 1989 ASME
Winter Annual Meeting, the High Energy Beam Manufacturing
Technology Session, Dec.14-17, San Francisco, CA.

Kovacevic R., (1991), "Development of Opto-Electronic
Sensor for Monitoring the Abrasive Waterjet Nozzle Wear",
Proceedings of the 1991 ASME Winter Annual Meeting,

Symposium on Sensors, Controls and Quality Issues in
Manufacturing, Dec.1-6, Atlanta, USA, pp.73-81.

Kovacevic,R., Wang,L. and Zhang,Y.M., (1993),
"Identification of Abrasive Waterjet Nozzle Wear Based on
Parametric Spectrum Estimation of Acoustic Signal", accepted
for the Proceedings of Instn. of Mech. Engs., Part B, Journal of
Engg. Manufacture.

Lippmann,Richard P., (1987), "An Introduction to Computing
with Neural Nets", [EEE ASSP Magazine, April, 1987, pp.4-22.

Lush,P.A., (1971), "Measurements of Subsonic Jet Noise and
Comparison with Theory", Journal of Fluid Mechanics, V0l.46,
part 3, pp.477.

Matteson,M.Allen, Morris,Richard A., and Raines,Ens.Donald,
(1992), "An Optimal Artificial Neural Network for GMAW Arc
Acoustic Classification", proceedings of 3rd International
Conference on Trends in Welding Research, Gatlinburg, TN,
1-5,June.

Merchant, Howard C. and Chalupnik, James D., (1987) "Case
History: Abrasive Waterjet Sound Power Measurement", Noise
Control Engineering Journal, Vol. 29, Number 3, November-
December, pp.85-89.

Rangwala,S. and Dornfeld,D., (1987), "Integration of Sensors
via Neural Networks for Detection of Tool Wear States",
proceedings of The 1987 Winter Annual Meeting of ASME,
Dec.13-18, Boston, MA.

Rumelhart,David E., McClelland,James E. and the PDP
Research Group, (1986), Parallel Distributed Processing - Vol I,
Vol.Il and Vol .Ill , The MIT Press, Cambridge, MA.

Sbarbaro-Hofer,D., Neumerkel,D. and Hunt,K., (1993),
"Neural Control of a Steel Rolling Mill", IEEE Control Systems,
June, 1993, pp.69-75.

Skitt,P.J.C., Javed,M.A., Sanders,S.A and Higginson,A.M,

Volume XXII, 1994



(1993), "Process Monitoring Using Auto-associative, Feed-
forward, Artificial Neural Networks", Journal of Intelligent
Manufacturing, 4, pp.79-94.

Tansel,Jbrahim Nur and Mclaughlin,Charles, (1993),
"Detection of Tool Breakage in Milling Operations - II. The
Neural Network Approach", International Journal of Machine
Tools Manufacturing, Vol.33, No.4, pp.545-558.

Wu,B., (1992), "An Introduction to Neural Networks and their
Applications in Manufacturing", Journal of Intelligent
Manufacturing, 3, pp.391-403.

Transactions of NAMRI/SME

258

)

Volume XXII. 1994



