
On-line sensing and estimation of laser surface
modi® cation by computer vision

D Hu, M Labudovic and R Kovacevic*

Research Center for Advanced Manufacturing, Southern Methodist University, Richardson, Texas, USA

Abstract: Laser surface modi® cation with alloying or remelting often yields unstable results. To

achieve on-line control, process sensing and estimation are the key technologies. This paper

introduces molten pool imaging as laser processing feedback. Well-contrasted molten pool images

are acquired in experiments by eliminating the strong light from spatter and plasma. An algorithm

for real-time image processing is developed that shows robust and high-speed performance.
Analytical models of laser surface modi® cation are studied using moving heat source models. The

simpli® ed analytical model shows a roughly linear relationship between laser power and depth of

modi® ed surface (molten depth). Based on key feature analysis in analytical models, an on-line

estimation model of molten depth is built using a neural network, which applies a time- series of

widths of the molten pools as an input vector. By controlling laser power, the neural network
model is trained for diVerent heat inputs in a transient process. The testing results by another group

of experiments show that the on-line estimation model can predict the depth of the modi® ed surface

accurately.

Keywords: laser surface modi® cation, on-line estimation, computer vision, image processing, neural

network

NOTATION

a thermal diVusivity (m2 /s) ˆ k=…»cp†
am output vector of the mth layer of the neural

network

bm bias vector of the mth layer of the neural

network

cp speci® c heat (J/kg K)

E edge set

f m transfer function of the mth layer of the neural
network

G two-dimensional Gaussian ® lter

Gn ® rst derivative of the Gaussian operator

i, j coordinates of the image array

I , Is, Ir image arrays in diVerent processing stages
Ie edge candidate

k thermal conductivity (W/m K)

n normal of the detected edge

p…t† width of the molten pool at time t

P input vector of the neural network
Q heat rate (W)

r radius (m) ˆ …x2 ‡ y2 ‡ z2†1=2

R dimension of the input vector of the neural

network

Sm dimension of the output vector of the mth
layer of the neural network

T temperature (K)

Te1, Te2 edge magnitude thresholds

Tg1, Tg2 grey level thresholds

w moving speed (m/s)
Wm weight matrix of the mth layer of the neural

network

x, y, z coordinate system as in Fig. 1

» density (kg/m3)

¼ Gaussian distribution parameter

1 INTRODUCTION

Laser surface modi® cation comprises a family of meth-
ods such as transformation hardening, melting, alloying

and cladding. It allows a user to build a part with totally

diVerent properties in the surface layer than in the bulk

material. The surface layer can obtain high wear, fatigue

or erosion resistance, while the bulk material maintains

its original properties, such as good strength.
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The theory of laser surface modi® cation is based on

rapid thermal cycling due to the ability of the laser to

produce concentrated heat energy on the part. A high

cooling rate can be reached as the heat conducts into

the cold bulk material, which results in a self-quenching
process. This self-quenching process produces micro-

structure re® nement, phase transformation or formation

of a supersaturated solid solution [1].

One typical application of laser surface modi® cation is

the thermochemical treatment of the surface of titanium
which has excellent mechanical and chemical properties

such as high strength, good biocompatibility and high

corrosion resistance, but has low resistance to sliding

and abrasive wear. When nitrogen is blown into the

molten pool produced by the laser on titanium material,

a thin golden layer of titanium-nitride forms which
shows great hardness (HV ˆ 2000 ± 3000 kg/mm2), high

melting temperature, high temperature stability and

low electrical sensitivity [2]. However, irregular qualities

are often produced because the processes are too sensi-

tive to the processing parameters such as input laser
power and scanning velocity. For example, under certain

conditions a 10 per cent ¯ uctuation in laser absorption

will cause a 50 per cent change in molten depth. There-

fore, real-time control of the process is required to

produce a more stable and repeatable molten depth
and to adapt to the complex shape of the part.

