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NEUROFUZZY MODEL- BASED WELD FUSION STATE ESTIMATION  
 

Radovan Kovacevic and Yu M. Zhang 
 
 

Proper fusion is crucial in generating a sound weld.  Successful control of the fusion state 

requires accurate measurements of both the top-side and back-side bead widths.  A top-side 

sensor based system is preferred so that the sensor can be attached to and moved with the torch.  

Thus, the system must be capable of estimating the back-side bead width with high accuracy.  

Because skilled human operators can estimate the fusion state from the observed weld pool, a 

neurofuzzy system is developed to infer the back-side bead width from the pool geometry in this 

work.  It is found that the back-side bead width can be estimated with satisfactory accuracy by 

the identified neurofuzzy model.  Thus, accurate feedback of the fusion state can be provided for 

its control.   

 

INTRODUCTION 

Fusion is the primary requirement of a welding operation.  The fusion state can be specified 

using the outline of the cross-sectional solidified weld bead.  Extraction and control of the fusion 

outline is evidently impractical.  The fusion state should be characterized by a few geometrical 

parameters which can easily be controlled to achieve the desired fusion. 
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The final goal is to control the fusion state of fully penetrated welds in gas tungsten arc (GTA) 

welding.  The fusion state on a cross section is characterized using two parameters, the top-side 

and back-side widths of the fusion zone (Fig. 1).  Therefore, the top-side width w  and back-side 

bead width wb  of the weld pool are together defined as the fusion state.  A multivariable system 

will be developed to control w  and  wb . 

Pool width control has been extensively studied.  One of the pioneering works was done by 

Vroman and Brandt [1] who used a line scanner to detect the weld pool region.  Chin et al. found 

that the slope of the infrared intensity becomes zero when the liquid-solid interface of the weld 

pool is crossed [2, 3].  This zero slope is caused by the emissivity difference between the liquid 

and solid [2].  In order to directly observe the weld pool, the intensive arc light should be avoided 

or eliminated.  Richardson et al. proposed the co-axial observation to avoid the arc light [4].  

Pietrzak and Packer have developed a weld pool width control system based on the co-axial 

observation [5].   

The use of the pool width in welding process control is based on assuming that the pool width 

can characterize the weld quality.  However, no studies have sufficiently shown that an inherent 

correlation exists between the pool width and the primary parameters of weld quality, for 

example, the weld penetration.  On the contrary, the pool width is often not very sensitive to 

variations in welding conditions or changes in welding parameters, however these variations and 

changes may severely alter the weld penetration [6].  In addition, an increase in either the 

welding current or arc length will cause the pool width to increase.  However, the resultant 

change in the weld penetration depends on which parameter (i.e., the current or the arc length) 

increased.  If the current increases, the weld penetration increases; but if the arc length increases, 
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the weld penetration tends, in general, to decrease.  Hence, in this case, the width itself can not 

provide sufficient information about the weld penetration.        

Weld penetration is a critical component of the weld quality.  For the case of full penetration, 

the state of the weld penetration is specified by the back-side bead width wb  (Fig. 1).  With a 

back-side sensor, wb  can be reliably measured.  However, it is often required that the sensor be 

attached to and moved with the torch to form a so-called top-side sensor.  For such a sensor, wb  

is invisible.  Hence, extensive studies have been done to explore the possibility of indirectly 

measuring wb  based on pool oscillation, infrared radiation, ultrasound, and radiography.  

Although many valuable results have been achieved, only a few control systems are available to 

quantitatively estimate and control the back-side bead width.   

In addition to the back-side bead width, the top-side pool width needs to be simultaneously 

controlled in order to accurately control the fusion state.  Hence, the fusion control is a more 

complicated subject than weld penetration control.  Hardt et al. have simultaneously controlled 

the depth, which specifies the weld penetration state for the case of partial penetration, and width 

of the weld pool using top-side and back-side sensors [7].  To obtain a top-side sensor based 

control system, we have proposed estimating the back-side bead width using the sag geometry 

behind the weld pool [8].  Based on a detailed dynamic modeling study [9], an adaptive system 

has been developed to control both the top-side and back-side widths of the weld pool [10].     

