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Functional observer and state feedback for input time-delay systems

Y. X. YAO² , Y. M. ZHANG² and R. KOVACEVIC²

The design of state functional observer and state feedback for systems with input
time delays is addressed using the factorization approach in the frequency domain.
The design needs to achieve the loop transfer recovery of direct state feedback by
using the functional observer-based feedback control. A necessary and su� cient
condition is given for the existence of the state functional observers for such
systems. A parametrization for all observers of time-delay systems is proposed.
Based on the results of the parametrization, the state functional observer and
state feedback design procedure is presented. The computation can be implemented
in state-space form using standard algorithms. Design examples are given to
illustrate the procedure.

1. Introduction

The functional observer and state feedback design for linear control systems has
become matured through extensive studies (O’Reilly 1983, Zhang 1987). Di� erent
approaches such as state-space, transfer-function and polynomial-matrix system
models (O’Reilly 1983) have been successfully used. The correlation between
the state-space and transfer-function approaches, and between the state-space
and polynomial-matrix approaches, have also been revealed (Zhang 1987, Hippe
1988).

Input time delays are frequently encountered in industrial processes. In general,
the control of such processes is di� cult. In fact, the time delay limits the achievable
bandwidth and the allowed maximum gain. In addition, the time delay often sig-
ni® cantly complicates the analysis and computation in system design. Hence,
although signi® cant results have been obtained by using the Smith predictor
(Wang and Skogestad 1993), LQ regulators (Lee et al. 1988), internal model control
(IMC) (Jones and Sbarbaro 1995), etc., many advanced design methods are still
incapable of dealing with time-delay systems.

It has been shown that the factorization approach is a powerful tool in solving a
variety of control system design problems (Vidyasagar 1985). Although the transfer
function matrix of any ® nite-dimensional system admits a proper stable Bezout
factorization, such a factorization does not in general exist for in® nite-dimen-
sional systems (Khargonekar and Sontag 1982). Recently, the proper stable Bezout
factorizations of transfer function matrices have been studied for linear time-
invariant systems with commensurate time delays (Nobuyama and Kitamori
1990, and Nobuyama 1992). An explicit procedure for computing proper stable
Bezout factorizations has already been given (Nobuyama and Kitamori 1990).
This progress provides necessary mathematics preparations to design functional
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observer and state feedback for input time-delay systems based on the factoriza-
tion approach.

Our aims are to develop a procedure for designing the functional observer and
state feedback, and to achieve the loop transfer recovery for the direct state feedback
with desired properties by using the proposed functional observer and state feed-
back. It is noted that almost all the existing observer design schemes have, more or
less, restricted the used observer structures to speci® c forms, for instance, the identity
observer and the Luenberger type observer (O’Reilly 1983). This is also the case for
the observer design of time delay systems such as shown by Lee et al. (1988). In this
work the authors propose a general form of linear observers for time delay systems
so that designers are provided with more degrees of freedom to improve the robust-
ness of the resultant observers. Based on this general form, the parametrization of all
functional observers can be achieved. Hence, a standard design procedure for the
state functional observer and state feedback is obtained.

It should be pointed out that the functional observer proposed here is a state
predictor. By employing the properties of the state predictor, the design can be con-
verted to a delay-free problem. This not only simpli® es the analysis and design but also
avoids the rational time-delay approximation (Partington and Glove 1990). Further-
more, we canobtain newinsights into theobserver construction for time-delay systems.

2. Preliminaries

Assume that the system is linear and time-invariant. Let R denote real matrices,
R (s) rational transfer function matrices, and H¥ the set of all stable and proper
transfer function matrices (Francis 1987). Let U denote the unit matrix (Vidyasagar
1985), I the unity matrix, and 0 the null matrix.

Consider a transfer function matrix G(s) = G0(s) e- ¿s, where G0(s) Î R (s) is a
strictly proper rational p ´ m transfer matrix, with the state-space realization
G(s) = C(sI - A)- 1B e- ¿s, and ¿ the delay time. It is assumed that (A,B) is stabiliz-
able and (C,A) is detectable. The double coprime factorization of G(s) can be
written as (Nobuyama and Kitamori 1990):

G(s) = N(s)M- 1(s) =
~

M- 1(s) ~
N(s) (1)

where N(s) and M(s), and ~N(s) and ~M(s), are right and left coprime H¥ matrices,
respectively. For this double coprime factorization, there exist H¥ matrices Y (s),
X(s) and

~
Y (s), ~

X(s) that satisfy

Y (s)
- ~

N(s)
X(s)
~

M(s)
M(s)
N(s)

- ~
X(s)
~
Y (s) =

M(s)
- N(s)

~
X(s)
~
Y (s)

Y (s)
~
N(s)

- X(s)
~

M(s) =
I
0

0
I

(2)

which is referred to as double Bezout factorization. The eight matrices above can be
calculated by the standard algorithms in the state-space construction and are given
below (Nobuyama and Kitamori 1990, Nobuyama 1992).

