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Abstract -A theoretical framework is established for constructing arbitrary particle-laden jetflow by 
means of fractal sets in the sense of average scale. This novel approach involves three main coherent 
components, in which one (1) searches for an appropriate original point set and confirms its intrinsic 
properties such as chaos, symmetry and density distribution; (2) derives governing equations for the 
formation of new point sets with any geometric configuration and desired normal velocity profile so 
that they can physically and geometrically represent particle motion on the cross-section of jetflow; 
and (3) develops the constitutive equations of particle-target interaction with erosion histories of 
particles and introduces the memory-element technique to handle the chaotic penetrating capabilities 
of millions of particles. Based on these results, the model is applied to predict the erosion rate in a 
drilling operation by abrasive waterjet. Results show that theory is consistent with experiments of 
drilling glass and titanium. @ 1997 Elsevier Science Ltd All rights reserved 

1. INTRODUCTION 

Recently, the attention received by three-dimensional (3D) abrasive waterjet (AWJ) 
machining has led to an increase in both laboratory experimentation and usage in indus- 

trial practice. As a result, this state-of-the art cutting tool has been promoted to a multi- 
functional level, and is currently used for milling, drilling and turning hard-to-machine 
materials, such as titanium and advanced ceramics. Extensive research by engineers and 
scientists in diverse disciplines [l-11] has proved the 3D machining technique to be 
industrially applicable and to have some remarkable advantages in comparison with 
traditional tools. At present, however, the purely experiment-oriented research is facing 
great challenges in extending the knowledge from laboratories to the shop floor due to the 
lack of a theoretical basis behind 3D machining. This issue arises because many machining 
parameters, such as material properties, jet velocity and nozzle traverse rate, to name just 
a few, are coherently influential on the machining result. Consequently, the current 
research activities must rely heavily on numerous tentative tests on a case-by-case basis, 
making the achievements too specific for industrial applications. To reduce the cost and 
improve the quality of products, a model for off-line simulation becomes imperative. 

Transported by high speed waterjet and air (600-900 m/s), about lo5 tiny solid particles 
per second go through the cross-section of a nozzle (diameter 1.5-2.5 mm) and penetrate 
into the material to be machined. The machining result depends on the kinetic energy of 
each individual particle among the millions in the multiphase flow. Thus it is crucial for an 
accurate model to analyze the kinematic property of every particle. 

It is a well-known fact that there have been great difficulties in coping with the 
turbulence of even a one-phase flow to date. Therefore from the point of view of fluid 
mechanics, it is not reasonable in a short term to expect to gain quickly a thorough 
understanding of the chaotic behavior of solid particles in a multiphase flow like AWJ. To 
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satisfy the requirements of modeling 3D machining by AWJ, a new approach is proposed 
to simulate particle-laden flow by means of fractal point sets with chaotic features. Once 
the jetflow is produced on the firm physical background, one can obtain the spatial posi- 
tions and kinetic energy distribution of particles for evaluation of the erosion rate. 

In addition, the constitutive equations of the particle-target interaction and the memory- 
element technique are developed in association with the generated flow to form a complete 
theoretical framework. The accuracy of the model for the drilling operation is satisfactorily 
verified by drilling experiments of glass and titanium. 

2. CONSTRUCTION OF PARTICLE-LADEN JETFLOW 

Subjected to physical and geometrical constraints, the particle motion should possess the 
following general features on the cross-section of multiphase particle-laden jetflow: 

l The particle behavior is unpredictable. 
l With the increase of time the particle distribution over the cross-section could be 

symmetrical or axisymmetrical if the density of particles is a constant or a symmetrical 
function and the shape of the cross-section is also symmetrical or axisymmetrical. 

l The number of particles passing through the cross-section is instantly measurable since 
the particle flow-rate is measurable. 

l The normal velocity of a particle varies with its position. 

The particle motion will be simulated by fractal point sets derived from a Julia set 
through nonlinear iterations. For compactness, attention will not be focused on describing 
the fractal features of point sets but on their applications to the machining process. 
However, some obvious fractal phenomena will be still observed on the displayed figures. 

