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Abstract: A time-domain algorithm is proposed 
to control interval plants described by impulse 
response functions. The closed-loop control 
actions are determined based on the interval 
ranges of the model parameters. Robust steady- 
state performance in tracking a given set-point 
can be guaranteed if the sign of the static gain is 
certain despite possible open-loop overshooting, 
delay, and nonminimum phase of the interval 
plants. Simulation examples are given to illustrate 
the performance. An application example in 
welding process control is also included. 

1 Introduction 

Interval models are useful descriptions for many uncer- 
tain dynamic processes. Much of the present success in 
interval plant control is restricted to analysis issues [l- 
91. However, limited progress has been made in achiev- 
ing an effective systematic design method for the inter- 
val plant control [4]. Preliminary results on the 
regularity of the robust design problem with respect to 
the controller coefficients were obtained [lo]. Recently, 
a class of interval plants with one interval parameter 
were addressed [lo, 111. However, due to the complex- 
ity of the polynomial based analysis, the issue of con- 
troller synthesis for uncertain systems with more 
independent interval parameters has not been solved. It 
still 'remains, to a large extent, an open and dificult 
problem' [4]. 

In this work, a prediction based algorithm is pro- 
posed to control interval plants. Robust steady-state 
performance in tracking a given set-point is guaranteed 
if the sign of the static gain of the interval plant 
remains fixed when the parameters change in their 
intervals. The authors observed that predictive control- 
lers were traditionally designed primarily based on the 
nominal model without explicitly using the uncertainty 
of the controlled process [13, 141. Predictive control 
algorithms for models with interval parameters have 
been developed [15, 161. However, their efforts were 
towards the computational aspects and no performance 
results have been either given or proven. 
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2 Problem description 

2.7 Problem description 
Consider the following single-input, single-output 
(SISO) discrete system: 

n 

j=1 

where k is the current instant, yk is the output at k,  Uk-j 

is the input at (k - J )  (j > 0), while n and h(i)s are the 
order and the real parameters of the impulse response 
function: 

n 

j=1 

Assume h(j)s (1 s j 5 n) are time-invariant. They are 
unknown but bounded by the following intervals: 

where h,,,(j) 5 hmax(i) are known. Assume yo is the 
given set-point. The objective is to design a controller 
for determining the feedback control actions {uk}s so 
that the closed-loop system achieves the following 
robust steady-state performance: 

hrnin(j) I h(j)  I hmax( j )  ( j  =I 1,.  . . , n)  ( 3 )  

lim yyl~ =yo (4) 
k++W 

where yk is the output of the closed-loop system. 

2.2 System assumption 
The unit step response function s(i) and their upper 
and lower limits smax(i) and smin(i) are 

S m a x ( i )  = C;=l k n a x ( j )  2 ~ ( i )  

= Ci=l h( j )  L s m i n ( i )  

= C;=l hmin ( j )  (1 5 i 5 n) 
h " i )  = s m a x ( n )  2 s ( i )  I 1 s ( n )  2 smin(2) 

I 
To achieve a negative feedback control, one should 
assume that the sign of the static gain of the addressed 
interval plant is certain, despite the interval model 
parameters, i.e. 

Smax(n)Smin(n)  > 0 (6) 
This is referred to as the sign certainty condition of the 
static gain in this study. Assume that eqn. 6 holds for 
the plant (eqn. 1) with intervals (eqn. 3). 

For a given plant (eqn. 1) with intervals (eqn. 3), its 
s,,,(n) and smin(n) can be calculated. If they are nega- 
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tive and the set-point y o  is also negative, one may rede- 
fine -y and -h(j)s as the output and model parameters 
so that eqn. 1 still holds. Also, the following can be sat- 
isfied: 

(7 )  
s m a x ( n )  2 s m i n ( n )  > 0 { yo 2 0 

If smax(n) and smin(n) are positive and yo is negative, -y 
and -U can be defined as the new output and input so 
that eqns. 1 and 7 hold. When smax(n) and sm,Jn) are 
negative and y o  is positive, if the new input and param- 
eters are redefined as -U and -h(j)s, eqns. 1 and 7 can 
still be employed. It is apparent that the intervals of the 
model parameters must be changed accordingly once 
the model parameters are redefined. Hence, assuming 
eqn. 6 guarantees eqn. 7. The objective is therefore to 
design a controller for the interval plant, which is 
described by eqns. 1 and 3 and satisfies eqn. 7, so that 
the output of the closed-loop control system satisfies 
eqn. 4. 

