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Abstract: Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to 
the vehicle structure is typically via a combination of either mechanical or fusion joining with adhesive bonding. Correspondingly, 
there has been a large effort in improving the adhesive bonding characteristics by changing the surface properties using different 
surface treatment techniques. One such method is the atmospheric arc discharge process which develops a specific surface roughness 
which can be leveraged to improve adhesive bonding. In this paper the effect of a textured surface by arc discharge on the failure mode 
and strength of adhesively bonded aluminum alloy sheets is investigated. A single-lap joint configuration is used for simulation and 
experimental analysis. A two-dimensional (2D) finite element method (FEM) involving the morphology of treated surfaces and using 
interfacial elements based on a cohesive zone model (CZM) are used to predict the joint strength which is an enabler for faster product 
development cycles. The influence of arc process parameters: the arc current and the torch scanning speed, on the surface morphology 
and joint strength are explored in this study. Specifically, the present study shows that the surface treatment of aluminum alloys by arc 
discharge can strongly enhance adhesive bond strength. Additionally, arc treatment not only increases the joint strength but also 
improves the quality of bond along the interface (transition toward cohesive failure mode). The current FE simulation of adhesive joint 
using the elastic and elasto-plastic (non-linear) material properties for adherend and adhesive, respectively, and cohesive zone elements 
for interface shows an accurate prediction of the resulting joint strength. By inclusion of non-linear multi-scale geometry model via 
considering the surface topographical changes after surface treatment the FE joint strength prediction can be successfully implemented. 
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1. Introduction  

The aircraft industry was one of the first industries 
that adopted adhesive bonding in aircraft manufacturing 
for aluminum alloys. Currently, aluminum alloys are 
the center of attention of auto manufacturers because of 
their mass savings potential and good mechanical 
properties making them an appropriate alternative to 
steel [1-2]. Reducing vehicle mass lowers the fuel 
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consumption and related CO2 emissions which are 
important factors for the automotive industry. The 
significant growth in aluminum alloy consumption in 
the past decade and a parallel growth in the use of 
adhesives makes aluminum alloys an ideal substrate for 
adhesive bonding research. There has been large effort 
in improving the adhesive bonding characteristics by 
changing the surface properties using different surface 
treatment techniques. A surface treatment is considered 
as a crucial factor in adhesive bonding that can 
influence the joint strength [3]. Common industrially 
used surface treatment methods can be categorized into 
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three main groups: mechanical (such as grit-blasting); 
chemical (acid etching); and electrochemical (acid 
anodizing), but can cause problems such as mechanical 
damage to the adherend, presence of loose particles, 
inconsistent results and environmental problems (toxic 
waste) [4-5]. Environmental concerns and new 
regulations to reduce or eliminate the hazardous liquid 
chemicals which are by-products of wet surface 
treatment techniques have motivated a number of 
researchers to find adequate substitutes [6-7]. In order 
to understand the importance of surface preparation 
before bonding, it is necessary to review failure modes 
in adhesively bonded joints. There are two major failure 
modes: adhesive and cohesive failure mode. In adhesive 
failure mode the failure occurs along the 
adherend-adhesive interface, while in cohesive failure 
mode, the failure occurs in adhesive layer [8-9]. 
Cohesive failure mode is a characteristic of 
well-bonded joints while adhesive failure mode is a sign 
of inappropriate bonding usually caused by 
inappropriate surface preparation or presence of 
contamination on adherends during the manufacturing 
process [8]. 

Many researchers have studied the effect of surface 
topology of adherends on the bond strength by 
experiments and/or numerical methods including finite 
element method [10-11]. Finite element analysis 
showed that the increase in surface roughness could 
reduce the stress level at the interface [12-13] thereby 
increasing the bond strength. One of the mechanisms 
present in the load transfer in adhesively bonded joints 
is the mechanical interlocking between the substrate 
and adhesive (especially when the bond is loaded under 
shear tension) where the roughened surface can 
provide improved bonding [14]. However, the degree 
of influence of the surface roughness on the bond 
strength is still a controversial topic among researches. 
It is generally believed that an optimized surface 
roughness increases the joint strength [12, 15] while 
too rough of a surface can elevate the risk of bond 
failure since during the curing cycle, the air trapped 

between adhesive and adherend can create 
macroscopic pores [16] while other authors of Refs. 
[17-19] believe that surface roughness variation does 
not have a significant impact on the joint strength. 