M(s) = K(sI - A - BK)- 1B + I, N(s) = C(sI - A - BK)- 1B e- ¿s (3)
~

M(s) = C(sI - A - L C)- 1L + I, ~
N(s) = C(sI - A - L C)- 1B e- ¿s (4)

Y (s) = - K eA¿(sI - A - L C)- 1B e- ¿s - KV (s) + I,
X(s) = K eA¿(sI - A - L C)- 1L (5)
~
Y (s) = - C(I - V (s)K)(sI - A - BK)- 1L + I, ~

X(s) = K(sI - A - BK)- 1eA¿L (6)
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where K and L can be chosen such that det (sI - A - BK) and det (sI - A - L C) are
stable. It is noted that the stabilizability and detectability assumptions on G(s)
ensure the existence of K and L such that (3) ± (6) hold. The matrix V (s) in Y (s)
and

~
Y (s) is given by

V (s) = (sI - A)- 1(I - e- ¿s eA¿)B (7)

3. Problem description and formulation

Consider the following linear system with an input time delay:

Çx(t) = Ax(t) + Bu(t - ¿) (8)
y(t) = Cx(t) (9)

where x(t) Î R
n is the state vector, u(t) Î R

m is the input vector, y(t) Î R
p is the

measured output vector, and A, B, C are constant matrices with appropriate
dimensions. Taking Laplace transforms of (8) and (9), the transfer function matrix
description of the system is given by

y(s) = G(s)u(s) (10)
and

G(s) = C(sI - A)- 1B e- ¿s = G0(s) e- ¿s (11)
In the case of state feedback control where the state vector x(t) can be measured

directly, the system (10) can be stabilized by the following feedback control law
(Kwon and Pearson 1980):

u(t) = r(t) + v(t) (12)

r(t) = P eA¿x(t) +
0

- ¿

e- Aµ Br(t + µ) dµ (13)

with P Î R
m ´ n, which is chosen so that det (sI - A - BP) is stable, where v(t) repre-

sents all input signals of the system. As shown by Nobuyama and Kitamori (1990),
the following can be obtained from (8) for v(t) = 0:

x(t + ¿) = eA¿ x(t) +
0

- ¿

e- AµBr(t + µ) dµ (14)

Hence, (13) can also be regarded as a reconstruction of the feedback

r(t) = Px(t + ¿) (15)
In the frequency domain, we can obtain

r(s) = P e¿sx(s) (16)
from (15), and

r(s) = P[eA¿x(s) + V (s)r(s)] (17)
from (13), where

V (s) = (sI - A)- 1(I - e- ¿s eA¿)B (18)
The direct state feedback design is to ® nd a matrix P Î R

m ´ n such that the given
plant is stabilized by feedback law (12) and (13), and a certain design performance
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index is achieved. As a result, the desired performance and robustness of the corre-
sponding closed loop-system can be satis® ed.

By substituting (8) into (15), we obtain the open loop output from u(t) to r(t). It
is expressed in the frequency domain as follows:

r(s) = L s(s)u(s) (19)
where the desired state feedback loop transfer function matrix is

L s(s) = P(sI - A)- 1B Î R (s)m ´ m (20)
The output of the closed-loop system is

y(s) = Hs(s)vs(s) (21)
with the closed-loop transfer function

Hs(s) = G0(s) e- ¿s[I - L s(s)]- 1 Î R (s)p ´ m (22)
The block diagram of the system under the state feedback control is shown in Fig. 1.

In most practical cases, the state of the system is not available. Thus, the follow-
ing output feedback control law is considered:

u(s) = r̂(s) + v(s) (23)
r̂(s) = F(s)u(s) + H(s)y(s) (24)

where F(s) Î H¥ and H(s) Î H¥ are m ´ m and m ´ p stable transfer function
matrices, respectively. The system scheme using the control law (23) and (24) is
expressed in Fig. 2.