3 Uncertainty ranges 

Predictive control [13, 17-19] is a widely accepted prac- 
tical control method and has been applied to different 
areas [20-231. The authors intend to control the inter- 
val plants using a prediction-based algorithm. Because 
of the uncertainty of the parameters in the interval 
model, no exact predictions can be made. Hence, the 
predictions can only be given in certain ranges. 

Consider instant k.  Assume the feedback Yk is availa- 
ble and uk needs to be determined. From model 
(eqn. l), the following can be obtained: 

n 

T ( $ k + z ( A U k + z - i ,  a u k + z - 2 ,  . . , a u k / k ) )  

E T(Yk+z- l  ( a U k + z - 2 ,  aUk+z--33.  - * 3 A u k / k ) )  
n 

+ A h ( j ) l a U k + z - j  I 
3=1 

, (2 2 2) 

3=1 

where 

i a y k  y k  - y k - 1  

auk-3 = u k - 3  - u k - 3 - 1  

3.1 One-step-ahead uncertainty range 
Based on eqn. 8, the following equation can be used as 
the prediction equation to predict the output at instant 
k +  1: 

n 

$ k + l ( a u k / k )  = y k  f h ( j ) a u k + l - j  (9) 
3=1 

where k denotes the instant when the prediction is 
made, and Auk gives the condition under which the pre- 
diction is made. Here Auk implies that all the previous 
and current Aus are known (i.e. Auk-]s are known for j 
2 0, when the prediction is made). 

Because of the uncertainties of the parameters, the 
predicted output is uncertain. However, both the upper 
and lower limits of the output can be predicted exactly 
using 

max$k+l ( n u k / k )  
n 

Denote the one-step-ahead uncertain range of j k t l  
(Auk/k) as 

r ($k+l  ( a u k / k ) )  := m a x $ k + l ( a u k / k )  

- m i n $ k + l ( a u k / k )  (11) 
It can be shown that 

n 

T ( $ k + l ( a U k / k ) )  = a h ( j ) l a u k + l - j I  (12) 
3=1 

where 
ah(j) = h m a x ( j )  - h m i n ( j )  2 0 ( j  = 1,. . . , n) 

(13) 
It is apparent that r( jk+l(Auk/k))  is proportional to the 
amplitude of the control action increments Auk+l-Js. 
Assume the control increment constraint is (Auk( 5 
Au,,,, where Au,,, is a positive real number. Then 

n 

m a x T ( $ k + l ( a U k / k ) )  5 A U m a x  ah(j) (14) 
j=1 

3.2 Multistep-ahead uncertainty ranges 
Based on the one-step-ahead prediction eqn. 9, the fol- 
lowing recursive multi-step-ahead prediction equation 
can be obtained: 

$ k + z ( a U k + z - l ,  a U k s . z - 2 , .  . . , a u k / k )  

- - yk+z-l  ( a u k + z - Z  > auk+z-3  ,. ' . > a u k / k )  
n 
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= max xk-ti-1 ( A u k l k )  
n 

Hence, for a given Auk, the uncertain range of the step 
response can be recursively calculated as i increases. 

From the recursive eqn. 18, the following correla- 
tions can be obtained: 

It can be seen that the prediction error yk+l - 
~ ~ + ~ ( A u ~ / k )  will contribute to the further prediction 

- max zk+[(Auk/k), where i z 2. Thus, once the new feed- 
back yk+l is acquired, the predictions (zk+l(Auklk)s, min 
z~+~(Au&)s,  and max zk+l(Auk/k)s (i 2 2)) can be 
replaced by more precise innovative predictions 
(zk+l(Auk/k+ l)s, min ~ ~ + ~ ( A u ~ / k +  l)s, and max zk+Z(Auk/ 
k+l)s (i 2 2)), so that the control action can be 
adjusted based on the new feedback, where 

errors Yk+l - Zk+l(AUk/k), Yk+Z - min zk+l(Aukw, and Yk+l 

X k + z ( A U k / k  + 1) 

maxxk+,(Auk/k + 1) 

minzk+,(Auk/k + 1) 

._ 
* -  ' k+?  (*uk/k)l,k+l(A~lc/k)=~k+l 

.- 
1- maXXk+z(A~k/~)Izk+l(aub/k)=Yb+l ( a  2 2 )  

, := min zk+z(~uk/~)I,k+l(*uk/li)=ylc+l 
(20 )  

Also, it can be shown that 
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a k + z ( A u k l F )  = &+,(Auk-l/k) 
+ s ( z ) A u ~  

maxzk+,(Auk/k) =maxzk+,(Aulc--l / k )  

minzk+,(Auk/k) =minzk+,(Aulc-l/k) 
+ max(s(i)Auk) (2 1 1 )  

(21) 
+ min(s(i)Auk) 

Eqn. 21 gives the correlation between zk+l(Auk/k) and 
zk+,(Auk-l/k). Here, zk+l(Auk-l/k) predicts what the out- 
put will be if the control variable is not changed. Based 
on the required output, the ideal zk+z(Auk/k), which 
needs to be achieved by adjusting the control variable, 
can be known. Thus, the error in the output that the 
closed-loop control algorithm needs to eliminate can be 
known and used to determine Auk. A control criterion 
and algorithm can therefore be proposed. 