To achieve an excellent joint strength in aluminum 
alloys, it is required to remove the contaminants, 
increase the contact surface area and remove the 
existing oxide layer which is usually accomplished by a 
combination of the mechanical, chemical and other 
surface treatment techniques [9]. This can be 
problematic for the automotive industry where multiple 
treatment steps and/or long treatment times are not 
desirable [14]. One of advantages of arc discharge 
surface treatment is to reduce the number of required 
processes to a single rapid step in addition to the 
inherent possibility to treat 3-dimensional and/or 
complex geometry objects. Furthermore, the process is 
both economical and environmentally friendly making 
it an ideal replacement to commonly used industrial 
surface treatment techniques. Anagreh and Al Robaidi 
[20] investigated experimentally the influence of arc 
discharge surface treatment on aluminum alloy and 
stated that the surface treatment caused a significant 
improvement on the joint strength due to enhancing 
contact surface area by increasing the surface 
roughness, creating a porous structure and removing 
inorganic oxide layers and organic contaminations. 

Arc discharge is an example of thermal 
quasi-equilibrium plasma which provides local high 
temperature sites (spots) and therefore, can be 
considered as a suitable tool for material processing 
and surface modification [21]. Cathode spots are tiny 
bright spots with high energy density which appear to 
quickly move in an almost random manner on the 
cathode surface during the arc discharge process and 
cause rapid evaporation of the material and formation 
of craters on the surface [22]. The number, size, 
distribution and overlapping of craters on the arc 
treated surface dictate the surface roughness. 

With respect to the information above, a numerical 
model that includes surface micro-texture can be 
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beneficial to study the stress/strain distribution in 
adhesively bonded joints and prediction of the joint 
strength. The objective of the present study is to 
quantify the influence of the surface topology 
modification in aluminum alloys, caused by the 
atmospheric-pressure plasma arc discharge, on a single 
lap shear joint strength using a Finite Element analysis 
and a series of experiments to verify the results. For 
this purpose an accurate geometric model of the 
interface is built based upon the experimental results 
from surface topology mapping using an optical 
profilometer. The paper is organized as follows: 
Section 2 describes the experimental procedure. 
Section 3 explains the numerical analysis. Section 4 
discusses the experimental and numerical and 
analytical analysis results. Section 5 gives the 
conclusion. Section 6 states future work. 

2. Experimental Procedure 

The adherend material is aluminum (Al) 6111 alloy. 
A strip of material having a width of 12.7 mm along the 
edge of the length of an Al sheet having dimensions 
305 × 125 × 1 mm is cleaned (with acetone) and treated 
by low intensity atmospheric-pressure direct current 
(DC) arc discharge. The arc surface treatment process 
is presented in Fig. 1, where the plasma torch is moved 
with respect to the stationary coupon by a CNC 
positioning system. The schematic of plasma torch 
movement on the sheet with a zigzag path is presented 
in Fig. 2a. To avoid the overlap of treated areas, the 
treatment width is determined with respect to each set 
of arc process parameters used in this study by 
averaging a number of measurements and then 
considering the width when writhing the G-code of the 
zig-zag pattern for CNC system. The arc process 
parameters; arc current of I = 5 and 20 A and plasma 
torch scanning speed of v = 20 and 70 mm/s, are 
selected based on the optimization experiments where 
the limiting boundaries are the generation of a 
macro-spot of melted substrate (as a function of the 
sheet�’s thickness, arc current and torch speed) on the 
surface and equipment specification (for example, the 

 
Fig. 1  Setup of the arc discharge treatment process with a 
typical surface of the treated area on the aluminum alloy 
6111. 
 

 
(a)

 

 
(b) 

Fig. 2  (a) The torch movement�’s path on the Al sheet; (b) 
a typical arc treated coupon. 
 

minimum available current was 5 A). The arc is 
established by means of the gas tungsten arc welding 
(GTAW) power source with reversed polarity 
(electrode positive), while the tungsten electrode and 
Al sheet serve as anode and cathode, respectively [23]. 
The distance between electrode tip and coupon surface 
is about 3 mm. The argon (99.8% purity) is used as an 
inert gas with the flow rate of 15 L/min. Standard 
coupons having dimensions 127 × 25.4 × 1 mm for 
tensile testing of single-lap shear joints are cut from the 
sheet by a sheet metal shear press. 

