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Classification of molten pool modes in variable polarity plasma arc
welding based on acoustic signature
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Abstract

The relationships between the acoustic signal and the modes of the welding pool such as no-keyhole (melt-in), keyhole and cutting in
variable polarity plasma arc welding (VPPAW) are investigated. Welch power spectral density (PSD) estimate is used for preprocessing the
sound data. A neural network (NN) is used to distinguish the keyhole mode from the cutting mode. The results show that the keyhole mode
can be distinguished from the cutting mode under the experiment conditions in this paper.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Variable polarity plasma arc welding (VPPAW) is a valu-
ble arc welding process for aluminum alloys. In the keyhole
ode VPPAW process, a high-energy density and high-

elocity plasma jet are generated to melt and penetrate
hrough the workpiece. The plasma jet momentum allows the
et to completely penetrate the welding pool to form a sym-

etric, funnel-shaped cavity called a keyhole and a similarly
haped liquid–solid metal phase boundary. Metal fusion takes
lace when the molten metal flows around the keyhole and
olidifies following the jet passage. The VPPAW technique
as been successfully used in production, such as in the fab-
ication of the space shuttle external tanks and space station
1,2]. However, the keyhole welding pool is not very stable,
nd during welding, it can possibly turn into the melt-in (no-
eyhole) process or the cutting process. Thus, the sensing
nd feedback control to ensure the stability of the keyhole
elding pool remains a challenge.
The present sensing techniques for the stability of the

elding pool or the weld penetration in the keyhole plasma
rc welding (PAW) can be divided into two classes according

to the relative spatial location of the sensor and the workpiece:
back-side-sensing of the workpiece and front-side-sensing of
the workpiece. The back-side sensing of the workpiece has
the drawback of an accessing problem during the welding
process of the enclosure structures. The front-side sensing of
the workpiece is more flexible, and has been given more and
more attention by the researchers.

The front-side sensing of the workpiece includes mainly
three sensing methods:

1.1. Arc light sensing

It is found that the keyhole mode can be detected by real-
time spectroscopic measurements of the ratio of the hydrogen
656 nm line to the argon 696 nm line in VPPAW. This ratio
decreases abruptly when the keyhole is established presum-
ably because the hydrogen is flushed out through the keyhole
with the plasma jet. Unfortunately, the cutting mode is dif-
ficult to identify from the keyhole mode by this approach
because the hydrogen is also flushed out with the plasma jet
[3]. By the spectroscopic study of the plasma arc, the infor-
∗ Corresponding author.
E-mail address: kovacevic@engr.smu.edu (R. Kovacevic).

mation on the keyhole formation can been extracted in the
plasma arc welding (PAW) [4]. Neither the keyhole size can
be detected precisely nor can the cutting mode be distin-
guished from the keyhole mode by this sensing technique.
924-0136/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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1.2. Image sensing

The many advantages of image sensing include that it
is intuitive, provides an abundance of information, has an
absence of electromagnetic interference, and is not intrusive.
It is found in our previous research work that the image sens-
ing has a pretty good potential in monitoring the stability of
the welding pool [5–8]. However, the field of view of the
keyhole from the front side of the workpiece is very limited
because the standoff distance of the welding torch is only
about 5.0 mm, while the diameter of the welding torch is
about 50.0 mm. The keyhole image cannot be detected effec-
tively when the keyhole size is out of a specific range. This
drawback limits the application of image sensing in VPPAW
even though an improvement to the field of view of the key-
hole has been made [9]. An additional sensing technique must
be applied to assist the front-side image sensing to overcome
its drawback.

1.3. Acoustic sensing

This is the sensing method adopted in this paper. Acous-
tic sensing has been investigated in the PAW process. For
example, the sound signal reflects the appearance and dis-
appearance of the keyhole in the PAW of aluminum with
direct current reverse polarity (DCRP). The sound signal
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Fig. 1. Architecture of a neural network with one hidden layer.

well-established feed-forward multilayer perceptron (MLP)
shown in Fig. 1.