4 Control algorithm 

The following criterion is proposed to determine Auk: 

This criterion can be realised by the following steps: 
(i) Calculate 

based on eqns. 18 and 20. 
(ii) Because of the correlation in eqn. 21, calculate 

maxzk+,(Au,/k) = go (22) 

maxzk+,(Auk-l/k) (n  2 i 2 1) ( 2 3 )  

d ( n )  = yo - maxZk+n(Aulc-l/k) (24) 
(iii) Then 

5 Performance 

Theorem I :  For the given interval plant control prob- 
lem eqns. 1, 3 and 7, 

lim yk = yo (26) 
k++m 

when algorithm (eqns. 23-25) is used. 
Proof: When the upper limit of the prediction is used to 
predict the output yk+l at instant k ,  the one-step-ahead 
prediction error defined by 

e k + l  := maxzk+l(Auk/k) - y k + l  (27)  
is larger than, or equal to, zero (i.e. ekcl 2 0). Based on 
eqns. 19 and 20, the following can be yielded: 

maxzk+l(Auk/k + 1) = maxzlc+z(Auk/k) - e k + l  

(2  = 2 , 3 , .  1 .) (28 )  
It is known that max zk+l(Auk/k + 1) 2 Yk+Z and max 
zk+[(Auk/k) 2 yk+l.  Hence, eqn. 28 and ek+l 2 0 imply 
that max Z ~ + ~ ( A U &  + 1) gives a more accurate predic- 
tion than max zk+Z(Auk/k),.and ek+l 2 0 is a measure of 
the prediction accuracy improvement when the new 
feedback yk+l is used for prediction. 

In the following proving process, the correlation 
between Auk+, and ektl will be first established. Then 
lim,,,, Auk = 0 will be shown based on ek+l 2 0. As 
given by eqn. 25, Auks are proportional to the differ- 
ences between the set-point and predictions. Hence, 
limk,+, Auk = 0 has actually implied the correctness of 
eqn. 26. 

maxzk+l+,(Auk/k+l) =maxzk+i+n(AUlc/k)-eek+i 
(29) 

Eqn. 28 has the following form for i = n + 1: 
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Since 

maxzk+z+n(Auk/k) = maxzk+,(Am/k) (2 2 1) 
(30) 

then 
maxzk+l+,(Auk/k + 1) 

= maxzk+,(Auk/k) - ek+l  = YO - ek+l  

(31) 
From eqns. 21 and 22, we have 

max Zk+l+n(AUk+l / k  + 1) 
= maxzk+l+,(Auk/k + 1) + smaX(n)Auk+l = go 

( 3 2 )  

( 3 3 )  

(34) 

Hence, also from eqn. 8, 

Auk+, = ek+l/Smax(n) 2 0 

u k  I Uk+1 I Uk+2 I ' .  ' 

The control sequence satisfies: 

Since the plant is stable and yk+r 5 yo, lim,,,, Auktl = 
0. In general, this can be written as 

lim Auk = 0 (35) 
k++m 

Thus, from eqn. 16 it can be seen when k - +a 
Also, since Auk = 0 when k - +m, 

maxyk+% = minCk+% = yk (z 2 1) (36) 

Y ~ + I + %  = maxGrc+l+n = YO ( k  + +m) (37) 
That is, 

lim yk = yo 

Remark 1: Theorem 1 shows that if eqn. 7 is satisfied, 
the proposed control algorithm can guarantee that the 
required closed-loop system performance (eqn. 4) is 
achieved. That is, the resultant closed-loop system is 
robust with respect to the uncertainty of the interval 
plants in achieving the closed-loop performance 
(eqn. 4). 
Remark 2: It can be seen from the above proof that the 
robust performance achieved by the proposed algo- 
rithm is not affected by the dynamics of the controlled 
process such as open-loop overshooting, delay, non- 
minimum phase, and large intervals once the sign con- 
dition is satisfied. 
Remark 3: For the convenience of derivation, the algo- 
rithm has been developed using impulse response func- 
tion models. In general, a SISO interval plant can be 
described using an autoregressive moving-average inter- 
val model: 

k t + m  

P 4 

Thus, from eqn. 38, the following can be shown: 

h m a x y  = maxYk 

,=1 j=1 

where (p, q)  are the orders, and a(j)s 0' = 1, ..., p )  and 
b(j)s (j = 1, ..., q) are the real coefficients of the model 
and satisfy: 