It has been pointed out that the state feedback control law (13) actually recon-
structs the state Px(t + ¿). To maximally approximate the state feedback control
(13), it is desired that the output feedback control law (24) reconstruct Px(t + ¿).

606 Y . X. Y ao et al.

Figure 1. System using state feedback control.

Figure 2. System using functional observer-based control.
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Thus, the feedback control law in (24) is supposed to be a state functional observer
which gives the function of system state. The expression of (24) describes a very
general class of observers. Its structure is not restricted to any speci® c form.

If the functional observer (24) exists, the observation vector r̂(t) will be used
instead of Px(t + ¿) in the state feedback control law (5). From the above analysis,
(23) and (24) can be regarded as the functional observer-based feedback control law.

From (10), (23) and (24), we obtain the open-loop output from u(t) to r̂(t)
r̂(s) = (F(s) + H(s)G0(s) e- ¿s)u(s) (25)

and the output of the closed-loop system is

y(s) = G0(s) e- ¿s(I - L (s))- 1v(s) (26)
where

L (s) = F(s) + H(s)G0(s) e- ¿s Î R (s)m ´ m (27)
is the associated loop transfer function matrix.

It is required to determine F(s) and H(s) such that the corresponding loop
transfer function matrix L (s) of the dynamic output feedback control is either
exactly or approximately equal to the loop transfer function L s(s) of the direct
state feedback control. As a result, the closed-loop system will recover the perfor-
mance and robustness of the direct state feedback design. This is just the basic idea
behind our design. It is apparent that this design idea is the same as in the delay-free
systems (Fu 1990). To reach this objective, make L (s) = L s(s) directly; that is

F(s) + H(s)G0(s) e- ¿s = L s(s) (28)
That is

F(s)M(s) + H(s)N(s) = L s(s)M(s) (29)
where M(s) and N(s) are the right coprime H¥ factors of G(s) in (1).

It is seen that the functional observer (24) is also a predictor for the function
Px(t + ¿). By employing the properties of the predictor, we are able to convert our
problem to a delay-free problem. This simpli® es the analysis and design, and also
avoids the problem of the rational time-delay approximation.

4. Necessary and su� cient condition of observation

From the point of view of observer design, the functional observer (24) for the
system (8) and (9) is a dynamic system with the property that the observation error
for Px(t + ¿) satis® es

lim
t ® ¥

(Px(t + ¿) - r̂(t)) = 0 (30)

for all u(t) and initial states.
A necessary and su� cient condition for the existence of a functional observer

that satis® es (30) will be addressed. The interconnection between the loop transfer
recovery of direct state feedback and the functional observation problem is also
discussed below.

Suppose that a right coprime factorization of G(s) in (11) can be written as

G(s) = N(s)M- 1(s) (31)
where N(s) and M(s) are H¥ matrices.

Functional observer and state feedback for input time-delay systems 607
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By introducing the partial state x (s), we can rewrite (10) with the factorization
(31) as

u(s) = M(s) x (s) (32)
y(s) = N(s) x (s) (33)

and
r(s) = P e¿sx(s) = P(s) x (s) (34)

with
P(s) = P(sI - A - BK)- 1B (35)

Equation (34) can be proved as follows.
From (11) and (31)

C(sI - A)- 1B e- ¿s = N(s)M- 1(s) (36)
By using the state-space description of N(s) in (3), we have

(sI - A)- 1Be- ¿s = (sI - A - BK)- 1B e- ¿sM- 1(s) (37)
Thus

x(s) = (sI - A)- 1B e- ¿su(s)

= (sI - A - BK)- 1B e- ¿sM- 1(s)u(s) (38)
Then

r(s) = Px(s) e¿s = P(sI - A - BK)- 1Bx (s) (39)
Hence, (34) and (35) are obtained.

It is noted that P(s) and M(s) are the right-coprime factors of L s(s), which is
known to be the desired transfer function in the state feedback. That is

L s(s) = P(s)M- 1(s) (40)
This equation plays an important role in revealing the correlation between the loop
transfer recovery of direct state feedback and the functional observation of time-
delay systems.

By using the factorization expression, a new system description (31) ± (33) is
introduced. According to this description, the existence condition of functional
observers that satisfy (30) can be given below.