More instantaneous and accurate information can be acquired from the weld pool.  In order to 

use the weld pool information in welding process control, we developed a real-time image 

processing algorithm to detect the weld pool boundary in a previous study [11] from the images 

captured by a high shutter speed camera assisted with a pulsed laser [12].  Hence, the weld pool 

geometry can be utilized to develop more advanced welding process control systems. 
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It is known that skilled operators can estimate and control the welding process based on pool 

observation.  In this work, we will develop a neurofuzzy system for estimating the back-side bead 

width from the pool geometry.  Then, a neurofuzzy multivariable system will be designed to 

control the fusion state using the top-side pool width and the estimated back-side bead width as 

the feedback of the fusion state. 

 

POOL GEOMETRY 

In order to describe the weld pool geometry, a few characteristic parameters must be selected. 

In a previous study [13], the following parametric model was proposed to model the boundary  of 

the weld pool:            

y a x x a br r
b

r= ± − > ≥ >                                          (1)( ) ( , )1 0 1 0  

where a and b are the model parameters, ( , )x yr r  are the coordinates of the pool boundary in the 

normalized coordinate system ox yr r  (Fig. 2).  These normalized coordinates are calculated using 

the measured x, y coordinates defined in Fig. 3:  

x x L
y y L

r

r

=
=

�
�
�

/
/

                                                      (2) 

where L  is the length of the weld pool.   

The boundary of the weld pool can be acquired using image processing [11].  Parameters L,  

a , and b  can be simultaneously obtained by fitting the measured boundary to model (1).  Based 

on the resultant model parameters, the following relative width can be calculated: 
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We will use w Lr , rather than the measured width, as the feedback of the pool width.  In the 

following, L  and wr  will be used to characterize the geometrical impression of the weld pool for 

estimating another parameter of the fusion state, the back-side bead width. 

 

NEUROFUZZY MODEL 

Neurofuzzy Modeling 

A fuzzy system has three major conceptual components: rule base, database, and reasoning 

mechanism [14].  The rule base consists of the used fuzzy IF-THEN rules.  The database contains 

the membership functions of the fuzzy sets.  The reasoning mechanism performs the inference 

procedure which uses the IF-THEN rules to derive a reasonable output or conclusion from the 

input variables.  Because of the ambiguous boundaries of fuzzy sets and the rule based structure, 

fuzzy systems can be developed to mimic the human inference.  The authors notice that the weld 

fusion may also be estimated using other methods.  However, due to the excellence of skilled 

operators in estimating the welding process state, the authors expect that the performance of a 

fuzzy logic based estimation of the weld fusion will be excellent. 

In the conventional fuzzy models, the fuzzy linguistic IF-THEN rules are primarily derived 

from human experience [15].  Since the fuzzy modeling takes advantage of existing human 

knowledge which can not be easily or directly utilized in other conventional modeling methods 

[14], fuzzy models have been successfully used in different areas, including manufacturing [16-

19].  In these models, no systematic adjustments are made on the rules, membership functions, or 

reasoning mechanism according to the behavior of the fuzzy model.   In general, if the fuzzy 

rules elicited from the operators' experience are correct, relevant, and complete [20], the resultant 

fuzzy model can function well.  However, frequently such fuzzy rules from the operators do not 
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satisfy the correctness, relevance, and completeness requirements [20];  the rules may be vague 

and misinterpreted, or the rule base could be incomplete.  In such cases, the performance of the 

fuzzy system can be greatly improved if systematic adjustments are made based on its behavior.         

The adjustability of the rules, membership functions, and reasoning mechanism provides the 

fuzzy model an adaptation to the addressed problem or process.  In order to adjust the parameters 

in the fuzzy model, various learning techniques developed in the neural network literature have 

been used.  Thus, the term neurofuzzy modeling is used to refer to the application of algorithms 

developed through neural network training to identify parameters for a fuzzy model [14].  A 

neurofuzzy model can be defined as a fuzzy model with parameters which can be systematically 

adjusted using the training algorithms in neural network literature.  In neurofuzzy modeling, the 

abstract thoughts or concepts in human reasoning are incorporated with numerical data so that 

the development of fuzzy models becomes more systematic and less time consuming.  As a 

result, neurofuzzy systems have been successfully used in different areas [21-24]. 

Most neurofuzzy systems have been developed based on the Sugeno-type fuzzy model [25].  

A typical fuzzy rule in a Sugeno-type model has the form: IF x  is A  and y  is B  THEN 

z f x y= ( , ) .  Here A  and B  are fuzzy sets, and z f x y= ( , )  is a crisp function which can be any 

function as long as the system outputs can be appropriately described within the fuzzy region 

specified by the antecedent of the rule [14].  In this paper, a neurofuzzy system will be developed 

to estimate the fusion state based on the Sugeno model.  The resultant model will then be used in 

the projected neurofuzzy model based control system of the fusion state. 