2.1. An original point set 

Under the coordinate system (x, y) or (r, O), let FP = {(gl, q), (&, Q), . . ., (g,, q,)} 
be a real point set produced by the nonlinear iterative equation 

z N+l = j/(Zi(ZN - 1.24)) - 0.368 + 0.44363 (N = 1, 2, . . .), (1) 

where ZN = EN + tINi is a complex variable. Then a subset fp of FP is defined as the 
original point set, given by 

fp = {(x17 YA (x2, Yd, * * -9 (x,3 Y,)) = ((~1, ‘A), (rz, %h . . -7 trn, RJ) c Fp, (2) 

where 

0 s x’, + y’, = r’, s 1, -97 G 8, = arctan (y,/x,) < a-, (n = 1, 2, . . .), (3) 

XII = 5& + 0.7, yn = 5qj%j - 1.5. (4) 

The geometric configuration of fp is displayed in Fig. 1. The moment t at which the nth 
particle appears on the circular domain is calculated from the equation 

t = n/ti (5) 

where riz is the particle flow-rate. In most machining operations, ti is a constant which is 
measured and controlled by an abrasive flow meter. From now on, the points of fp are 
considered as the representation of particles on the circular cross-section of particle laden 
flow. 

To examine properties of points, the cross-section of jetflow is divided into small 
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Fig. 1. Particle distribution of Ii. 

elements under the polar coordinate system (r, 0)) as shown in Fig. 2, and it is termed the 
net dish. The total number of elements L is determined by L = KM, where K is the 
number of divisions along the radial direction and M is the number of divisions along the 
circumferential direction. For instance, K = 3 and M = 8 lead to L = 24. 

Because the existence and stability of important geometric and physical properties 
endowed to points of fp later on are inherently relevant to the particle number II and the 
element number L in the net dish, the parameter aP is introduced to measure this de- 
pendence. The form of aP is 

a,(L, n) = 4 x 103. (6) 
n 

In the practical situation, only n >> L is meaningful. In general, it is preferable that a 
desired property of fp can hold for a relatively larger value of op. 

An application of the net dish is to verify the chaotic appearance of particles. Under the 

Fig. 2. The net dish with K = 3 and A4 = 8. 
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measurement aP(4 x lo*, 104) = 40.0, where L = K x M = 20 x 20, for instance, 16 parti- 
cles are trapped in the 80-th element and their appearance orders in the element are listed 
below : 

i 

23 724 770 2032 
2495 2714 3038 3481 
3795 5214 6315 

i 

8345 . (7) 

8369 8889 8984 9547 

Obviously, no pattern exists to suggest that the particles of fp follow any regular 
movement. As a matter of fact, there are many alternative approaches which demonstrate 
the chaotic behavior of the point appearance of fp. 

A function of the net dish is to examine the axisymmetrical characteristic of fp. If K = 1 
and M is an arbitrary integer, then every element of the net dish is wedge-shaped. Because 
the number of particles in each element is approximately equal for a given IZ, the particle 
distribution is confirmed to be highly axisymmetrical in a kinematic sense relevant to 
cu,(L, n), as displayed in Fig. 3. 

2.2. Governing equations 

In the modeling of 3D machining, it is essential to find the velocity profile of a point set 
along the normal direction of the cross-section. Before proceeding to the derivation of 
governing equations, several assumptions are stated as follows: 

l The solid particles in multiphase jetflow are uniformly mixed with the transportation 
mediums like water and air. This assumption will be proven true for fp in Section 2.5. 

l Only the average normal velocity profile is considered for turbulent flow since the 
erosion capacity of a particle depends on the kinetic energy of the normal direction. 

l The sizes and shapes of particles are the same. In applications, particles are strictly 
categorized in terms of their average size, thus the influence of sizes should be less 
significant. The error caused by diverse shapes of particles is taken into account by 
experimental parameters of constitutive equations. 

0.5 

t 

- - - _- _: _ - - - - I- - _ _:_ _’ _ - - - - 

0~~~2.67 ap = 2.00 

Fig. 3. Demonstration of the axisymmetric property off,. 
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Based on the mass conservation principle associated with the above assumptions, one of 
the governing equations for determining the velocity profile is written in the form of a 
flow-rate ratio R,: 

In (81, V, = u,Jt, x, y)lumax (0 c V, G 1) is the dimensionless normal velocity profile of 
particles at the point (x, y) and instant t, U, is the average normal velocity profile of 
particles and u,,, is its maximum value, S, is an arbitrarily-shaped subarea of the cross- 
section S, of particle-laden jetflow, NXY is the number of particles passing through S, in 
the time interval t - tl and N, is the number of particles passing through S,, during t2 - tl. 
Obviously, the inequality 0 G Rf G 1 holds. 