Theorem 1: For the given system (8) and (9), the variable Px(t + ¿) can be
observed by using the observer (24) if and only if the following condition holds:

F(s)M(s) + H(s)N(s) = P(s) (41)

Proof: For the proof, see the Appendix. u

It can be seen that to observe the function Px(t + ¿) using the observer (24), (41)
must be satis® ed. This is the necessary and su� cient condition for constituting the
functional observer and state feedback. From (41), the functional observer-based
state feedback law (23) can be rewritten as

u(s) = r̂(s) + v(s)
= [F(s)M(s) + H(s)N(s)]x (s) + v(s)
= P(s) x (s) + v(s) (42)
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Hence, (42) and (32) produce
v(s) = [M(s) - P(s)]x (s)

Along with (33), the following can be obtained:

y(s) = N(s)[M(s) - P(s)]- 1v(s) (43)
This is just the functional observer and state feedback. From (43), the closed-loop
system is stable if and only if

T (s) = [M(s) - P(s)]- 1 Î U

On the other hand, to achieve the loop transfer recovery of the direct state feed-
back by using observer-based feedback (23) and (24), it is necessary to satisfy the
condition of (29). By comparing (41) with (29) in the sense of (40), it is seen that the
two equations are the same. Thus, it can be concluded that the two problems, the loop
transfer recovery of the direct state feedback satisfying (29) by using the observer-
based feedback and the functional observation problem satisfying (41), are exactly the
same.

According to (40), (43) can be rewritten as

y(s) = G(s)[I - L s(s)]- 1v(s) (44)
It is seen that (44) is the same as (22) in the state-feedback control.

Thus, we can use the results from the functional observer design to study the loop
transfer recovery of the direct state feedback. The objective in the next section is to
® nd the set of all observers that satisfy condition (41), for example, to parametrize all
observers. The factorization approach for time-delay systems will be used to solve
this problem.

5. Parametrization of observers for input time-delay systems

Theorem 2: Given the system (8) ± (10), the set of all functional observers for
Px(t + ¿) is parametrized by

F(s) = [P(s)Y (s) - Q(s) ~
N(s)] (45)

H(s) = [P(s)X(s) + Q(s) ~
M(s)] (46)

Q(s) Î H¥ (47)
where ~N(s), ~M(s), Y (s) and X(s) satisfy the Bezout identity (2) corresponding to the
coprime factorization of G(s).
Proof: For the proof, see the Appendix. u

Theorem 2 gives the result of parametrization of all functional observers for the
system (8) ± (10). According to this parametrization, the observer design is reduced to
searching for a suitable parametrization matrix Q(s) in an H¥ set. It can be seen that
the distinction between di� erent functional observers is only caused by the selection
of parametrization Q(s) as well as the coprime factorization of G(s). The selection of
the parametrization matrix Q(s) depends on the required performance speci® cation
in system design. When a certain design speci® cation such as H¥ norm speci® cation
(Ding et al. 1994) is given, one can solve the corresponding functional observer
design in the feedback law (23) and (24) by ® nding an optimal Q(s). Therefore,
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the parametrization of the observer provides a basic tool for this kind of optimal
problem.

In most cases the plants are stable; this means that L s(s) is stable. In this case by
using (40) and M(s)Y (s) = I - ~

X(s) ~
N(s) in (2), (45) becomes

F(s) = L s(s)M(s)Y (s) - Q(s) ~
N(s)

= L s(s)(I - ~
X(s) ~

N(s)) - Q(s) ~
N(s)

= L s(s) - R(s) ~
N(s) (48)

where
R(s) = L s(s) ~

X(s) + Q(s) (49)
Accordingly, by using (40), (49) and M(s)X(s) =

~X(s) ~M(s), (46) can be rewritten as

H(s) = P(s)X(s) + (R(s) - L s(s) ~
X(s)) ~

M(s)

= L s(s)M(s)X(s) - L s(s) ~
X(s) ~

M(s) + R(s) ~
M(s)

= R(s) ~
M(s) (50)

Thus, the following theorem is proven.

Theore 3: When L s(s) is stable, the parametrization of all functional observers is
given by

F(s) = L s(s) - R(s) ~N(s) (48)

H(s) = R(s) ~M(s) (50)
with

R(s) = L s(s) ~
X(s) + Q(s) Î H¥ (49)

The parametrization of all observers for time delay-free systems was recently
given by Ding et al. (1994). In this section it has been shown that the parametrization
of time-delay systems can be regarded as a generalization of those recent results of
time-delay-free systems.