Neurofuzzy Model for Fusion Estimation  

It is common practice to use the domain knowledge about the addressed problem or process 

for determining the fuzzy model structure, i.e., selecting the relevant inputs, partitioning the 
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fuzzy sets, etc., and numerical data for identifying the parameters in the fuzzy model [14].  We 

selected the length and narrowness, measured by L  and wr , as two relevant fuzzy variables for 

representing our impression about the geometrical characteristics of the weld pool geometry.  

These two variables are denoted as p jj   ( , )=1 2  where p L1 =  and p wr2 = .  Based on the 

knowledge of the welding process, we have assumed that each variable has no more than four 

fuzzy sets.  By modeling trials it is found that two fuzzy sets are enough for each variable.  Thus, 

the partition shown in Table 1 is obtained.  The membership to Aji  is given by: 

A p
p a

b
i Iji j

j ji

ji
j( ) exp

( )
( ),= −

−�

�
��

�

�
�� ≤ ≤

2

1                                      (4)        

where a ji  and bji  are the parameters of the fuzzy membership function A pji j( )  which will be 

identified using the experimental data.   

For a given set of input variables ( , )p p1 2 , the following rule is implemented:   

Rule ( , )i i1 2 : IF p1  is A i1 1
 and  p2  is A i2 2

 
THEN y i i c i i p c i i p( , ) ( , ) ( , )1 2 1 1 2 1 2 1 2 2= +                                 (5)  

                                                   ( , )1 11 1 2 2≤ ≤ ≤ ≤i I i I  

for all possible ( , )i i1 2 's, where c i i sj ( , )'1 2  are the so-called consequent parameters [21], and 

y i i( , )1 2  is an output from rule ( , )i i1 2 .  In a standard first-order Sugeno model [21, 14], y i i( , )1 2  

has the form y i i c c i i p c i i p( , ) ( , ) ( , )1 2 0 1 1 2 1 2 1 2 2= + + .  For processing convenience, the inputs and 

output have been normalized before the neurofuzzy model is identified (see Eq. (26)).  Because 

of this normalization, as shown by the modeling trials, c0 's are not significant for every rule 

( , )i i1 2  ( , )1 11 1 2 2≤ ≤ ≤ ≤i I i I .  Hence, linear crisp functions as in Eq. (5) are used.   

The final output of the fuzzy model is: 
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y w i i y i i
i

I

i

I

=
==
�� ( , ) ( , )1 2 1 2

11 2

2

1

1

                                                     (6)  

where w i i( , )1 2  is the weight representing the truth degree for the premise: p1  is A i1 1
 and  p2  is 

A i2 2
, and is calculated using the equation: 

w i i A pji j
j

k
( , ) ( )1 2

1

2

=
=

∏ .                                                          (7)  

 

IDENTIFICATION ALGORITHM  

The identification of a fuzzy model consists of structure identification and parameter 

estimation.  During identification, the parameters are estimated for different structures.  The final 

structure, i.e., the fuzzy variable partition in this case, is selected by comparing different models.  

This is, in general, very inefficient.  Also, the decision is made purely based on statistic 

(mathematic) analysis.  No process characteristics and designer's experience are involved.  If the 

designer is familiar with the process, an experience-based partition may be appropriate.  Thus, as 

suggested in [14], we have selected and partitioned the fuzzy variables based on our 

understanding of the welding process.  Hence, the identification of the fuzzy model is simplified 

as a parameter estimation problem.    

Denote the data as: 

{ ( ), ( ), ( )} ( , , )p t p t y t t N1 2 1 2    ...,                                                 (8)=  

where N  is the size of the data.  Also, denote the model calculated output as 

�( ) ( , ; ) ( , ; ) ( , , )y t w i i t y i i t t N
i

I

i

I

= =
==
�� 1 2 1 2

11 2

2

1

1

1 2         ...,                                  (9)    

where 
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w i i t A p t

y i i t c i i p t
t N

ji j
j

j j
j

j
( , ; ) ( ( ))

( , ; ) ( , ) ( )
( , , ).