Accurate and reliable process sensing and feedback are

the key to achieving such successful control. Owing to

the complex interaction between laser and material,

there are several kinds of sensor to be used in laser weld-

ing to monitor the welding process (e.g. plasma detector,
acoustic sensor, spatter detector, temperature probe and

keyhole imager [3, 4]) in order to estimate the welding

penetration. A few studies have also been carried out

on laser surface modi® cation, in which thermal pictures

are acquired and analysed to estimate molten depth
[2, 5]. Still, sensing the laser process remains a problem

to be solved. Owing to the intense light produced by

plasma and spatter, direct molten pool imaging is not

an eYcient method for sensing in the laser surface modi-

® cation process.
There are also quite a number of research studies on

laser processing models, but most of them are numerical

and cannot be utilized eYciently to direct real-time

process control. An analytical model that is faster and

can be applied in real-time control usually depends on

the method of sensing. Because of the limitation of the
known methods of sensing, there are few research studies

on on-line estimation. Among them, Lankalapalli and

Tu [6] developed an analytical model for keyhole laser

welding by assuming a constant temperature in the

keyhole and applying a moving line heat source model.
Romer and Meijer [7] provide an analytical model for

laser surface modi® cation based on thermal pictures,

but some hypotheses (such as bead width) con¯ ict with

observed experimental results of the present authors.

In this study, an ultrahigh-speed shutter camera with

pulsed laser illumination (known as the Laser Strobe

vision system) has been used as the laser process monitor,

which is able to acquire well-contrasted images of the

molten pool. Owing to the large amount of adjustments
and experiments, stainless steel AISI 304 was chosen as

the treatment material in the preliminary experiments

for economical reasons. The sensing and estimation

method certi® ed for stainless steel can be extended to

titanium material in future work. The experimental
results show that there is a clear correlation between

molten depth, molten pool size and geometric shape

during constant scan velocity processing. A real-time

algorithm of image processing has been developed to

calculate the molten pool geometric parameters, which

performs well because it is robust and fast. Analytical
models of moving heat sources of point and Gaussian

distribution have been discussed to explore the relation

between laser power and molten depth, and to decide

the key features for neural network model training.

Based on analysis in analytical models, an on-line
molten depth estimation model is built using the neural

network and is trained with the back propagation

method.

In the next section, the system set-up and preliminary

experiment results are illustrated, showing a rough corre-
lation between processing parameters and the molten

pool geometric shape. A real-time algorithm of image

processing is provided in the third section. Analytical

models of the moving heat source are discussed in the

fourth section. The analytical model of the moving

point heat source demonstrates an approximate linear
relationship between the laser power absorbed and the

depth of surface modi® cation. Based on analysis of the

key features in analytical models, in the ® fth section, a

neural network on-line estimation model is built using

a multilayer perceptron (MLP) and trained by the back
propagation training method. The conclusions are

presented in the ® nal section.

2 PRELIMINARY EXPERIMENTS

In order to certify whether or not the image of the molten

pool is an eYcient information source to re¯ ect the

molten depth, while trying to ® nd the potential corre-

lation between molten depth and the molten pool

geometric shape, a series of preliminary experiments
have been performed using diVerent pairs of laser

powers and scan velocities as processing parameters.

An Nd:YAG laser is the laser source, which is operated

in continuous waveform (CW) mode. Owing to the

large amount of adjustments and experiments, stainless
steel AISI 304 was chosen as the treatment material at

the beginning for economical reasons. The sensing and

estimation method certi® ed in this study will be extended

to titanium in future work.
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Figure 1 gives the experiment system set-up. Laser

® bre conducts a 337 nm near-UV laser to illuminate the

Nd:YAG laser treating area. The illuminating laser is a

pulse laser with a 5 ns pulse duration synchronized with
the high-speed shutter of the camera. The camera is

also equipped with a UV ® lter that only allows light

near 337 nm wavelength to pass. As the illuminating

laser is triggered, the camera shutter opens for 50 ns to

capture an image. During the illumination period, the

intensity of the illuminating laser can cover the spatter
and plasma light. Owing to the re¯ ection of the mirror-

like molten pool, a well-contrasted image of the molten

pool can be obtained. Nitrogen is used as the alloying

gas; it also blows away the plasma generated from the
molten pool. A frame grabber installed on a PII 350

PC computer acquires images from the high-speed

shutter camera at 30 Hz. Real-time image processing,

molten depth on-line estimation and closed-loop control

will be completed on the same computer. A digital I/O
card is also mounted on the same PC to control the
power of the MW-1000 Nd:YAG laser through its

parallel port using an extended interface. The experiment

results using constant processing parameters are shown

in Figs 2 and 3.