A typical coupon prepared for bonding treated with an 
arc of I = 5 A and v = 20 mm/s is illustrated in Fig. 2b. 

The experimental observations reveal that the 
maximum bond strength can be achieved by 
minimizing the coupon�’s waiting time between the 
surface treatment and the bonding process. For all 
surface treatment techniques it is important for the 
treated parts to be bonded as soon as practically 
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possible after treatment however, the time appears to 
be especially critical for the arc treatment technique. 
Immediately following the surface treatment process 
an oxide layer forms on the aluminum adherend when 
the metal is exposed to the atmosphere. Additionally, it 
was experimentally confirmed that the contact angle 
value of aluminum alloy substrate increases with time 
after arc discharge treatment, which has been explained 
in detail elsewhere [24]. 

For all treated coupons in this study, the bonding is 
performed within one hour following the arc treatment. 
In order to provide consistency in making the coupons 
for mechanical tests, a fixture was designed and built 
(Fig. 3). A uniform and consistent compressive load is 
exerted by the spring on the contact area of each 
bonded coupon during curing. The structural heat 
curable epoxy based adhesive Terokal® 5089�™ (from 
Henkel Corp.) is used for two series of experiments. 
The first set of experiments is performed on the 
coupons without surface treatment. The second set of 
experiments is performed on the coupons with treated 
contact surfaces. A 0.25 mm thickness of adhesive 
layer is used throughout the experiments (0.25 mm 
diameter glass beads are used as spacers). Any spew 
fillet formed during preparation of the joint coupons 
was removed prior to the curing process. All coupons 
are cured according to the adhesive curing conditions 
recommended by the manufacturer. The oven 
temperature is set at 190 °C (374 °F) with a curing time 
of 45 minutes. A thermocouple is used to accurately 
monitor the temperature of the oven. 

The single-lap-joint shear test is conducted based on 
ASTM standard D1002-99 [25] with a modification of 
the overlap width to 12.7 mm. The tensile test machine; 
Instron 5582, is used to perform tensile shear tests with 
an extension rate of 10 mm/min. Spacers having the 
same thickness of the adherend are used in the grips to 
improve the joint alignment. For each set of 
experimental parameters, at least five coupons (the 
capacity of the fixture) are tested and an average value 
of the strength is recorded. 

 
Fig. 3  The adhesive bond joint curing fixture. 

3. Numerical Analysis 

The FE model proposed in this paper is the 
continuation of the authors�’ previous study [13] of 
stress distribution throughout the interface at a single 
lap joint when the surface topography of adherend at 
the contact area with adhesive was taken into 
consideration. The main objective of this paper is to 
calculate the approximate strength of a joint subjected 
to tensile loading as a function of surface texture. For 
the simulation of stress development in the adherend 
and adhesive layer, a transient analysis is performed 
using the ANSYS Release 11.0. A 2D model is 
considered since creating a three-dimensional (3D) 
surface topology of adherend in interfacial areas will 
require an enormous computational time. 

Adherends and adhesive are represented by 2D 
structural solid elements, PLANE42, and interfaces are 
simulated using the 2D 4-node cohesive zone element, 
INTER202 [26].  In the simulation of the delamination 
process in cohesive zone, the failure does not occur 
immediately after initiation of delamination when the 
interfacial normal or shear stresses reaches the material 
strength as depicted in Fig. 4 [27]. 

Gkc is the critical fracture energy and equals the area 
under the stress displacement curve [28]. 

(1) 

The basic mode of a crack surface displacement is 
shown in Fig. 5. Mode ,  and  are associated with 
opening, shearing and tearing modes, respectively [29]. 

In mode  (opening), crack surface displacements are 
perpendicular to the crack plane, in mode  (shearing), 
crack surface displacements are along the crack plane  
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Fig. 7  Surface profile extracted from scanned area of 
non-treated coupon. 
 

 
(a) 

 
(b) 

Fig. 8  Surface profiles for the coupon treated by I = 20A 
and v = 20 mm/s: (a) original surface profile; (b) surface 
profile after applying a threshold filter. 
 

melting of the surface for those cases experiencing long 
exposure times to the arc. In order to develop an 
average representative surface texture these 
abnormalities are removed by applying a threshold 
filter to the original profile which automatically 
removes these abnormalities while modifying 
(reducing the height/depth ratio; 4% height threshold 
and 96% bearing ratio) a small percentage (4%) of data 
points of the profile [31]. The modified profile which is 
shown in Fig. 8b is used for further analysis and 
creating the geometry model. 