6. Observer construction for input time-delay systems

Based on the parametrization of the functional observer, we can obtain a clear
observer construction. From (24), (45) and (46) we have

r̂(s) = F(s)u(s) + H(s)y(s)

= [P(s)Y (s) - Q(s) ~
N(s)]u(s) + [P(s)X(s) + Q(s) ~

M(s)]y(s) (51)
From (2), Y (s) = M- 1(s) - X(s)N(s)M- 1(s). Thus, (51) becomes

r̂(s) = P(s)M- 1(s)u(s) + (P(s)X(s) + Q(s) ~
M(s))[y(s) - G(s)u(s)] (52)

Therefore
r̂(s) = P(s)M- 1(s)u(s) + L g(s)[y(s) - G(s)u(s)] (53)

where
L g(s) = P(s)X(s) + Q(s) ~

M(s) (54)
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It can be seen that the observer (53) consists of two terms. The ® rst term
r(s) = P(s)M- 1(s)u(s) = P(s) x (s) is an estimate of the dynamics of the state function
Px(t + ¿). The second term re¯ ects the mismatch between the measurable output
and its estimate. The mismatch is generally caused by the disturbance signals and
plant perturbations in the process. If no mismatch exists between the measurable
output y(s) and its estimate, (53) becomes

r̂(s) = P(s)M- 1(s)u(s) = L s(s) x (s) (55)

By properly selecting the gain matrix L g(s), the estimation error for r(t) can be
bounded to a prescribed range.

The observer design is to select the gain matrix. In our observer structure (53),
this gain matrix is dynamic and therefore provides designers with more degrees of
freedom for improving the robustness of observers. It is necessary to ® nd an optimal
Q(s) such that a certain speci® cation which represents the e� ect of plant perturba-
tions and disturbances is satis® ed. Thus, the design can be regarded as a model-based
frequency-domain technique.

When the given plant is stable, substituting (48) and (50) into (24) gives

r̂(s) = L s(s)u(s) + RÂ (s)( y(s) - G(s)u(s)) (56)

with RÂ (s) = R(s) ~
M(s). The corresponding control system scheme is shown in Fig. 3.

Figure 3 can be rearranged as Fig. 4. It is known that the IMC (Wang and
Skogestad 1993, Jones and Sbarbaro 1995) and Smith predictor have been success-
fully used in time-delay systems. In general, the Smith predictor can only be used for
stable systems, whereas the IMC can be used for unstable and nonminimum-phase
systems. It is found that the controller structure in Fig. 4 is the same as the IMC

Functional observer and state feedback for input time-delay systems 611

Figure 3. System using functional observer-based feedback with stable plant.

Figure 4. Rearranged system with stable plant.
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structure when K(s) = RÂ (s)(I - P(s))- 1. Thus, the proposed control scheme is a
more general form for controlling time-delay systems and can be used in unstable
and nonminimum-phase systems.

7. Design procedure

The results in this work can provide us with a systematic procedure to design the
functional observer and state feedback. The objective of loop transfer recovery of
direct state feedback can be achieved by using this design. In summary, the controller
design can be performed using the following procedure.

Step 1. Choose the direct state feedback gain P such that the loop transfer
function L s(s) is obtained.

Step 2. Find a parametrization matrix Q(s) Î H¥ of the observer such that the
state feedback properties are recovered. More speci® cally

Step (i) Obtain a coprime factorization of G(s) for
~
N(s) and

~
M(s).

Step (ii) Calculate Y (s) and X(s) which satisfy the Bezout identity
(3) and P(s) given in (33).

Step (iii) Find Q(s) Î H¥ under the desired performance index.

The control law, including functional observers, is given in the form

u(t) = r̂(t) + v(t) (57)

r̂(s) = [P(s)Y (s) - Q(s) ~
N(s)]u(s) + [P(s)X(s) + Q(s) ~

M(s)]y(s) (58)
The functional observers are also expressed in the following form when the plant is
stable.

r̂(s) = [L s(s) - R(s) ~
N(s)]u(s) + R(s) ~

M(s)y(s) (59)
where R(s) Î H¥ is the parametrization matrix.