The basic processing unit in an NN is called a neuron.
Signals flow between neurons through connections called
weights. In the forward path through the network, the out-
put of a neuron unit is given as:

ui =
p∑

j=0

wijxj (1)

and

xj = f (uj) (2)

where p is the number of neurons in the previous layer, wi0
the threshold, f(ui) a nonlinear activation function and x rep-
resents the output of a neuron. The most commonly used
activation functions are the sigmoid:

f (x) = 1

1 + e−bx
(3)

and the hyperbolic tangent.

f (x) = tanh(bx) = ebx − e−bx

ebx + e−bx
= 1 − e−2bx

1 + e−2bx
(4)

where b is a scaling factor. The hyperbolic tangent is asym-
m
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ould be used to control the start or stop of the welding car-
iage [10]. A workpiece with a variable thickness is used
o generate the no-keyhole mode, transition mode and key-
ole mode welding pool in the PAW process. It is found that
he no-keyhole mode, transition mode and keyhole mode
an be identified by the sound signal [11,12]. However,
esearch on the identification of the cutting mode from the
o-keyhole mode and from the keyhole mode using acous-
ic sensing is limited. The cutting process is a basic mode
nd also a big problem in the PAW process. In our previ-
us research work [13], the cutting mode could be identified
rom the no-keyhole mode using the Welch power spectra
ensity (PSD) estimate of the acoustic signature. However,
he cutting mode could not be identified from the keyhole

ode by this approach. In the keyhole or cutting mode, the
ound pressure generated by the plasma jet leaks through
he keyhole or the cut and results in a lower sound pressure.
he shapes of the molten pool are different in the keyhole
ode and cutting mode. A different shape of the molten pool

ould have a subtle effect on the acoustic signature. In this
aper, the acoustic identification of the cutting mode from
he keyhole mode is investigated by the use of a neural net-
ork.

. Neural networks

Neural networks are known for their powerful capa-
ility of performing nonlinear classification tasks. From
mong the many known NN architectures, we are using the
etric, and has the advantage of accelerating the learning
rocess [14].

The network training is achieved by finding a set of
eights that minimizes the sum squared error:

′ = 1
2

NL∑
k=1

(dk − yk)2 (5)

here dk is the desired output, yk the actual neural network
utput and NL is the number of neurons in the output layer.
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The weights are iteratively adjusted using the famous back-
propagation algorithm [15] that is based on the chain rule to
calculate the derivatives.

3. Experimental procedures

The experimental set up, as shown in Fig. 2, includes:
a variable polarity welding power source, a computer con-
trolled positioning system, an optoelectronic detector, a free-
field 1/2′′ microphone with a conditioning amplifier, and an
ADC/DAC card. The distance between the microphone and
the welding pool is about 86.0 mm, and the angle between
the microphone and the axis of the torch is about 42◦. As a
reference, an optoelectronic detector is used to monitor the
keyhole mode (no-keyhole, keyhole, cutting and so on) from
the backside of the workpiece. The detection range of the
acoustic signal is set up for 0.1–15 kHz. The acquisition of
the acoustic signal and the acquisition of the optoelectronic
signal are synchronized.

Three experiments are designed as follows.

3.1. Experiment I

A 5256 aluminum alloy plate with the dimensions of
76.2 mm × 178.0 mm × 4.8 mm is used to study the effect of
t
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Table 1
Variable polarity plasma arc welding parameters

Torch standoff (mm) 4
Orifice diameter (mm) 3.57
Throat length (mm) 3.175
Electrode setback (mm) 2.0
DCEN frequency (Hz) 60
DCEP duty cycle (%) 15
DCEP welding current DCEN welding

current × 160%
Pilot arc current (A) 15
Plasma gas flow rate (L/min) 3.6

78 s. The signal acquisition frequency is 30 kHz. The weld-
ing speed is 1.6 mm/s. Other welding parameters are shown
in Table 1. The weld is shown in Fig. 3(a and b). The acquired
acoustic signal and optoelectronic signals are shown in
Fig. 3(c).

3.2. Experiment II

The heat conducting condition is set to be asymmetric in
order to obtain the different welding pool modes: no-keyhole
mode and cutting mode. The same kind of plate as that of
Experiment III is used in this experiment. The purpose of this
experiment is to study the effect of the cutting mode on the
signature of the acoustic signal. Three steps are undertaken
in this experiment:

(1) Set workpiece holders very tightly at one side of the
workpiece and relatively loosely at the other side.

(2) Step the DCEN welding current to 110 A without any
sloping-up process at the beginning of the welding pro-
cess.

(3) Start to move the workpiece at a normal welding speed
without any delay at the beginning of the welding pro-
cess.

It takes a short time to establish a keyhole in the work-
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he welding pool mode on the signature of the acoustic signal
n the real VPPAW process. In order to obtain two different
elding pool modes (no-keyhole mode and keyhole mode)

long one weld bead, the following procedure is followed:

1) step the DCEN welding current to 110 A without any
sloping-up process at the beginning of the welding pro-
cess;

2) start to move the workpiece at a normal welding speed
without any delay at the beginning of the welding pro-
cess.