With a laser strobe lighting camera, well-contrasted

molten pool images can be acquired, the quality of

which is suYcient for further image processing. From

data in Fig. 2, the depth of the modi® ed surface shows

more sensitivity to absorbed laser power than to scan

velocity. For example, processing started with param-
eters of 1200 W laser power and 2.5 mm/s scan velocity.

Decreasing the laser power by 50 per cent or increasing

the scan speed by 300 per cent will form almost the

same variation in depth in the molten pool. Comparing

the images in Fig. 3 with data in Fig. 2, the molten
pool images are also seen to be more sensitive to varia-

tions in laser power than to scan velocity. Using constant

scan velocity in processing, the geometric shape of the

molten pool changes prominently with variation in

laser power. When laser power is decreased, the size of
the pool shrinks, and the angle at the front end is smaller.

In contrast, changing the scan velocity while keeping the

laser power constant will cause only a small diVerence in

the pool image. Thus, for surface modi® cation with

variable absorbed laser power and scan velocity,

images of the pool do not re¯ ect the molten depth very
well. However, for constant scan velocity processing

(which is the common method in surface modi® cation),

such images can provide suYcient feedback of the

molten depth for closed-loop control. The key features

of the geometric shape of the molten pool for on-line
estimation will be analysed and discussed further in the
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Fig. 1 Experimental system set-up
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fourth section. In the following study, it is assumed that

constant scan velocity will be utilized during laser proces-

sing. In order to obtain molten depth feedback from the

molten pool geometric information, a real-time algo-
rithm of image processing will be the next challenge.

3 REAL-TIME ALGORITHM FOR IMAGE

PROCESSING

Real-time image processing uses edge detection to simplify

the analysis of the image by preserving useful structural

information about object boundary. There are several
research results on edge detectors (four well-known

types are the Canny, Nalwa± Binford, Sarkar ± Bowyer

and Sobel detectors [8]). Owing to the excellent perfor-

mance of the Canny edge detector (high signal ± noise

ratio, good edge localization and elimination of multiple

response) and the features of the image obtained, the

Canny edge detector for step edges is used with modi® -
cation to serve as the front-end edge detector. Other

methods have been tested but cannot provide satisfactory

results, so they are not utilized in this study.

In order to decrease the noise eVects, Gaussian

smoothing is applied to the image ® rst described as

Is ˆ G ¤ I

where G is a two-dimensional Gaussian ® lter, I repre-

sents the image array, and ¤ denotes convolution:

G ˆ exp

³
¡ i2 ‡ j2

2¼2

´

According to Canny [9], the ® rst derivative of the

Gaussian operator is an eYcient approximation of the

optimized operator for a step edge with a 20 per cent
performance decrease. Thus, the following operation is

applied to the result of image smoothing:

Ir ˆ Gn ¤ Is

where

Gn ˆ @G

@n
ˆ n ¢ rG

(a) Depth of the modi® ed surface vs. scan velocity for

diVerent laser output power.

(b) Structure of modi® ed surface.

Fig. 2 Laser surface modi® cation results by constant pro-

cessing parameters

Laser power = 1200W

Laser power = 950W

Laser power = 830W

Laser power = 570W

w = 2.5 mm/s       w = 5 mm/s       w = 10 mm/s

Fig. 3 Images of the molten pool under diVerent laser powers

and scan velocities
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Here, n should be the normal to the direction of an edge

to be detected and can be estimated from the smoothed

gradient direction

n ˆ
r…G ¤ I†
jr…G ¤ I†j

An edge candidate, Ie, is a local maximum of Ir. A

function, F , of non-maximum suppression is built to

substitute for calculating the second derivation Gaussian

operator:

Ie ˆ F…Ir†

Two edge magnitude thresholds, Te1 and Te2 (Te1 > Te2),

are selected with hysteresis [9] to classify Ie and to form
the edge set E. The processing result is shown in Fig. 4b.