The matrix Q(s) is a free parameter which can be chosen by the designer. When
the disturbance and plant perturbation exist, the condition (30) may not necessarily
hold. In this case, a performance index such as H¥ norm can be given to evaluate the
observation error, and Q(s) will be determined to optimize the given performance
index. It is known that such optimization has been studied for time-delay-free
systems (Ding et al. 1994). The parametrization of all observers achieved in this
work has made such optimization possible for the time-delay systems.

The above procedure is based on the proper stable Bezout factorization under
state-space representation and standard matrix calculations. It can be directly rea-
lized and implemented through computer-aided control system design programs
such as Matlab.

8. Design examples

Example 1: Consider the plant described in (8) and (9), where

A =
0
3

1
- 2 , B =

0
1 , C = (2 1), D = 0, ¿ = 0.5 (60)
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Then the transfer function of the plant is

G(s) =
s + 2

s2 + 2s - 3
e- 0.5s (61)

In the case of state feedback, the gain matrix in (13) is chosen to be

P = (- 5 - 1)
such that

det (sI - A - BP) = s2 + 3s + 2 = (s + 1)(s + 2)
The corresponding loop transfer function is

L s(s) = P(sI - A)- 1B =
- s - 5

s2 + 2s - 3
(62)

The closed-loop system transfer function is

H(s) = G(s)[I - L s(s)]- 1 =
1

s + 1
e- 0.5s (63)

By choosing K = P = (- 5 - 1) and L = (- 1.3333 2.6666)T such that

det (sI - A - BK) = s2 + 3s + 2 = (s + 1)(s + 2)

det (sI - A - L C) = s2 + 2s + 1 = (s + 1)(s + 1)
we obtain

P(s) =
- s - 5

s2 + 3s + 2
(64)

~
M(s) =

s2 + 2s - 3
s2 + 2s + 1

, (65)

~
N(s) =

s + 2
s2 + 2s + 1

e- 0.5s (66)

X(s) =
- 10.3215s + 34.4451

s2 + 2s + 1
=

- 10.3215(s - 3.3372)
(s + 1)(s + 1) (67)

Y (s) =
s2 + 10.6115s + 20.8030

s2 + 2s + 1
+ KV (s) =

(s + 8.0164)(s + 2.595)
(s + 1)(s + 1) + KV (s) (68)

where V (s) is given in (7). It is noted that V (s) is a stable transfer function matrix.
The functional observer-based control law described in (57) and (58) is obtained.

Example 2: Consider the plant model of a high-purity distillation system
described by Limebeer et al. (1993)

G(s) =
e- s

75s + 1
0.878 - 0.864
1.082 - 1.096

(69)

The state-space realization is given by

A =
- 0.0133

0
0

- 0.0133 , 1 0
0 1

C =
0.0117
0.0144

- 0.0115
- 0.0146 , D =

0 0
0 0 , ¿ = 1 (70)
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If the gain matrix in state feedback is chosen as

P =
1

- 3.062
0.4

- 1.2134
(71)

the corresponding loop transfer function is

L s(s) =
1

s + 0.0133
1

- 3.062
0.4

- 1.2134
(72)

Thus, the observer-based control law is given in (59), where

~
M(s) =

1
s2 + 0.24s + 0.0144

s2 + 1.24s + 0.0163
- 3.062s - 0.0407

0.4s + 0.0053
s2 - 0.9734s - 0.0131

(73)

~
N(s) =

e- s

s2 + 0.24s + 0.0144
0.0117s + 0.0496
0.0144s + 0.0624

- 0.0115s + 0.0160
- 0.0146s + 0.0202

(74)

9. Conclusions

A novel approach for the design of the functional observer and state feedback
control for time-delay systems is given via the factorization approach which has been
found to be a useful tool in resolving various control design issues such as simulta-
neous stabilization (Vidyasagar 1985), simultaneous observation (Kovacevic et al.
1996), etc. The design can achieve the loop transfer recovery of the state feedback by
using functional observer-based control. It gives a new insight into the observer-
based control problem for such systems from the point of view of functional observer
design. Based on the interconnection between the loop transfer recovery and the
functional observation for the given system, the feedback design problem is solved
by using the results of functional observation. As a result, a loop transfer recovery
problem can be treated in a stable transfer function space so that the standard
factorization approach can be used. This extends the existing results of loop transfer
recovery designs for time-delay systems given by previous researchers, such as Lee
et al. (1988). The design can be applied to unstable and nonminimum-phase systems.