To describe the interval plant (eqn. 38) using the 
impulse response function model (eqn. l), one can 
compute the responses of eqn. 38 to an impulse input 
u k  = 6, where 6, = 1 and = 0 (k  z 0) under zero ini- 
tial state condition: yk  = 0 (k I 0).  For convenience of 
notation, denote 

bmin( j )  1 b ( j )  1 bmax( j )  1 0  (vj > 4)  
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(40) 
Hence, {hmin(k), hmax(k)} (k 2 1) can be recursively cal- 
culated. We assume that the plant (eqn. 38) with inter- 
val parameters given in eqn. 39 is stable, and that the 
maximum and minimum of the impulse responses 
approach to zero, i.e. 

so that the plant (eqn. 38) can be described at any 
required accuracy by the interval impulse model with a 
sufficient n. In this case, the interval (eqn. 38) can be 
controlled using the proposed algorithm. 
Remark 4: Consider the case with disturbance: 

n 

,=1 

where Ek is the disturbance at instant k.  It can be 
shown that, if El = c('d1 2 1) where c is an unknown 
(real) constant, then 

lim yk = yo (42) k++m 

when algorithm (eqns. 23-25) is used. If k > 1, all the 
recursive equations in Section 3 still hold so that the 
derivation in the proof of Theorem 1 can be exactly 
repeated. This implies that the robust performance for 
tracking a given set-point can also be obtained when 
the disturbance is present. 
Remark 5:  The proposed control criterion is 

maxZk+n(Auk/k)  = Yo (43) 

max Zk+l ( A U k l k )  = YO (44) 

if the criterion were 

the resultant control would be similar to the one-step- 
ahead prediction based control. In this case, the robust- 
ness of the resultant closed-loop performance is not 
guaranteed. In general, for many interval plants, crite- 
rion 

max X k + m ( A U k / k )  = Yo (45) 
may give the performance (eqn. 4) with 1 2 m < n. 
However, theoretical work which can be used to judge 
whether an m (1 2 m < n) exists for guaranteeing the 
performance (eqn. 4) for a given interval plant has not 
been established in this paper. When an m (1 c. m < n) 
is used, the regulation speed would improve when m 
decreases, whereas the robustness of the performance 
would tend to be poorer. 
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6 Simulation 

Example 1: Consider an interval plant family described 
by 

H,,, = [0.2,0.2,0.2,1.3,0.8,0.2, -0.1, -0.3IT 1 
Thus, 

I Smin = [0,0,0,0.9,1.4,1.4, 1.1,0.61T 

S,,, = [0.2,0.4,0.6, 1.9,2.7,2.9,2.8,2.5IT 

Let yo = 1 and Ek = 0. When H = Hmin, H = (Hmin + 
Hmax)/2, and H = Hmin + 0.8(Hm,, - Hmin>, the result- 
ant closed-loop responses and control actions are plot- 
ted in Figs. 1-3, respectively. It can be seen that both 
open-loop delay and overshooting exist in the plant. 
Despite the significant uncertainties in the model 
parameters, stabilising closed-loop control has been 
achieved in all the cases. 

1 
2 

x 

0 

0 

0 20 LO 60 80 100 
discrete time 

Fig. 1 
H = Hmi, 

Control of delay interval plants 

discrete time 
Fig2 Control of delay interval plants 
H = (Hmm + HmaxY2 

Example 2: In this example, all the parameters are the 
same as in Example 1 except for the disturbance. In 
this example, & = 0.5. The results are shown in Figs. 4- 
6 .  
Example 3: Consider a nonminimum phase interval 
plant family described by 

Hmin = [-0.8,-0.4,0,0.3,0.9,0.5,0.3,0.1,-0.2]T 

H,,, = [-0.6,-0.2,0.2,0.5,1.3,0.8,0.5,0.2, 0IT 
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discrete time 
Fig.3 Control vf delay interval plants 
H = Hmm + 0.8(Hmax ~ Hmm) 

0.2 
0 20 LO 60 80 100 

discrete t I me 
Control of delay interval plants under constant disturbances Fig. 4 