It is necessary to point out that the border of the cross-section S,, can have a general 
shape or consist of several independent boundaries rather than a single circle. For steady 
flow, (8) is reduced to 

From (8) V,? can be expressed by 

under the Cartesian coordinates or 

(9) 

(11) 

under the polar coordinates. For steady flow, eqn (10) reduces to 

and (11) becomes 

VAr, 0) = Id’R, 

r aear’ 
(13) 

In particular, for axisymmetric steady flow, eqn (13) is simplified to 

V,(r) = (fiJr)r dr)$-$, (14) 

where b is the radius of the nozzle. According to (g-14), a particle distribution on the 
cross-section corresponds to a velocity field through Rf = N,,/N,,. Once the point set is 
given, the velocity is also determined in terms of R,. It turns out that the central task for 
constructing a particle-laden jetflow is to find such a point set that possesses the desired 
velocity field. To avoid sophisticated mathematical treatments, the focus in the following 
parts is concentrated only on the steady jetflow. 

2.3. Axisymmetric flow 

As shown in Fig. 3, the particle distribution of fP on the cross-section is very weakly 
dependent on the angle 8 once (Ye is smaller than a certain value. Therefore it can be 
reasonably treated as the representation of particle motion on the cross-section of steady 
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axisymmetrical particle-laden flow. Theoretically speaking, two key parameters R, and V, 
of fP can be determined numerically by use of eqns (9) and (14). However, the modeling 
process could be impractical due to long computations resulting from the quantification of 
R, and V,. 

To avoid these potential difficulties, approximate analytical expressions should be found 
for R, and V, of fp. After computational experimentation, it is confirmed that 

Rfp = 1 - (1 - r)*l/lo[l + (ll/lO)r], (15) 

Vzp = (1 - r)l/lO (16) 

are accurate for the replacement of Rf and V, of fp when n > 5000. A comparison 
between V,(r) and Vzp, Rf(r) and Rk is displayed in Fig. 4. 

For applications, a question may arise: how can one find numerous new point sets to fit 
different velocity distributions appearing in the practical situations? The strategy in this 
work is to utilize mapping techniques to convert fp into a new point set. 

The well-known analytical result of Vr for one-phase flow is used in order to minimize 
computational burden for multiphase steady flow. That is, for laminar flow the dimension- 
less velocity Vi is written as [12] 

Vi(r) = 1 - r* (0 s r G 1) (17) 

and for turbulent flow the average velocity profile VL is described by the seventh-root law 

WI 
V:(r) = (1 - r)117 (0 S r S 1). (18) 

Substitution of (17) and (18) into (9) leads to the flow-rate ratios 

Ri = r2(2 - r’), (19) 

R; = 1 - (1 - r)“fl[l + (8/7)r], (20) 

res ectively. 
2 

There are two steps in mapping fp onto a new point set, denoted by 
fp = {(t-l, @I>, cc27 f32), . . *9 ( fk, e,)}. First, calculate the flow-rate Rf(iJ in terms of the 
given velocity V, such as VL and Vi. 
by equating &(rn) of fp to R~(LJ 

Secondly, for a point (r,, 6) E fp, find a root 5;,, 
or R;(<,), which generates a point (i&, 6,) E f,". 

0 0.2 0.4 0.6 0.8 1 
r 

Fig. 4. V, and V,, Rf and Rfp of fp. 
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Repeating the one-to-one and onto mapping for different rk yields the new point set with 
the desired velocity profile and flow-rate ratio. Note that the mapping takes place only 
between two radial variables rn and c,, and the angles 19, are equal because of the axi- 
symmetrical nature. 

Following the two guidelines, the equation for determining points ck for laminar flow is 

R; = Rfp + !& = j/(1 - d((l - rk)ll’lo(l + (ll/lo)rk))). (21) 

and similarly & for turbulent flow are calculated by 

R; = R, + (1 - &)8’7[1 + (8/T)&] = (1 - srk)ll’lo[l + (ll/lO)rk]. (22) 

After the new point set f,” is produced, it is an important step to check R, and V, of f,” 
by using equations Rf = &&I and v, = [Rf(t;k+l) - Rf(itk)]&k+d~k+l - ck)], SO as to 

prevent the potential errors from numerical treatments. 

2.4. Non-axisymmetric jetflow 

Mapping the original set fp into a non-axisymmetrical set is a much more complicated 
task because, generally speaking, both the geometrical and physical features of fp will be 
completely reshaped through the transformation. In this circumstance, a mathematical 
approach is effective mostly on a case-by-case basis. For brevity, a detailed description is 
given here to explain how to generate a point set with the elliptic shape and the velocity of 
laminar flow. 