It takes a short time (usually less than 5 s) to establish a
eyhole mode welding process. So in this case, there are two
ifferent phases in welding process. In the first phase, there
s a no-keyhole mode; and in the second phase, there is a
eyhole mode. The total time span of the welding process is

Fig. 2. Schematic diagram of the experimental set-up.
iece; then, the welding process gets into the cutting process
ecause of the asymmetric heat conducting condition. So,
here are two different welding pool modes in the welding
rocess. The welding pool mode is a no-keyhole mode in the
rst phase and a cutting mode in the second phase. Acous-

ic and optoelectronic signals are acquired during the first
0 s of the welding process. The signal acquisition frequency
s 30 kHz. The welding speed is 1.6 mm/s. Other welding
arameters are shown in Table 1. The weld is shown in Fig. 4(a
nd b). The acquired acoustic signal and optoelectronic sig-
als are shown in Fig. 5(c).

.3. Experiment III

A specially prepared workpiece with a variable heat sink
nd a pre-drilled hole is applied to get a normal welding pro-
ess and a cutting process in one pass. By pre-drilling a hole
diameter 5.0 mm) in the path of the weld, cutting is gener-
ted at the position of the pre-drilled hole because there is
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Fig. 3. Results of Experiment I—normal VPPA welding process. (a) Front-side photograph of workpiece; (b) back-side photograph of workpiece; (c) acquired
signals.

Fig. 4. Results of Experiment II—cutting process with variable heat conduction. (a) Front-side photograph of workpiece; (b) back-side photograph of workpiece;
(c) acquired signals.
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Fig. 5. Results of Experiment III—VPPA welding process with pre-drilled hole and variable heat sink. (a) Front-side photograph of workpiece; (b) back-side
photograph of workpiece; (c) acquired signals.

not enough molten metal in the welding pool and because a
variable heat sink is present. Two narrow slits are made to
change the heat sink on the 5256 aluminum alloy plate with
the dimensions of 76.2 mm × 178.0 mm × 4.8 mm. The pur-
pose of this experiment is to study whether the acoustic signal
can be used to distinguish the cutting mode from the keyhole
mode. The welding speed is 1.6 mm/s. The DCEN weld-
ing current is 110 A. Other welding parameters are shown
in Table 1. The time span of the welding process is 75 s. The
signal acquisition frequency is 30 kHz. The weld is shown in
Fig. 5(a and b). The acquired acoustic signal and optoelec-
tronic signals are shown in Fig. 5(c).

4. Acoustic signal processing

4.1. Frequency domain analysis of the acoustic signal

The power spectral density (PSD) of the signal is used to
analyze the signal in the frequency domain. PSD estimation
is used to describe the distribution (over frequency) of the
power of a signal based on a finite set of data. An improved
estimator of PSD is the one proposed by Welch [16]. The
algorithm is as follows:

(1) The input signal vector x is divided into k overlapping

into is calculated as:

k = m − o

l − o
(6)

where m is the length of the signal vector x, o is the
number of overlapping samples and l is the length of
each segment (the window length).

(2) The specified window (for example, hanning window) is
applied to each segment of x.

(3) An N-point FFT is applied to the windowed data.
(4) The modified periodogram of each windowed segment

is computed.
(5) The set of modified periodograms is averaged to form

the spectrum estimate S(ejω).
(6) The resulting spectrum estimate is scaled to compute the

PSD as S(ejω)/fs, where fs is the sampling frequency.

In order to analyze the difference in Welch’s PSD esti-
mate of the acoustic signal between the different welding
pool modes, data are selected from different processes such as
the no-keyhole process, keyhole process and cutting process
in Experiments I and II, then processed with Welch’s PSD
estimate (with 1024-point FFT), respectively. The results
are shown in Fig. 6. In general, all the experimental results
show that the acoustic signal has a higher power ampli-
tude in the no-keyhole mode than in the keyhole mode
o
segments. The number of segments k that x is divided
 r cutting mode. The sharp difference of power amplitude
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Fig. 6. Comparison results of different keyhole modes based on the Welch’s
PSD estimate. (a) Normal VPPA welding process; (b) cutting process with
variable heat conduction.

occurs in two frequency ranges: 4500–7000 Hz and 11,000–
13,000 Hz.