1 2
1

2

1 2 1 2
1

2 1 2
 

 
  ...,                                 (10)
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Define the cost function 

J a b s i I j c i i s j i I k

y t y t

ji ji i j k k

t

N

{( , )' ( , ); ( , )' ( , , ))}

( ( ) �( ))

      

                                                                                                 .        (11)

1 1 2 1 2 1 1 21 2

2

1

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

= −
=
�

 

The parameter estimation is to find the optimal parameters {( , )' , ( , )' }* * *a b s c i i sji ji j  1 2 so that 

J a b s c i i s J a b s c i i sji ji j ji ji j{( , )' ; ( , )' } min {( , )' ; ( , )' }.* * *                              (12)1 2 1 2=  

Although many excellent algorithms such as the second-order back-propagation [26] and 

normalized cumulative learning rule [27] proposed in the neural network literature can be used to 

speed up the parameter identification, the authors found that satisfactory identification speed can 

be achieved by using the simplest, but the most frequently used, δδδδ  rule [27, 28] in this case.  In 

order to implement this algorithm, partial derivatives of the cost function with respect to each of 

the model parameters are needed.  It can be shown: 

∂∂∂∂
∂∂∂∂

δδδδ ∂∂∂∂
∂∂∂∂

δδδδ
∂∂∂∂

∂∂∂∂

δδδδ γγγγ

J
a

t y t
a

t y i i t
w i i t

a

t i i y i i t w i i t
p t a

b

ji jit

N

jii

I

i

I

t

N

j
j ji

jii

I

i

I

t

N

= − = −

= −
−

= ===

===

� ���

���

2 2

4

1
1 2

1 2

111

1 2 1 2
111

2

2

1

1

2

2

1

1

( )
�( ) ( ) ( , ; )

( , ; )

( ) ( ) ( , ; ) ( , ; )
( )

 
 

                                                (13)
 

where  

γ

δ

( ):
( )
( )

( ): ( ) �( ).

k
k
k

t y t y t

=
=
≠

�
�
�

= −

           
          

,                                            (14)

                                                     (15)

1 0
0 0  

Here the subscripts, j  and i , of a ji  indicate the fuzzy variable ( )p j  and its set i , respectively.  

Similarly, 



R. Kovacevic and Y. M. Zhang, "Neurofuzzy model-based weld fusion state estimation," IEEE Control Systems 
Magazine, 17(2): 30-42, 1997. 

 10
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( ) ( , ; )
( , ; )
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( ( ) )

 

For the partial derivatives with respect to the consequent parameters, we have 

∂
∂

δ
J

c i i
t w i i t p t

j
j

t

N

( , )
( ) ( , ; ) ( )

1 2
1 2

1
2= −

=
�  .                                      (17)  

Thus, the parameters of the fuzzy model can be estimated using the following iterative algorithm: 

(0)  Select initial parameters:  

( , )' ( , )

( , )' ( , , )

( ) ( )

( )

a b s i I j

c i i s k i I j
ji ji j

k j j

0 0

0
1 2

1 1 2

1 2 1 1 2

  

   
                                (18)

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤
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and let n =1. 

(1) For ( , , )1 1 11 1 2 2≤ ≤ ≤ ≤ ≤ ≤i I i I t N  , calculate 

w i i t
p t a

b

y i i t c i i p t

n j ji
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=
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=
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  .                                  (19)  

(2) For 1 ≤ ≤t N , calculate 

δ ( ) ( ) ( ) ( )( ) ( ) � ( ) ( ) ( , ; ) ( , ; )n n n n

i

I

i

I

t y t y t y t w i i t y i i t− − − −

==
= − = − ��1 1 1

1 2
1

1 2
11 2

2

1

1

  .                  (20)  

(3) Calculate  

J tn n

t

N
( ) ( )[ ( )]− −

=
=�1 1 2

1
δ .                                                    (21)  

(4) For (1 1 2≤ ≤ ≤ ≤i I jj ,  ), calculate 
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a a t i i y i i t w i i t
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and 
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(5)  For ( , , )1 1 1 21 1 2 2≤ ≤ ≤ ≤ ≤ ≤i I i I j  , calculate 

c i i c i i t w i i t p tj
n

j
n n n

j
t

N
( ) ( ) ( ) ( )( , ) ( , ) ( ) ( , ; ) ( )1 2

1
1 2 3

1 1
1 2

1
2= +− − −

=
�ε δ  .                          (24)  

(6)  If n =1, let n n= +1 and go to (1). 

(7)  If J Jn n( ) ( )− −− <1 2 εεεε , go to (8).  Otherwise, let n n= +1 and go to (1). 