Under the Cartesian and polar coordinates, the dimensionless velocity profile in eqn (9) 
is assumed to be the same for an elliptic steady laminar flow [13], given by 

v; = 1 - 5 - (23) 

where a and b are the major and minor semiaxes of the ellipse, respectively. After 
substitution of (23) into (9), lengthy calculations result in 

A) 
Vzds = Jo’d8$,[l - r2(F + y)]rdr = -$02(2 - cr*)arctan(Xtan@), 

,ls:ds = (,p~ds)o~l = 2+ 
$+=27l 

(24) 

(25) 

with 
ff b 

PO = 
.\/((cos’ 0)/a’ + (sin* 8)/b2) ’ 

06(J=ax=xQ (26) 
a b 

where a, and b, are the major and minor semiaxes of a smaller ellipse which is similar to 
the border of the cross-section. From eqns (24) and (25), one can obtain the flow-rate ratio 
R; for the elliptic cross-section 

R; = $0”(2 - 02)arctan 

Additionally, when the polar angle 8 is taken into account in eqn (16) R, can be rewritten 
as 

Rfp = ${l - (1 - r)‘l”O[l + (ll/lO)r]}. (28) 
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Letting R; = R,, one can find two mapping equations for a new point set f,” = {(cl, &), 
cc.23 #22)r . . .Y (&, &)} in the forms 

arctan $tan& = 
( 1 

ok + tan@, = btanC.9, (k = 1, 2, . . .) n) (29) 
a 

and 

(71, = ,,(I - v((l - rk)11’1o(l + (ll/lo)r,))) + & = ad 

j/(1 - (1 - b2/a2)cos2 &) ’ 

(30) 

The new set f, M is the representation of particle motion on the elliptic cross-section of 
laminar particle-laden flow; an example is shown in Fig. 5. The comparison between 
numerical and analytical results of RF and VP, is now given here for briefness. 

There is no analytical expression for turbulent flow in the elliptic nozzle. By analogy with 
the seventh-power law [12], the dimensionless velocity profile in this case is assumed to 
have the form 

v~=(1-\/(~+~))17=(1-I.J(~+~))I-7 (31) 

which is consistent with the meaning of the axisymmetrical case on x = 0 and y = 0. After 
tedious calculations, the mapping functions are given by 

tanGk = btan6k, 
a 

(32) 

(1 - ak)“[l + (8/7)$] = (1 - $)ll’lo[l + (11/10),-k] + & 

for a new point set. 

ad 
= j/(1 - (1 .- b*/a*)cos’ &) * 

(33) 

It turns out from the above analyses that two mapping equations are necessary to 
generate an elliptic point set from the original set. One is related to the angular variable 

Fig. 5. Particle distribution (n = 3000) on the elliptic cross-section. 
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and the other to the radius. In the above discussions the two mapping equations are 
noncoupled so that points (&, C#Q) can be ascertained directly. This type of advantage may 
not exist for those problems which have the mapping variables coupled together. 

2.5. Verification of constant density 

During derivations of governing equations, the density of particles is assumed to be a 
constant at any instant when n exceeds a certain number. Next it will be verified that this 
assumption holds for the point set fp. 

The density p is defined as the ratio 

P= 
2=&i 

(34) 

In equation (34), M, = mPNXY is the total mass of iXY particles, where mp is the average 
mass of particles, V, is the volume of multiphase flow passing through S, during t2 - tl. 
For steady flow, based on rit = N&t, - tl) and v, = llS V, ds/S,, where B, is the 
average value of V, in the subdomain S, C So, eqn (34) is reduced to 

(35) 

Note that mP and rit are constants and so it is sufficient to verify that p/(m,rfz) is a 
constant. Again, the net dish shown in Fig. 2 is employed to identify the correctness of 
(35). In this circumstance, SXY is the area of an element, NXY is the number of particles 
passing through S,, and vz is evaluated by the velocity of the geometric center of S,,. 