In order to eliminate the edges caused by the heat

aVected zone, two grey level thresholds, Tg1 and Tg2

(Tg1 < Tg2), also with hysteresis, are used, combined

with edge magnitude thresholds, based on the original
image histogram analysis. The process is de® ned as

follows:

If Ie…i; j† > Te1 and I…i; j† < Tg1, …i; j† 2 E,

break ˆ FALSE, i § ¢, j § ¢; ¢ is a small increase

If Ie…i; j† < Te2 or I…i; j† > Tg2, …i; j† 62 E,
break ˆ TRUE

If Te1 > Ie…i; j† > Te2 and Tg2 > I…i; j† > Tg1 and

break ˆ FALSE, …i; j† 2 E, otherwise break ˆ TRUE

Figure 4c shows that the extra edges are greatly reduced.

The edge set E is the data source of on-line estimation of
surface modi® cation depth. The algorithm will take

60 ms to complete the processing for one frame image,

which is fast enough for real-time process control.

4 ANALYTICAL MODELS OF LASER SURFACE

MODIFICATION

The purpose of on-line estimation is to supply a real-time

feedback of the depth of the modi® ed surface from infor-

mation of the molten pool image, and to direct the

controller by giving the relationship between molten

depth and controlled processing parameters. Owing to

the complicated mechanism of the transient heat process

of surface modi® cation and welding, neural networks are

usually applied to model the process. Because the key
features that are used to train the neural network are

critical to the future performance of the model, analytical

models are analysed ® rst to ® nd the key features to train

the neural network. Also, the approximate eVects of

controlled processing parameters can be obtained by
analysis of the analytical models to direct the controller.

As the laser interacts on the metal surface in a very

thin ® lm layer [10], laser surface modi® cation can be sim-

pli® ed and modelled as a moving point heat resource on
a semi-in® nite metal plate without considering the size of

the laser spot. The model is described as [11]

T…x; y; z; t† ˆ
…

t

0

Q d½

‰4pa…t ¡ ½†Š3=2»cp

£ exp

µ
¡ x ¡ w…t ¡ ½†2 ‡ y2 ‡ z2

4a…t ¡ ½†

¶

The temperature ® eld reaches a steady state for t ! 1.

In this case the lower limit of the integral equation

above leads to the simple expression

T…x; y; z† ˆ Q

4pkr
exp

µ
¡ w…r ¡ x†

2a

¶

In the model above, y and z are symmetric, which means

that the width of the molten pool is double the depth of
the modi® ed surface. The size of the molten pool in the x

direction, which is the same as the direction of movement

of the heat source, is aVected by the scan velocity. In the

following, the correlation between molten depth (also

bead width) and laser surface modi® cation processing
parameters (laser power absorbed and scan velocity)

are explored to show the trend of in¯ uence.

Introduce the dimensionless quantities:

£ ˆ
4pkaT

wQ
; ¹ ˆ

wx

a
; ² ˆ

wy

a
; ± ˆ

wz

a

®2 ˆ ²2 ‡ ±2

(a) (b) (c)

Fig. 4 Processing result of the edge detector: (a) original molten pool image; (b) middle-stage image

processing result; (c) ® nal image processing result
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and write the solution as [12]

³…¹; ²; ±† ˆ expf¡0:5‰…¹2 ‡ ®2†1=2 ¡ ¹Šg
…¹2 ‡ ®2†1=2

…1†

To calculate bead width, the temperature ® eld on the

surface of the block (¹ ± ² plane) is described by equation
(1) with ® ˆ ². The isotherm can be derived from equa-

tion (1) by subscribing

…¹2 ‡ ²2†1=2 ˆ · …2†

Then equation (1) can be written as

¹ ˆ · ‡ 2 ln…·£†

For the maximum and minimum value of ² to obtain the
molten depth and bead width,

@²

@¹
ˆ @…·2 ¡ ¹2†1=2

@¹
ˆ 0

@·

@¹
ˆ ¹

·

¹ ˆ ·2

2 ‡ ·
…3†

·£ ˆ exp

³
¡·

2 ‡ ·

´
…4†

The molten depth or bead half-width can then be calcu-
lated by solving equations (4), (3) and (2).