The coordinates (the horizontal distance from 0 to 
12.7 mm and the vertical distance from the mean (zero) 
line) of the profiles consisting of 6351 points is 
exported to a text file. The coordinate data for all points 
is imported into the ANSYS software in the form of 
arrays. The points are then connected to each other and 
the interface profile of one adherend is obtained. To 
save computational time, the opposing interface is 
created by mirroring the first interface profile. By 
adding the other geometrical parameters (via 

keypoints), the entire geometrical model associated 
with each case is built. 

3.3 FE Mesh and Boundary Conditions 

A detail of the FEA meshes used for analysis is 
depicted in Fig. 9. Finer mesh elements are applied to 
areas adjacent to interfaces undergoing high stress 
gradients. A combination of rectangular and triangular 
shaped elements is used for meshing. The grid 
independency of the solution is verified by changing 
the mesh sizes and recording the first principal stress 
variation with the number of elements/nodes. This 
study is performed for the case of a non-treated 
substrate having a 2 kN applied load and the results of 
17 cases with a varying number of elements, refer to 
Fig. 10. The final mesh sizes are chosen by balancing 
the need for a sufficiently fine mesh to achieve 
acceptable accurate results and a coarser mesh to 
reduce computational time [13]. 

A schematic section of the single-lap shear joint and 
associated boundary conditions is depicted in Fig. 11. 
To simulate the experimental conditions the left 
unbounded adherend end is assumed to be hinged and 
the right unbounded adherend end is assumed to be free 
to roll horizontally. 

A tensile force is applied to each node of the right 
end of the upper adherend in order to produce a 
uniform force. The magnitude of the force at each node 
is equal to the total force divided by 5 (i.e., the number 
of nodes). 

4. Results and Discussion 

4.1 Surface Characterization 

Fig. 12 shows the three-dimensional topographies 
measured using a profilometer of non-treated and 
treated aluminum surfaces over a scanned area having 
dimensions: 1 mm × 1 mm. In case of anisotropic 
surfaces such as arc treated surfaces, the average area 
roughness, Sa, is more representative than Ra [32]. The 
Sa for non-treated and treated samples are 0.6 and 1.57 

m, respectively. The roughness of treated coupons is 
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Fig. 13  SEM images of aluminum alloy 6111: (a) non-treated substrate, (b) treated: I = 40 A, v = 70 mm/s, and (c) treated: I 
= 40 A, v = 70 mm/s. 
 

It is clearly shown that non-treated coupons experience 
adhesive failure although, the failure mode in treated 
coupons has a greater resemblance to cohesive failure. 
Thus it appears that arc discharge surface treatment 
causes a transition from adhesive to cohesive failure. 
This shift to a more cohesive failure coincides with a 
consistently significant increase of lap-shear strengths 
based upon five coupons per condition, refer to Fig. 15. 
Adhesive or interfacial failures occur at lower loads 
than cohesive failures and are usually due to a poor 
surface preparation. 

Additionally, the impact of arc discharge process 
parameters; the arc current and the torch velocity, on 
bond strength is investigated. For the limited range of 
arc process parameters, it is found that these two arc 

parameters have a small influence on the bond strength. 
For a given torch velocity; v = 20 mm/s and 70 mm/s, 
the increase of arc current (from I = 5 A to I = 20 A) 
augments slightly the joint strength with a maximum of 
3.9%. On the other hand, for a given arc current; I = 5 
A and I = 20 A, the torch velocity increases (from v = 
20 mm/s to v = 70 mm/s) which causes a reduction in 
the joint strength up to 1.2%. This is in accordance with 
FE modeling results on the stress level at the interface 
as presented in Ref. [13]. There it was shown that the 
von Mises stress at the interface increases slightly with 
torch velocity. A broader range of arc discharge 
process parameters should be considered in order to 
obtain the relationships between the arc process 
parameters and joint strength. 

����P(c)�

����P�
(b)

����P(a)
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I=20 A, v=70 mm/s, mag.=4X I=120, v=70, mag.=4X

Control, mag.=4X Control, mag.=4X

 
Fig. 14  Microscopic images of coupons after failure and the surface profiles along the horizontal white lines at two locations for 
each of two cases: (top) non-treated (control) coupon and (bottom) treated with following parameters: I = 20 A and v = 70 mm/s. 
 