Appendix

Proof of Theorem 1:

Necessity. The observation error in (30) is given as

r(t) - r̂(t) = L - 1[r(t) - r̂(s)] (A 1)
where L - 1[. ] denotes inverse Laplace transformation. Furthermore, let r̂(s) =
r̂1(s) + r̂2(s) in the observer (24), where r̂1(s) = F(s)u(s), r̂2(s) = H(s)y(s) with stable
vectors xf and xh and initial values xf (0) and xh(0), respectively. Then from (34) and
(24), we have

L - 1[r(s)]= L - 1[P(s) x (s) + P(sI - Ak)- 1x(0)] (A 2)

L - 1[̂r(s)]= L - 1[F(s)u(s) + Cf (sI - Af )- 1xf (0) + H(s)y(s) + Ch(sI - Ah)- 1xh(0)]
= L - 1[(F(s)M(s) + H(s)N(s)) x (s) + Cf (sI - Af )- 1xf (0)

+ Ch(sI - Ah)- 1xh(0)] (A 3)
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where Ak = A + BK. Substituting (A 2) and (A 3) into (A 1), yields

r(t) - r̂(t) = L - 1[(P(s) - F(s)M(s) + H(s)N(s)) x (s)

+ P(sI - Ak)- 1x(0) - Cf (sI - Af )- 1xf (0) - Ch(sI - Ah)- 1xh(0)] (A 4)

Because C(sI - Ak)- 1, Cf (sI - Af )- 1 and Ch(sI - Ah)- 1 Î H¥ , we have

lim
t ® ¥ [P(sI - Ak)- 1x(0) - Cf (sI - Af )- 1xf (0) - Ch(sI - Ah)- 1xh(0)]= 0 (A 5)

Therefore the condition (41) is a necessary condition to satisfy condition (30).

Su� ciency. It is known that the observer satis® es

[F(s) H(s)] M(s)
N(s) = P(s) (A 6)

That is

[F(s) H(s)] M(s)
N(s) x (s) = P(s) x (s)

then [F(s) H(s)] u(s)
y(s) = P(s) x (s) (A 7)

This guarantees that r̂(s) in (24) is equivalent to r(s). Therefore the observer can be
expressed as the form of (24). Thus, the proof is complete. u

Proof of Theorem 2:

Necessity. Select a Q(s) that satis® es (47). There exists an observer

r(s) = F(s)u(s) + H(s)y(s)

= [P(s)Y (s) - Q(s) ~
N(s)]u(s) + [P(s)X(s) + Q(s) ~

M(s)]y(s) (A 8)

or
[F(s) H(s)]= [P(s)Y (s) - Q(s) ~

N(s) P(s)X(s) + Q(s) ~
M(s)]

= [P(s) Q(s)] Y (s)
- ~

N(s)
X(s)
~

M(s)
(A 9)

By postmultiplying (83) by
M(s)
N(s)

we have

[F(s) H(s)] M(s)
N(s) = [P(s) Q(s)] Y (s)

- ~
N(s)

X(s)
~

M(s)
M(s)
N(s)

= [P(s) Q(s)] I
0

= P(s) (A 10)

It can be seen that this satis® es the condition (41) of the observation.

Su� ciency. The observer is given by

r(s) = F(s)u(s) + H(s)y(s)
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It is required to ® nd a Q(s) Î H¥ such that the observer can be expressed as (45) and
(46), that is

[P(s) Q(s)] Y (s)
- ~N(s)

X(s)
~M(s) = [F(s) H(s)] (A 11)

It is known that the observer satis® es

[F(s) H(s)] M(s)
N(s) = P(s) (A 12)

From (2),
Y (s)
- ~N(s)

X(s)
~M(s)

is non-singular. Let

Y (s)
- ~

N(s)
X(s)
~

M(s)
- 1

=
M(s)
N(s)

- ~X(s)
~
Y (s)

(A 13)

This is a stable matrix (Vidyasagar 1985). From (A 11) we obtain

[P(s) Q(s)]= [F(s) H(s)] Y (s)
- ~

N(s)
X(s)
~

M(s)

= [F(s) H(s)] M(s)
N(s)

- ~
X(s)
~Y (s)

(A 14)

That is

P(s) = [F(s) H(s)] M(s)
N(s) , Q(s) = [F(s) H(s)] - ~

X(s)
~Y (s)

(A 15)

Thus (41) is satis® ed. u
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