(8)  Let 

a a i I j

b b i I j

c i i c i i i I i I j

ji ji
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ji ji
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25
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In the above algorithm, εεεε j s j' ( , , )> =0 1 2 3    are the learning coefficients and εεεε > 0  is the 

iterative accuracy control parameter.  By properly selecting the initial parameters, learning 

coefficients, and iterative control parameter, the final estimates of the parameters in the fuzzy 

model can be obtained. 

 

EXPERIMENTATION  

Data set (8) for identifying the fuzzy model will be generated from experimentation.  The data 

generation plays a critical role in guaranteeing the validity of the acquired model.  The 

experiments must be properly designed.  In particular, the experimental data should be generated 

so that the weld pools with different geometry are produced using different sets of welding 
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parameters.  Consider the welding parameter vector ( , , )i v l T  where i,  v , and l  denote the 

welding current, torch speed, and arc length respectively.  Assume the permitted ranges are 

I i Imin max≤ ≤ , V v Vmin max≤ ≤ , and l l lmin max≤ ≤ .  These ranges define a welding parameter 

vector space.  For the given discrete resolutions, the vector space consists of finite points.  

Theoretically, welding parameters corresponding to all the points in the space should be used to 

generate the experimental data.  However, it is known that the back-side bead width is 

determined by several weld pools over a time interval, rather than a single pool at an instant.  If 

the weld pool does not change rapidly, the weld pool at an instant can be a good approximation 

over the interval.  If the weld pool does change rapidly, the dynamics of the correlation between 

the back-side bead width and weld pool will have to be addressed, which greatly complicates the 

study.  In order to avoid possible complexity, it is preferred that the welding parameters be kept 

constant during an experiment.  However, the number of experiments would be too large.  Hence, 

in addition to the use of some constant welding parameters, other welding parameters are 

programmed to slowly change during an experiment.      

The experimental setup is shown in Fig. 3.  In this paper, the experimental setup is used for 

conducting open-loop experiments using the pre-programmed welding parameters.  (During 

closed-loop control, the welding parameters will be determined by the feedback control 

algorithm.)  The welds are made using DCEN GTA welding.  The welding current is controlled 

by the computer through its analog output to the power supply ranging from 10 A to 200 A.  The 

torch and camera are attached to a 3-axial manipulator.  The motion of the manipulator is 

controlled by the 3-axis motion control board which receives the commands from the computer.  

The motion can be pre-programmed and modified on-line by the computer in order to achieve the 

required torch speed and trajectory, including the arc length.  The Control Vision�s ultra-high 
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shutter speed vision system [12] is used to capture the weld pool images.  This system consists of 

a strobe-illumination unit (pulse laser), camera head and system controller.  The pulse duration of 

the laser is 3 ns, and the camera is synchronized with the laser pulse.  Thus, the intensity of laser 

illumination during the pulse duration is much higher than those of the arc and hot metal.  Using 

this vision system, good weld pool contrast can always be obtained under different welding 

conditions.  In this study, the camera views the weld pool from the rear at a 45° angle.  The 

frame grabber digitizes the video signals into 512 512×  8bit  digital image matrices.  By 

improving the algorithm and hardware, the weld pool boundary can now be acquired on-line in 

80 ms. 

Eight experiments have been done using the welding parameters illustrated in Fig. 4 on 

separate workpieces.  The workpieces are 1 mm thick stainless steel 304 plates which are 250 

mm in length and 100 mm in width.  The shielding gas is pure argon.  Compared with the torch 

speed, current, and arc length, the influence of the shielding gas rate and electrode tip angle on 

the welding process is relatively small.  Thus, the shielding gas rate and the tip angle are kept 

constant (7.5 L/min. and 45� ) in the experiments. 

The weld pool parameters, i.e., the pool length L  and relative pool width wr , are measured 

on-line at 10 Hz.  The back-side bead width is measured off-line at the same rate using a 

structured-light 3D vision algorithm developed in our previous study [29].  Fig. 5 shows the plots 

of the experimental outputs sampled at one second intervals.     

 

MODELING AND DISCUSSION 

Modeling 
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The number of parameters in the membership functions is 2 1 2( )I I+ .  The number of 

consequent parameters is 2 1 2I I .  Thus, the number of parameters in fuzzy model (9) is 16 when 

I1 2=  and I2 2= .  For such a number of parameters, too large N  may not be necessary.  Hence, 

we only use the measurements taken at integer seconds to constitute the data set (8).  In addition, 

we have removed the data in the first 10 seconds in each experiment.  Finally, a data set 

{ ( ), ( ), ( )} ( , , )p t p t y t t N1 2 1 2    ...,  =  with N = 670  is obtained. 