4.2. Identification of the no-keyhole mode

An algorithm is designed to identify the no-keyhole mode
based on the Welch PSD estimate. First, the acquired data
is divided into small data sections with an equal length DL.
Assuming that Pk(f) is the results of Welch’s PSD estimate
for the data section k, then a summation of Pk(f) from 4500
to 7000 Hz is applied as follows:

P(k) =
7000∑

f=4500

Pk(f ) (7)

where f is the frequency, k = 1, 2, . . ., COUNT/DL. COUNT
is the length of the acquired data. The results of P(k) for
the different experiments are shown in Fig. 7. DL is equal to
15,000, and the sampling frequency is 30 kHz. So, two calcu-
lated results can be obtained per second. It can be found that
the no-keyhole mode can be distinguished clearly from the
keyhole mode and cutting mode. For example, a threshold can
be set to 40, and the no-keyhole mode can be distinguished

Fig. 7. Identification results of the no-keyhole mode. (a) Normal VPPA
welding process; (b) cutting process with variable heat conduction.

from the keyhole mode or the cutting mode. However, it can
be seen that it is difficult to distinguish the cutting mode from
the keyhole mode by Pxx(f) or P(k) directly.

4.3. Identification of the cutting mode using neural
networks

Fig. 8 shows the identification results of the welding pool
modes in Experiment III based on Welch’s PSD estimate.

Fig. 8. Identification result of the keyhole mode and the cutting mode.
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Fig. 9. Decision system for online identification of the mode of the welding
pool.

The cutting mode could not be distinguished from the key-
hole mode by Welch’s PSD estimate. The reason is the fact
that both the keyhole mode and cutting mode of the welding
pool can result in a loss of part of the sound pressure gener-
ated by the plasma jet. A neural network is used to identify
the cutting mode from the keyhole mode. A decision sys-
tem is designed as shown in Fig. 9 in order to identify the
mode of the welding pool (no-keyhole, keyhole, or cutting)
online.

The NN architecture used is an MLP with one hidden layer.
All neurons have a hyperbolic tangent activation function
that helps accelerate training. Data from the three experi-
ments above was used in designing the network. The data is
split into training, validation and test data sets. Each data set
needs to have an equal number of keyhole data points and
cutting data points. The training data is used to iteratively
find the network weights. The best network architecture was
determined using the validation data. Several networks with
a different number of hidden neurons have been tried. The
error was calculated on the validation data for each network,
and the network with the lowest error was picked. Finally,
the best network was used and tested by calculating the error
on the test data. Data from Experiment III was used for train-
ing and validation. Data from Experiments I and II was used
for testing. It was found that using the data in this manner is
better than using Experiments I and II for training and val-
i
t
p
c
w

Table 2
Training, validation and test data

Data set Experiment Time interval (s) Number of data points

Training
Keyhole III 18–38 40
Cutting III 45–65 40

Validation
Keyhole III 8–18 20
Cutting III 65–75 20

Test
Keyhole I 10–50 80
Cutting II 10–50 80

avoided data in the transition region between the different
modes.

4.4. Data preprocessing

The sound data is preprocessed before applying it to the
neural network (NN). We used Welch’s PSD estimate with
nine frequencies for preprocessing. Thus, every 0.5 s, Welch’s
PSD estimate is applied to a NN with nine inputs. Fig. 10
shows Welch’s PSD estimate with nine frequencies for the
10th sample of the keyhole mode validation data (at 12.5 s
from the beginning of the experiment), the 10th sample of the
cutting mode validation data (at 69.5 s from the beginning of
the experiment), and the 5th sample of the no-keyhole mode
data (at 2 s from the beginning of the experiment); where all
three are taken from Experiment III. It is obvious that the PSD
of the keyhole mode has a higher power than the no-keyhole
and cutting modes. Although it is hard to visually distinguish
between the PSD of the keyhole and cutting modes, the NN
was able to extract the discriminating features, and differen-
tiate between both modes. The number nine was chosen for
the PSD resolution so to keep the network size small enough
to avoid overfitting, while using enough resolution to con-
serve the necessary information in the PSD. Using a higher
resolution would require a NN with more weights that would
b
i
t
t
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dation, and Experiment III for testing. The reason is that
his way we ensure the keyhole data points and cutting data
oints used for training are collected exactly under the same
onditions. The data was used according to Table 2. Data
as used only from the keyhole mode or cutting mode. We
e susceptible to overfitting, especially since our data is lim-
ted. If overfitting occurs, the network would memorize the
raining data but would not be able to classify unseen data in
he test set.

The parameters used in calculating Welch’s PSD estimate
re:

N = 16;
l = 14;
o = 7;
Window type: hanning.