The numerical results for the original point set fp are shown in Fig. 6 by means of 
P/(m, ti) vs L = KM. Excluding the small zone near the center (r = 0) of the cross- 
section, p as defined by (35) can be taken as a constant if the negligible oscillations around 
the constant are disregarded. Examinations confirm that the large error appearing near 
the center does not have any significant influence on either application or theoretical 
correctness because the error is caused mainly by the small value of the wedge-shaped 
areas S, = r28/2 near the center. When r + 0, S, becomes very small and eqn (35) 

0 100 200 300 400 

LW 

Fig. 6. Demonstration of the uniform density of f,. 
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approaches singularity. As a result the density appears to oscillate sharply. A similar 
analysis is also feasible for any new point set if required. r 

3. PREDICTION OF DEPTH OF DRILLING 

With the aid of the suitable point sets t6 represent moving particles, this section focuses 
on the simulation of drilling a hole by abrasive waterjet. 

In dealing with this seemingly simple problem, researchers and engineers are actually 
facing one of the most challenging topics in abrasive waterjet machining. For a rational 
model, at least two essential issues are unavoidable. First, the model should consider 
the diminution of penetrating abilities of particles with increasing the depth of drilling. 
Secondly, erosion or wear mechanisms of different materials by particle impact should be 
reflected in the model. The first issue requires the model to consider erosion histories of 
all particles. In addition, parameters like intensities of inflow and outflow during the 
formation of a hole could also be influential in various machining environments. 

3.1. Constitutive equations 

No matter how many parameters are involved in a drilling process, the penetrating 
ability of a single particle depends on the constitutive equation of the particle-target 
interaction. In the past three decades, many models for predicting the average erosion rate 
by particle impact (e.g. [14-161) have been presented and can be summarized by the 
unified equation 

6hj = AI[vz(xcr,, Ya)lA2. (36) 

In equation (36), 6hj is the average height of a fragment or a chip removed by the jth 
particle striking the small area centered at (x~,, yCli) on the workpiece, Ai and & are 
physical constants which include the effects of material properties, the impact angle and 
shape of a particle and target, and so on. 

In order to develop a suitable model applicable to the shop floor, a strategy is adopted 
to modify (36) so that its applicable scope can be extended to a deeper drilling operation. 
The form of (36) is retained but A, and A, are taken as functions of the cutting depth h. 
That is, 

6hj = k(hj-,)[Vz(x,, Y,~)]~~(~J-‘)~ (j = 1, 2, . . ., n) (37) 

where hj_l is the average depth of cut produced by j - 1 particles previously striking a 
very small region around the point (x,,, y,,) and at instant tj = j/h. Note that hj = 
hj_l + 6hi and 

hj = f: 6hk = ~l,(h,,)[Vz(x,, ~~~)]~(~~-l). 
k=l k=l 

This equation suggests that the erosion rate of a particle depends on the histories of other 
particles prior to it. 

It is important to point out that the values of A, and & are not arbitrary but controlled 
by certain physical principles like energy conservation. A constraint on & for brittle 
erosion is derived as the illustration of this statement. In such a circumstance, the material 
removal is considered to be a result of brittle fragmentation [17,18]. Without loss of 
generality, the new surface created by a particle is assumed to be equal to Sf(6hj)‘, where 
S, stands for a geometrically transforming constant: As a result, the surface energy E, 
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consumed by the new surface is expressed as E, = YOSf(Shj)2, where y. is the surface 
energy density. 

Multiplying eqn (37) by S,YoShj leads to 

Es = SfYo(6hj)2 = s,Yo[n,(hj-,>12[v,(x,, yn,)12i2(hj-1) < hp[Vz(xm,, y,)12. (39) 

The physical meaning of eqn (39) is that the surface energy consumed by fragmentation is 
less than the total kinetic energy of the particle. Furthermore, the inequality of (39) can be 
rewritten as 

~3,9(~22-1) < mP 
1 z -. 

2SfYO 

(40) 

Theoretically speaking, A, and & are independent of V,. Therefore, to have a bounded 
value on the left-hand side of (40), the inequality & 2 1 must hold. Otherwise, when V, is 
smaller this inequality from the energy conservation principle would not hold. For ductile 
materials, theoretical and experimental analyses show that & varies between 2 and 2.3 
[14-161, and it is consistent with the physical meaning. 

For the modeling of drilling, the explicit forms of A1 and & are chosen such that they can 
reflect the influence of the damping and other effects like the resistance of outflow. In this 
work they are of the form 

A, = 43 
hf’1 + 1’ 

& = l,h,-l + 2, 

(41) 

(42) 

where li (i = 0, 1,2) are constants determined by experiments. Substitution of (41) and 
(42) into (37) yields 

6hj = ,,‘O+ 1 K(XO,~ Yqw2hJ-1+2. (43) 
I 1 

This equation is consistent with the classical one when I, = l2 = 0. It follows from (43) that 
the erosion rate decreases when the depth of drilling increases and the shape of the hole is 
also changed since the dimensionless velocity V,(x,, y,) G 1 is associated with exponent 
l,hj_l + 2. 