For processing convenience, the data have been normalized: 

p t
p t p

p p
j

y t
y t y

y y

j
j j

j j
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( ) min
max min

( , ),

( )
( ) min

max min
.
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−
−
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−
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�
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�
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�

   
                                          (26)

1 2
 

The normalized data range from 0 to 1. We have assigned ( , ) ( , )( ) ( )a a11
0

12
0 1 0=  , 

( , ) ( , )( ) ( )a a21
0

22
0 1 0=  , ( , ) ( . , )( ) ( )b b11

0
12

0 20 85=  0.852 , and ( , ) ( . , )( ) ( )b b21
0

22
0 20 85=  0.852 . Once 

these initial partition parameters are given, the consequent parameters should be carefully 

assigned in order to avoid too large initial fitting errors.  Analysis shows that when the 

parameters of the fuzzy partition are given, the correlation between the cost function and the 

consequent parameters are quadratic.  Thus, the cost function can be analytically minimized with 

respect to the consequent parameters in this case.  The resultant consequent parameters will be 

used as the initial parameters in the iterative estimation of the fuzzy model.  Denote  

ii i I i j
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where M I I= 2 1 2  is the number of the consequent parameters, x t( )  is the observation vector, and 

θθθθ  is the consequent parameter vector.  It can be shown that 

�( ) ( )y t x t= θ .                                                             (28)  

Thus, the least square estimate of the consequent parameter vector is  

� ( )θθθθ = −Φ Φ ΦT T Y1                                                          (29)  

where 

Φ = ( ( ) ...... ( ) )x x NT T T1 .                                                (30)  

Hence, the initials of the consequent parameters can be provided by �θθθθ . 

The values of εεεε k k> =0 1 2 3   ( , , )  can be determined by calculation trials.  Too large  

εεεε k s' > 0 result in a non-converged iteration, whereas too small εεεε k s' > 0 gives a slow 

convergence.  We have used variable εεεε k s' > 0 .  The initial εεεε k s' > 0 can be relatively large.  If 

the cost function increases, εεεε k s' > 0 are halved.  Otherwise, εεεε k s' > 0  are not changed.  Thus, 

both the speed and convergence of the iterative computation is guaranteed.  By trials, we selected 

initial εεεε εεεε1 2 0 0005= = .  and εεεε 3 0 005= . .  The accuracy control parameter εεεε = 0 001. .  Using 

these parameters, the resultant MatLab program can identify the fuzzy model from the data set 

quickly with guaranteed convergence.   

The identified neurofuzzy model has the following four rules: 

Rule (1, 1):  IF  p1  is long   and p2  is wide     THEN y p p( , ) . .1 1 04 0 311 2 1 = +  
Rule (1, 2):  IF  p1  is long   and p2  is narrow THEN y p p( , ) . .1 2 0 39 0 0151 2 = +  
Rule (2, 1):  IF  p1  is short and p2   is wide     THEN y p p( , . .2 0 54 0 301 2 1) = +  
Rule (2, 2):  IF  p1  is short and p2   is narrow THEN y p p( , . .2 0 04 0 081 2 2) = −  
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Here the variables are measured using the normalized coordinates with min .y = 0 69 mm , 

max .y = 416 mm , min .p1 3 22=  mm , max .p1 7 21=  mm , min .p2 0 62= , and max .p2 1 07= .  

The resultant fuzzy partition can be shown by using the membership functions in Fig. 6. 

Accuracy and Comparison 

The fitting accuracy of the resultant fuzzy model can be seen in Fig. 7.  It is apparent that the 

back-side bead widths measured from different experiments, which were performed using 

different welding parameters, have been fitted with quite satisfactory accuracy by the fuzzy 

model.  The maximum error is about ten percent of (max min )y y− , i.e., about 0.4 mm.  No 

obvious static errors have been observed.  The high frequency sparks can be easily removed 

using a proper filter.  Thus, the neurofuzzy model can be used to estimate the back-side bead 

width based on the weld pool geometry for the fusion control.   