H = Hm,, 

* : - - - : . - - : - . . - : - - -  

3 . - a . - - - . - - - . - " - . - - -  
>; 

discrete time 
Control of delay interval plants under constant disturbances Fig. 5 

H = W,,, + HmaXY2 
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Thus, 

S,in=[-0.8,-1.2,-1.2,-0.9, 0, 0.5,0.8,0.9,0.7]T 
S,,= [-0.6,-0.8,-0.6,-0.1,1.2,2,2.5,2.7,2.7] T 

Let yo = 1 and Ek = 0. When H = Hmin,  H = (Hmin + 
Hmax)/2, and H = H,,, + 0.8(Hmax - Hmin),  the result- 
ant closed-loop responses and control actions are plot- 
ted in Figs. 7-9, respectively. It can be seen that the 
plants are nonminimum phase and stabilising closed- 
loop controls have been obtained. 

7 Application example 

0 20 LO 60 80 100 

Control of nonminimum phase interval plants 
d iscre t e ti me 

Fig. 7 
H = Hmn 

0 

0. 
3 
k 

.. 

0 10 20 30 LO 50 
discrete time 

Fig. 8 
H = W,," + ~ n l a x Y 2  

Control of nonminimum phase interval plants 

' U '  
- - : - - - : - - - i - - - : - - -  

. L , - . L . . - L . - - L - , ,  

0 10 20 30 LO 50 
discrete time 

Fig.9 Control of non-minimum phase interval plants 
H = Hmin + 0.8(Hm,, - H,,,,,) 

The proposed control algorithm has been applied to 
control the weld penetration. It is known that weld 
penetration control is a major research issue in auto- 
mated welding. The difficulty arises from the invisibil- 
ity of the weld penetration from the front-side. The 
present authors have proposed to estimate the weld 
penetration by processing the image of the weld pool 
[24, 251. The input and output of the controlled system 
are the welding current and the weld penetration state, 
respectively. It is known that the process model varies 
with the welding conditions such as the thickness of the 
material etc. Hence, the interval model has been used 
for controller design. The resultant interval model can 
be illustrated by hmin and hmax as shown in Fig. 10. 
Using this interval model, a closed-loop system has 
been developed to control the weld penetration. 

I. _ * _ _ I _  _ 1 _  .,. _ 1 _ , _  1 .  L _ L  . a .  _ I .  _ I .  . A .  _ I _  _ I _  ,. , . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . .  ................................ . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

I I I I I I , I , , , .  

I ,  I ,  I , , , , , , ,  
, , I I . ,  , # , , , ,  

I I I , , , .  

I I . I I I .  

_ _ _  . . . . . _ _ . _ _ _ _ _ _ . _ _ _ _  
- . . . . . . . _ -_ . -  

2 I 6 8 IO 12 1L 16 18 20 
discrete t i  me 

Fig. 10 Identified interval model 

. . . . . . . . . . . .  _ _ _ _ _ _ _ L _ . _ _ L _ _ _ _  € 8  
E ..................................... 

. . . . . . .  : .... ......................... 
L _ _ . . L . ~ . . L . _ _ _ L . . . . : . . . . L . . _ _ L .  

0 10 20 30 LO 50 60 70 80 
time,s 

Fig. 1 1 

Parametric perturbation is applied by increasing welding speed from 2 to 
3 m d s  at t = 40s 

Closed-loop experiment for controlling weld penetration 
output 

8 O b . .  .~ ./-I ...... 
.................................... 

4 6 0  ..................................... .- . . ................................... 

time,s 
Fig. 12 
Control action 
Parametric perturbation is applied by increasing welding speed from 2 to 
3 m d s  at t = 40s 

Closed-loop experiment for controlling weld penetration 

Extensive experiments have been carried out. As an 
example, Figs. 11 and 12 shows an experiment where 
the travel speed changes from 2.0mmis to 3.0mm/s. It 
can be seen that, when the speed increases, the output 
decreases (Fig. 11). However, the controller can 
increase the current (Fig. 12). As a result, the output is 
maintained at the desired level again (Fig. 11). In this 
case, no overshooting or fluctuation of the output 
occurs, so the geometrical regularity and appearance of 
the resultant welds are excellent. 
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8 Conclusions 

The interval plants described by eqns. 1 and 3 can be 
controlled using the proposed algorithm. The closed- 
loop control actions are directly determined from 
uncertainty ranges (i.e. the intervals, of the model 
parameters). Robust performance (eqn. 4) is guaran- 
teed if the sign certainty condition (eqn. 6) is satisfied, 
despite possible open-loop overshooting, delay, non- 
minimum phase and large uncertainty intervals. 
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