3.2. Modeling of drilling 

Determining how many particles strike a given small area is the primary step in 
calculating the depth of drilling at that area. Usually the chaotic motion or unpredictable 
manner of particles can bring about great difficulties to tracing trajectories of particles. 
Nevertheless, the point set f,” obtained previously makes the task feasible. The following 
introduces a new approach for recording histories of individual particles. 

The net dish in Fig. 2 is now applied to the surface to be drilled. Every element of the 
dish acts as a memory cell to trap every particle falling into it. The average depth 
generated by a particle, say the jth particle, in the cell corresponds to 6hj of eqn (37) in 
which the coordinates (xllj, y,) are defined as the center of the cell. For axisymmetrical 
laminar flow, V, is given by eqn (17), and then eqn (43)t becomes 

6hj = (li = l/(Xti + vii)) 
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and for turbulent flow, from the average velocity profile given by (18) one obtains 

(45) 

The final depth of drilling in each element is the accumulation of erosion of all the 
particles. The three-dimensional drilling profile of a hole forms after the depth of every 
element in the drilling region is available. The detailed numerical treatment is not 
described here due to sophisticated procedures. Two examples are displayed in Fig. 7 for 
3D characteristics of two holes. One is for the case of laminar flow and the other is for the 
turbulent flow. Both the theoretical and experimental results show that Ii = 2.0 holds for 
either brittle or ductile materials. In addition, 1, = 0.2 appears to match the experimental 
shape of a hole. Clearly, the velocity profile has a very significant influence on the 
geometry of holes. 

3.3. Experiments 

The VISTA glass brick with the dimensions 8 x 8 x 3 in3 is chosen as the specimen of a 
brittle material. Since waterjet pressure is as low as 50 MPa for drilling the glass brick, the 
abrasive waterjet is assumed to be laminar flow and hence the point set generated by (21) 
is the particle source of the modeling. The erosion rate is calculated by eqn (44). The 
comparison between theoretical and experimental analyses is listed in Table 1. 

The specimen of the ductile material is made of titanium. Since the water pressure is as 
high as 240 MPa, the flow in this case can be verified as turbulent. The points derived 
from (22) are used to simulate the particle motion and the penetration abilities of them 
are evaluated by use of (45). Table 2 shows that theory is in good agreement with the 
experiments. 

Z 

a.80 

3.07 

1.83 

0.00 

a 4 

Fig. 7. Three-dimensional shape of a hole by (a) laminar and (b) turbulent flow. 
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Table 1. Comparison between theory and experiment for drilling glass 

:, (4 
h:: (mm) (-1 

;; g ii 90 55 
35.5 40.1 47.1 55.0 

workpiece material: glass 
abrasive material: aluminium oxide 
size of abrasives: 100 (mesh) 
diameter of mixing tube: 2.5 mm 

waterjet pressure: 50 MPa 
abrasive flow-rate: 5.4 g/s 
standoff distance: 25 mm 
I(j = 18.86, 11 = 2.0, I* = 0.2 

Table 2. Comparison between theory and experiment for drilling titanium 

:, (4 

h: (mm) (mm) 

13 12 21 17 40 24 28 60 

14.4 18.5 23.5 28.0 

workpiece material: titanium 
abrasive material: aluminium oxide 
size of abrasives: 100 (mesh) 
diameter of mixing tube: 2.5 mm 

waterjet pressure: 240 MPa 
abrasive flow-rate: 5.4 g/s 
standoff distance: 25 mm 
lo = 9.63, 1, = 2.0, I2 = 0.2 

4. CONCLUSION AND DISCUSSION 

Constructing particle-laden flow by fractal point sets proves to be an effective approach 
to simulating three-dimensional drilling by abrasive waterjet. The most remarkable advan- 
tage of this method is that one finds an ideal particle source without extremely complex 
computation based on the many nonlinear partial differential equations in fluid mechanics 
or expensive and time-consuming experiments. The reason for the benefit is that a point set 
or particle source itself already carries chaotic behavior so that the procedure of obtaining 
the property is avoided. 

The AWJ drilling operation is modeled in the present research and satisfactory results 
are achieved according to the agreement between the theory and experiment. For future 
work, many issues are still open for further research, such as the characterization of surface 
quality, non-steady flow simulation, and the fractal property of point sets. 
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