Using the resultant fuzzy model, the weld pool geometry from the eight experiments can be 

used to calculate the back-side bead width in order to test the estimation accuracy of the fuzzy 

model.  The results are shown in Fig. 8.  In the calculation, all the data which were measured 

during welding at 10 Hz have been used.  It can be seen that the test accuracy is very close to the 

fitting accuracy shown in Fig. 7.  The maximum prediction error is also about 0.4 mm.  It is 

known that the weld penetration is very sensitive to disturbances when the weld pool is near to 

the partial/full penetration border [30].  If the desired back-side bead width is too small, slight 

disturbances may change the weld pool from the full penetration to the partial penetration so that 

the resultant welds are unacceptable.  In order to guarantee the full penetration, the desired back-

side bead width should be at least 2 mm.  Under this assumption, 1 mm is an acceptable 

maximum error.  If the prediction error does not exceed 0.5 mm, the prediction accuracy can be 

regarded as quite satisfactory.  Hence, Fig. 8 shows that an satisfactory estimation can be 
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expected from the resultant fuzzy model.  This excellence will be further shown through the on-

line estimation experiments later.   

In order to explore the possible accuracy improvement, we have used I I1 2 3= =  and 

I I1 2 4= = .  However, no noticeable improvement has been observed regarding the maximum 

error and overall impression.  Fig. 9 shows the case of I I1 2 3= = .  The fitting results are very 

close to Fig. 7.  The cost function is 1.17, whereas the cost function is 1.26 when I I1 2 2= = .  It 

is evident that the partition of the two fuzzy sets in Table 1 is sufficient.   

To justify the use of the fuzzy model, a linear model has also been fitted.  The resultant 

equation is: 

w L wb r= +0 86 0 36. .                                                 (31)  

where all of the parameters are measured using their normalized coordinates (Eq. (26)).  The 

resultant cost function is 2.81.  This number is much larger than the cost function of the fuzzy 

model.  Fig. 10 illustrates the fitting results using the linear model (31).  Substantial static fitting 

errors can be frequently observed.  It is apparent that the fuzzy model does provide much better 

estimates of the back-side bead widths.                 

Fuzzy Knowledge 

The identified fuzzy model can reveal the roles the weld pool parameters play in determining 

the weld penetration.  Based on these rules, the following knowledge can be inferred:   

(1).  Rule (1, 1) and Rule (2, 1) show that the influence of the narrowness of the weld pool on 

wb  almost does not depend on the length of the weld pool when the weld pool is wide.     

(2).  The influence of the length of the weld pool on wb  always depends on the narrowness of 

the weld pool, despite the length of the weld pool.  In particular, when the pool is long, the partial 

derivative of wb  with respect to L  changes from 0.39 to 1.04 when the pool becomes wide (Rule 
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(1, 2) and Rule (1, 1)).  When the pool is short, this partial derivative increases from 0.04 to 0.54 

when the pool becomes wide (Rule (2, 2) and Rule (2, 1)). 

(3) When the pool is short and narrow, the sensitivity of wb , which specifies the state of the 

full penetration, to the changes in both the length and narrowness are low (Rule (2, 2)).  

However, it should be pointed that this low sensitivity is observed in the case of full penetration.  

Beyond the range of full penetration, this observation may not be true.  In fact, it has been found 

that the weld penetration is sensitive to the welding parameters when the weld is nearly 

penetrated [30].  Thus, when the weld pool is nearly penetrated, a small increase in the inputted 

heat could cause the weld pool to penetrate.  Once the weld pool is penetrated, the sensitivity of 

the penetration increase will become less sensitive to the increased heat input. 

In order to illustrate the above observations, Fig. 11 plots the resultant neurofuzzy model 

using parametric curves.  From these parametric curves, the partial derivative curves shown in 

Fig. 12 can be obtained.  It is clear that the deviation of ∂∂∂∂ ∂∂∂∂w wb r/  curves with respect to the 

length is very pronounced when the pool is narrow (Fig. 12(b)).  This deviation becomes much 

smaller when the pool becomes wide (Fig. 12(b)).  Thus, the influence of the narrowness of the 

weld pool on wb  does not significantly depend on the length when the pool is wide, whereas it 

does when the pool is narrow.  For ∂∂∂∂ ∂∂∂∂w Lb /  (Fig. 12(a)), its dependence on wr  can always be 

observed over the whole range of the pool length, although this dependence slightly decays when 

wr  increases.  The low sensitivities of wb  to the changes in both the length and narrowness can 

also be seen from the curve with parameter wr = 0 6.  at L = 3 mm in Fig. 12(a) and the curve 

with L = 3 mm at wr = 0 6.  in Fig. 12(b), respectively. 