Figure 5 shows the data of the model for variable laser

power and scan velocity compared with experimental

data. From the curves it can be concluded that molten

depth and bead width are roughly linear to the laser

power absorbed. This result is the same as Romer’s con-
clusion [7], and can also be observed approximately from

the transient experimental data in Figs 6 and 9. The scan

velocity has a relatively small in¯ uence on molten depth

and bead width compared with the laser power, which

can also be veri® ed by Fig. 2 from preliminary experi-

ments.
The conclusions from the moving point heat source

model can be utilized to build a control model because

it provides the trends of variation in molten depth with

laser power, but it is not accurate enough for on-line
molten depth estimation. Experiment results clearly

show that bead width is larger than molten depth. The

main reasons for such a diVerence are the defocusing

of the laser beam in the laser surface modi® cation

process and the TEM mode of the laser beam. Therefore,

Fig. 5 Relation of laser power and molten depth of moving point heat source model. Properties of steel

at 400 8C: » ˆ 7730 kg/m3
, k ˆ 45 W/m K, c ˆ 600 J/kg K, a ˆ 9:6 £ 10

¡6
m

2 /s, Tmelting ˆ 1470 8C,

absorption rate " ˆ 0:65
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the moving point heat source cannot model the laser

beam accurately. The more realistic analytical model is

the Gaussian distribution model described as follows

[13, 14]:

T…x; y; z; t† ˆ
…

t

0

Q…t ¡ ½†1=2

p»c…4pa†1=2‰2a…t ¡ ½ † ‡ ¼2Š

£ exp

µ
¡

…x ¡ w½†2 ‡ y2

4a…t ¡ ½† ‡ 2¼2
¡

z2

4a…t ¡ ½†

¶
d½

where ¼ has dimensions of length and can be considered

as the radius of the defocused laser spot. In this model,

y and z are no longer symmetric owing to the size of the

laser spot. This model can only be solved numerically.

It is quite diYcult to ® nd analytically the maximal geome-
trical value of the molten pool in the y and z directions

(molten width and depth). A large number of calculations

need to be carried out in order to obtain the boundary of

the molten pool to de® ne the relationship between the

width of the molten pool and molten depth. Thus, a

large amount of calculation results needs to be stored in

a table. Searching such a table, which is time consuming,
is not feasible for on-line estimation and control.

From both the moving point heat source model and

Gaussian distribution model it can be concluded that

bead width is a suYcient key feature for the neural

network model to predict molten depth. In the Gaussian
model, during the transient heat transfer process,

because of the laser beam diameter, the energy distribu-

tion in the laser beam, and a thin laser ± metal interactive

layer, the molten pool width can reach a steady state

faster than the molten depth. Therefore, the neural net-

work must utilize a time series of molten pool widths
as an input vector, considering the transient heat process.

The diameter of the defocused laser beam should be kept

Fig. 6 Experiment for neural network training
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constant, which means the distance between the laser

head and the workpiece is a constant.

5 NEURAL NETWORK MODEL FOR ON-LINE

ESTIMATION OF MOLTEN POOL

Owing to the performance and limitation of the analyti-

cal models mentioned above, a neural network model is

introduced for on-line estimation of molten depth. The
measured width of the molten pool and molten depth

as prototype variables are shown in Fig. 6. The laser is

controlled in step mode to simulate the ¯ uctuation of

laser power absorbed. The widths and depths of the

molten pool are measured by oV-line computer vision.

The bead is cut along its centreline in order to measure
the molten depth. Micrographs (£5) of the samples are

scanned into a computer with a 100 d.p.i. (dots per

inch) resolution so that 500 measurements can be taken

per inch for each sample. The molten widths and

depths are outlined and measured using image proces-
sing software.