.5. Performance results

The NN was trained using MATLAB® neural networks
oolbox. The Levenberg-Marquardt training method [17] was
sed for training for its speed advantage over the basic
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Fig. 10. Welch’s PSD estimate with nine frequencies. The PSD of the
keyhole and cutting modes was used as input to the neural network. (a)
No-keyhole: �; keyhole: •; cutting: �. (b) Keyhole: •; cutting: �.

gradient-descent method. The network has nine inputs cor-
responding to the nine frequencies in Welch’s PSD estimate;
one output corresponding to the NN classification of the
welding mode, and one hidden layer. Different network archi-
tectures were tried in order to choose the best number of
hidden neurons. Each network was trained 10 times, and the
mean and standard deviations were calculated for the mean
square error, mse, and the classification error percentage CEP
defined as:

CEP = number of wrongly classified points

total number of points
(8)

Table 4
Neural network results on test set

Mean of CEP (%) 4.69
Standard deviation of CEP (%) 1.92
Mean of mse 0.17
Standard deviation of mse 0.08

Fig. 11. Neural network classification of the welding mode on the test set.

The performance is compared using the validation data as
shown in Table 3, and the network with 10 hidden neurons
was chosen for having the lowest CEP.

This network was retrained 10 times again, and tested each
time on the test data. The result is shown in Table 4. The
classification error is only 4.69%. Fig. 11 shows the classifi-
cation output for one of the 10 times on the test set using the
network with 10 hidden neurons. The network output is in
the range (−1,1). A positive output (+1) indicates a keyhole
mode, and a negative output (−1) indicates a cutting mode.
The test set consists of 160 samples. The x-axis represents
the sample number. The first 80 samples are from the key-
hole data, and the last 80 samples are from the cutting data.
The y-axis represents the neural network output. The network
output is correct for most of the keyhole samples (+1) and
for all the cutting samples (−1). Thus, the network is able to
correctly classify the welding mode most of the time. Fig. 10
shows that there is a small difference between the PSD of the
keyhole and cutting modes that is hard to visually identify.
Fig. 11 shows that the neural network was able to identify
this difference.

4.6. Interpretation of the neural network results

Let’s have a closer look at the physical meaning of the NN
results. NNs are powerful pattern recognition tools but they
g
T
f
h
e

Table 3
Performance of networks with different sizes on validation data

Number of
hidden neurons

Mean
of mse

Standard deviat
of mse

2 0.16 0.32
5 0.25 0.16

10 0.2 0.19
15 0.32 0.14
enerally lack the capability of interpreting their decisions.
hey are generally seen as a black box that models a certain

unction with no insight into that function. Many algorithms
ave been invented that attempt to explain the function mod-
led by the NN and interpret its decision [18].

ion Mean of
CEP (%)

Standard deviation
of CEP (%)

6.5 15.6
6.5 4.12
5.75 4.72
8.5 3.57
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A simple technique that gives some insight into how the
NN makes its decision is the causality index (CI) [19,20].
The CI is a means to measure the sensitivity of the network
output to each of its inputs. For the sake of simplicity, the CI
for a feed-forward network with a single hidden layer having
N1 hidden units is defined as:

CIki =
N1∑
j=1

wkjwji (9)

where wkj is the weight value between the kth output unit and
the jth unit in the hidden layer, and wji is the weight value
between the jth hidden unit and the ith input unit.

In order to compare the causality indices of different neural
networks, we normalize them by dividing by the root-mean-
square causality index of the network. Thus, we define the
normalized causality index as

CI′ki =
∑N1

j=1wkjwji√
1

NLN0

∑NL
m=1

∑N0
l=1

(∑N1
j=1wmjwjl

)2
(10)

where NL and N0 are the number of output and input neurons,
respectively [21]. A positive CI indicates that an increase in
the input will produce an increase in the output. A negative CI
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5. Conclusion

It is possible to identify between the three modes of
the welding pool (no-keyhole, keyhole and cutting) using
Welch’s PSD and neural networks. There is a general trend
that the intensity of the acoustic signal is higher before the
keyhole is established than when the keyhole or the cutting
occurs. Thus, the no-keyhole mode can easily be identified
from the keyhole or cutting modes using Welch’s PSD and
setting a proper threshold. Distinguishing the cutting mode
from the keyhole mode is more difficult because in both cases
the keyhole or the cut leaks sound pressure. However, the
shapes of the molten pools in keyhole and cutting modes are
different, and have some effect on the acoustic signatures.
The result shows that the NN can help to identify the cut-
ting mode from the keyhole mode under the experimental
conditions in this paper.
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After training, the normalized CI has been calculated for
ne of the 10 networks with the best architecture (10 hidden
eurons). The result is shown in Table 5. The largest CI is
hat of inputs 2 and 5 of the neural network corresponding
o the PSD at the frequencies 1.875 kHz and 7.5 kHz, repec-
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f the other inputs is smaller and therefore less reliable. A
mall CI means that either the corresponding input has little
ffect on the output, or the output dependency on that input
s non-monotonic or symmetric [21].
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