It is apparent that the above observations provide us knowledge about the correlation between 

the weld penetration ( wb ) and weld pool geometry.  They are derived from the neurofuzzy 
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model.  If a linear model is used, the correlation acquired between the weld penetration and weld 

pool geometrical parameters will only be an average over the entire range of the weld pool 

geometrical parameters.  The above observations can not be drawn.  Hence, the fuzzy modeling 

plays an important role in deriving the detailed correlation between the weld penetration, 

therefore the fusion state, and the weld pool geometry. 

 

ON-LINE ESTIMATION 

An on-line calculation of the resultant neurofuzzy model can be done in less than 4 ms on a 90 

MHz Pentium processor.  Hence, the feedback of the fusion state can be provided in real-time.  

Figs. 13-14 show two on-line estimation experiments.  The material, plate thickness, workpiece 

dimensions, rate of shielding gas, and angle of the electrode tip are the same as those used in the 

experiments for data generation.   

In Experiment 1, the current range is [40A, 60A] (Fig. 13a).  The resultant top-side parameters 

are shown in Fig. 13(b).  In the experiments for generating identification data, the welding 

parameters have been designed so that the resultant back-side bead width (state of the full 

penetration) falls within the permitted range.  However, the welding current in the present 

experiment significantly exceeds the range used in generating the identification data.  As a result, 

very long weld pools, compared with the pools in the experiments for identification data 

generation (Fig. 5), are frequently observed (Fig. 13b).  Excessive full penetration is therefore 

produced.  The back-side bead width often exceeds the permitted maximum (Fig. 13c).  For our 

application, the estimation accuracy for such an extreme range is not required.  In the permitted 

penetration, say 1 mm 4 mm≤ ≤wb range, the prediction made by the neurofuzzy model is quite 
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accurate.  Hence, the developed neurofuzzy model can be used to estimate the back-side bead 

width for the fusion state control.    

The welding current range in Experiment 2 is reduced to [40A, 50A] (Fig. 14a).  Although the 

resultant pool length is beyond the range in Fig. 5, the excessiveness of the pool length and back-

side bead width (Fig. 14b and c) is not severe.  Hence, accurate on-line prediction has been made 

by the neurofuzzy model.  This again shows that the developed neurofuzzy model can estimate 

the fusion state with sufficient accuracy.    

 

CONCLUSIONS 

The fusion state can be described by the top-side width and back-side width of the weld pool 

in the case of full penetration.  Fusion control therefore implies both the control of the top-side 

weld size as well as weld penetration.  The fitted model of the pool boundary directly provides 

the top-side weld size.  Using the developed neurofuzzy system, the weld penetration state can be 

estimated with good accuracy from the pool geometry.  Hence, the feedback of the fusion state is 

achieved.  In addition, the fuzzy modeling plays an important role in deriving the detailed 

correlation between the weld penetration and the weld pool geometry. 
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                    Table 1 Partition of Fuzzy Input Variables   

Fuzzy variables Number of Fuzzy Sets                Partition 
length ( )p1               I1 2=    long ( A11 ) , short ( A12 )  
narrowness ( )p2               I2 2=    wide ( A21 ) , narrow ( A22 )  
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Fig. 5  Experimental outputs. 
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Fig. 6 Fuzzy membership functions. (a) Length partition.  (b) Narrowness partition.  
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Fig. 7 Neurofuzzy fitting of the back-side bead width. 
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Fig. 9 Neurofuzzy fitting of the back-side bead width using ( , )I I1 23 3= = . 
 
 
 

0 100 200 300 400 500 600 700
sample serial number

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

w b (
no

rm
al

iz
ed

 c
oo

rd
in

at
e)

Measured
Model Fitted

Experiment No.
1 2 3 4 5 6 7 8

 
 

Fig. 10 Linear fitting of the back-side bead width.  
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Fig. 11 Parametric curves of the neurofuzzy model.  (a) w Lb ~ .  (b) w wb r~ . 
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Fig. 12  Partial derivatives of neurofuzzy model predicted wb .  (a) ∂∂∂∂ ∂∂∂∂w Lb / .  (b) ∂∂∂∂ ∂∂∂∂w wb r/ . 
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Fig. 13  On-line prediction experiment 1.  (a) Welding parameters.   
(b) Top-side parameters of weld pool.  (c) Back-side bead widths. 
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Fig. 14  On-line prediction experiment 2.  (a) Welding parameters.   
(b) Top-side parameters of weld pool.  (c) Back-side bead widths. 

 
 