 
Fig. 15  Average shear strength of non-treated and treated 
coupons using combination of two arc process parameters 
(I and v). 
 

As it was mentioned earlier the time after treatment 
is a determining factor in bond strength. An 
independent series of experiments is conducted to 

study the influence of coupon storage time following 
arc treatment for the following parameters: I = 20 A 
and v = 70 mm/s. The treated coupons are stored at 
ambient conditions for a time period of two weeks 
before performing the adhesive bonding. The 
subsequent tensile shear test results reveal an increase 
of 7.4% in shear strength for treated coupons (s.d. = 0.1) 
compared to non-treated coupons (s.d. = 0.28). 

4.3 Failure Prediction 

4.3.1 Simulation Prediction 
A 8.2 kN tensile force is applied to the upper 

adherend�’s right end in 120 sub-steps for a duration of 
2 minutes. The first principal stress development in the 
adhesive layer is monitored with respect to the time 
steps until it reaches the adhesive ultimate strength 
(40.61 MPa). Harris and Adam [38] examined the 
applicability of a maximum stress/strain failure 
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experimental value of 5.4 kN. Therefore, it is feasible 
to draw the conclusion that for the case of the 
as-received aluminum alloy surface (low surface 
roughness) a straight line for the interface is a 
reasonable assumption to use in the geometry model. 

The first principal stress distribution in the middle of 
the adhesive layer at the instant of failure along the 
overlap length is shown in Fig. 19. The max stress for 
the surface treated coupons is higher and increases 
gradually with increasing roughness since the joints 
with rougher texture can endure more loads, as shown 
earlier. 

4.3.2 Prediction of Lap Shear Strength Based on 
Principles of Solid Mechanics 

A simple approach based on the principles of solid 
mechanics proposed by Adams and Davies [41] can be 
used to predict the lap shear strength of ductile 
adhesives and adherends such asaluminum alloys. A 
formula to calculate lap joint shear strength without 
considering yielding of the adherend is 

(2) 

where P is the max tensile load, b and l are adherend 
width and overlap length, respectively. 

However, in real situation where in fact there may be 
yielding deformation of the adherend there are other 
factors that should be considered. The maximum stress 
which occurs at the adherend surface; m, due to 
bending; s, and direct tensile stresses; T, can be 
calculated by Eq. (3): 

(3) 

where variable k is bending moment factor and t is 
adherend�’s thickness. 

The maximum applicable load could be found by 
making m to be equal to adherend yield strength y, 

                (4) 

For low loads and short overlaps, k  1. Thus, 

(5) 

For longer overlaps when  [41] (in our 
case: ) 

 (6) 
As shown in Fig. 20, for a given overlap length the 

joint strength lays between Eq. (4) (for prediction of 
remarkably high yield strength adherends), or Eq. (5) 
or Eq. (6) (for prediction of ductile or lower strength 
adherends). The joint strength cannot surpass the line 
associated with Eq. 4 since this equation applies to the 
cases when the entire adhesive layer is yielding. 
Considering the feasible range of the joint strength, 
one can realize that the arc discharge surface 
treatment has a significant impact on the joint 
strength. 

5. Conclusions 

The present study shows that the surface treatment of 
aluminum alloys by the arc discharge can strongly 
enhance the adhesively bonded joints strength. 
Additionally, arc treatment not only increases the joint 
strength but also improves the quality of bond along the 
interface (transition toward cohesive failure mode). 
The current FE simulation of adhesive joint using the 
elastic and elasto-plastic (non-linear) material 
properties for adherend and adhesive, respectively, and 
cohesive zone elements for interface shows an accurate 
prediction of joint�’s strength. By inclusion of 
non-linear multi-scale geometry model via considering 
the surface topographical changes after surface 
treatment the FE joint�’s strength prediction can be 
successfully implemented. 

6. Future Work 

The FE analysis using CZM will be used to predict 
the failure process by simulation of crack nucleation 
and propagation. The experimental work will be 
expanded to investigate the effect of variety of arcs and 
associated process parameters on the joints strength 
and durability. Additionally, the response of different 
kind of adhesives to the arc treatment would be 
included in the studies. 
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Fig. 19  First principal stress at half thickness of adhesive layer. 
 

 
Fig. 20  The experimental and predicted joint strengths. 
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