A multilayer perceptron (MLP) neural network can

provide a good approximation to arbitrate function. A

two-layer MLP neural network is selected to build the

model shown in Fig. 7. A log-sigmoid function is applied
as the transfer function in both layers. The input vector is

a time series of molten pool widths. The output of the

neural network is molten depth.

The molten pool width can reach a steady state faster

than the molten depth because of the laser beam dia-

meter, the energy distribution in the laser beam and a
thin laser ± metal interactive layer. For on-line estimation

of the molten depth from the width of the molten pools,

considering the transient in¯ uences, a time series of

molten pool widths is used as the input vector of the

training prototypes. Assume that the molten depth will

be N seconds later than the width of the molten pool
in achieving a steady state. The control computer will

take ¢t ˆ 100 ms to complete one time feedback control

including image grabbing, image processing, geometric

parameter extraction, on-line estimation and control

signal calculation. Therefore, for the target output
(molten depth d) of the neural network at time t, the

input vector will be

P ˆ ‰ p‰½ ¡ …R ¡ 1†¢tŠ; p‰½ ¡ …R ¡ 2†¢tŠ; . . . ; p‰½ ŠŠT

where p‰tŠ is the width of the molten pool at time t, and

R ˆ N £ 10 to satisfy the assumptions above. In order

Fig. 7 Multilayer neural network structure

Fig. 8 Comparison of the molten depth target value and training result

1088 D HU, M LABUDOVIC AND R KOVACEVIC

Proc Instn Mech Engrs Vol 215 Part B B10399 # IMechE 2001



to eliminate the noise produced by ¯ uctuation of the
molten pool, a larger R than N £ 10 is selected as the

dimension of the input vector. Here, after training and

comparing, R ˆ 40 is used in the neural network

model.

Back propagation is a well-established method to train

an MLP neural network [15]. A MATLAB program is
developed to follow the back propagation method to

train the neural network and optimize the neuron

number in the hidden layer according to the convergence

speed and error. In order to accelerate the convergence, a

variable learning rate and momentum method are
applied in the learning algorithm [15]. The training

prototypes and results are shown in Fig. 8. Comparing

the convergence speed and sum-squared error, and in

order to reduce the redundant space in the model,

S1 ˆ 15 is chosen as the number of neurons in the
hidden layer. The sum-squared error of the training is

less than 0.01.

The trained neutral network is tested by another

experiment result, with linearly changed laser power

and the same scan velocity (2.5 mm/s). Figure 9 provides

a comparison of experiment and estimation results. The
test result shows that, for the same scan velocity, the

neural network on-line estimation model can predict

modi® ed surface depth quite well.

6 CONCLUSION

Computer imaging is an eYcient sensing method for laser

surface modi® cation with alloying or remelting. By a

Fig. 9 Veri® cation of the neural network on-line estimation model

ON-LINE SENSING AND ESTIMATION OF LASER SURFACE MODIFICATION 1089

B10399 # IMechE 2001 Proc Instn Mech Engrs Vol 215 Part B



high-speed shutter camera with laser strobe lighting,

well-contrasted molten pool images can be acquired,

the quality of which is suYcient for sensing. An algo-

rithm for real-time image processing is developed using

a modi® ed Canny detector. The algorithm proves to be
very robust and high speed. The simpli® ed analytical

model of laser surface modi® cation performs an approx-

imate linear relationship between the laser power

absorbed and the depth of modi® ed surface. This rela-

tionship can be applied in the control model to direct
the behaviour of the controller. The width of the

molten pools is the key feature for molten depth estima-

tion. A neural network on-line estimation model for

molten depth is built considering the transient process

of laser processing. Based on an analysis of an analytical

model and designed transient process experiments, the
model is trained by the back propagation training

method, using a time series of molten widths as the

input vector. The veri® cation results show that the

neural network on-line estimation model can predict

the depth of a modi® ed surface very well for the experi-
mental material (AISI 304). Closed-loop control of

laser surface modi® cation will be studied on the basis

of such sensing and on-line estimation. The sensing,

on-line estimation and control method established for

stainless steel will be extended to titanium surface modi-
® cation in future work.
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