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A procedure is presented for nonlinear least squares estimation
in which the parameters to be estimated are reclassified from all non-
linear to linear-nonlinear. The theoretical basis for the reclassifi-
cation approach is presented together with a discussion of convergence
criteria and confidence regions using this method. Examples are pre-
sented which allow a comparison of the nonlinear to the linear-nonlinear
method employing two widely used iterative techniques, those of Hartley
and Marquardt. The reclassification method reduces the dimensionality
of the veétor of iterants and thus the numﬁer of initial guesses to be
made and simplifieé the sum-of-squared-error surface. In many cases, this
reduction affords faster convergence because of less iterations required.
Improved results (less iterations and/or computer run time) are obtained
for the linear-nonlinear method when using the Hartley technique, but not

when using the Marquardt technique.
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CHAPTER I
INTRODUCTION

In science and industry data are continually being gathered as
the result of experiments made to further man's search for knowledge to
better his life. \There is a need, then, to have techniques available
to extract from these data hidden or implied relationships. It is desir-
able to be able to approximate the functional relationship between certain
response observations and corresponding inputs by a mathematical model.
Many models which describe best the desired functional relafionship con-
tain nonlinear as well as linear parameters. A nonlinear regression prob-
lem is one in which at least one of the parameters to be estimated enters
the model in a nonlinear manner.

Consider the problem of fitting a nonlinear regression model to a
set of n observations of the form yy, Xjy, Xops -5 Xgys Where yp is the
hth response, h =1, 2, ..., n to a set of inputs X1ps Xpps c+vs Xkhe The
model tb which this set of observations is to be fitted can be written in
the form

Vo = (X Xops oovs Xq3 015 0py ens 0p) + ey (1)
where Ol, 62, e oo @m are the parameters to be estimated and the errors
ey arise from independent normal distributions; i.e., e = N, (0, 02I) where
e = (e19 €0y cosy en)', 0 is the n x 1 zero vector and T the n x n identity

matrix.



The model given by equation (1) can be written in vector notation

as

E(y,) = £(x;0) (2)

where

xp = (%13, Xpps +oes Xyep) "

9= (67, 0y cvny Op)

The method most frequently employed for obtaining the estimate of
the unknown parameter O is the method of least squares. A set of
Oi(i=l,2,,..,m) for which the error sum of squares

tt 2
Q@) = ) [y, - £(xn:0)] (3)
h=1
is a minimum must be determined. Q(0) is a function of @ only since y,
and X, are fixed observations. Let the value of 0 which minimizes Q(9)

be 0. This least squares estimate of O is obtained by differentiating

equation (3) with respect to 0, and setting the result equal to zero,

yielding
. n
A== - Yt (x30)] S25E=— = 0, (4)
305 h=1 30,
for i =1, 2, ..., m.

~

This gives m normal equations which must be solved for O. When the
regressién function f(§h;g) is linear in the parameters, the m nQrmal
equations are linear equations in 0; and when £(x,30) is nonlinear in
the 0's, the m.normal.equations will also be nonlinear.

- The solution to equation (4) is in general not obtainable in closed

form. Numerical methods are thus used to obtain the least squares estimate
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é. Most iterative algorithms for the least squares estimation of non-
linear parameters use a modified Gauss-Newton method, steepest descént,
or.a combination of these two methods. fwo of the most widely used algo-
rithms are ones utilizing a modified Gauss-Newton method due to Hartley([7]
and a combination of the modified Gauss-Newton method with the method of
steepest descent due to Marquardt [11]. These are iterative procedures
and must begin with a starting (initial) guess, say QP, for the entire
set-of parameters O. This initial estimate is improved in subsequent
iterations by calculating a correction factor to each of the nonlinear
parameters until the correction factof and/or fhe difference in the error
sum of squares at each iteration becomes sufficieﬁtly small. The sequence
{Qi} converges to g?in(é) under conditions discussed in references [7]
and [11]. Convergence criteria will be discussed more fully in Chapter iII.
For any given mathematical model the number of iterations necessary
for convergence of the sequence {Qi} to Q?inidepends upon the observations,
the starting vector and the algorithm used. Conversely, for any given
set of data and algorithm, the model chosen for fitting these data deter-
mihes the rate of convergence and, in some instances, wﬁether the iterative
procedure will coﬁverge at all. One aspect of this subject has been dis-
cussed by comparing results for particular models and data using five dif-
ferent algorithms (modified Gauss-Newton method) by Flanagan, Vitale, and
Mendelsohn [5]. Spang [20] reviewed minimization techniques for nonlinear
estimation. Jennrich and Sampson [9] and Maf@uardt [12,13] developed
techniques applicable to.situations where conditioﬁs necessary for conver-

gence are not satisfied when the aforementioned methods are employed. These

methods are reserved for these specialized problems since they are more



complicated usually requiring greater computer time. Ross [18] discusses
methods which can be used for nonlinear parameter estimation when a parti-
cular iterative technique fails.

Drane and Schucany [3] considered another approach to the nonlinear
least squares problem. They observed that any parameter in least squares
regression can be classified as either linear or nonlinear in a given
mathematical model and need not necessarily be analyzed as all linear or
all nonlinear (if at least one nonlinear parameter exists in the model).
Richards [17] had eluded to this aspect of the problem, but only for a
specialized problem.

Equation (1) can thus be written as

yh = X BJgJ(tha Xons ocs Xpps 01y 025 eeey G.q) + €h (5)
=1

J

where Bl, 82, c..3 B represent the linear parameters and 0 50n e e 0

b q

represent the nonlinear parameters in the model. In addition,
gj(xlh’x2h”"’xkh5 al,ae,...,aq) are functions of the nonlinear para-
meters only and the k input variables, X1ps Xohs cevs Xpp- The model
still consists of a total of m parameters, but they have been reclassi-
fied as p linear and g nonlinear parameters where p + ¢ = m. Equation

(5) can be written in matrix notation as
E(y) = Fg (6)

where the expected value of a vector y of n observations is equal to a

linear combination of the p-columns of the n x p F matrix of linearly inde-
pendent functions gj(gh;g), jJ=1,2, «.., py h =1, 2, ..., n; x, =
(X715 Xpps coes xkh)‘; a = (ag, Gps vees aq)‘, B = (Bys Bos vcns Bp)', and



g (xy50) « - - gp(_x_l

—
30)
=

sl(>_<2;g) .o gp(zg;g)

. .
.
° .

gy (xysa) © - gp(zn;g_)

In the above, B is the vector of p linear parameters and a the vector of
q nonlinear parameters. The error sum of sQuares in matrix notation then
becomes

Q(e) = Q(B,a) = (y-FB)'(y-FB) (7)

The problem then becomes one of calculating p é's and q &'é, the least
squares estimators of B and o, which will yield a minimum Q(8,a). See
Drane [2].

The approach used by Drane and Schucany was to determine for an
initial set of q nonlinear parameters, say gp, the value of B which mini-
mizes Q(ﬁjgp). This can be done by the usual linear regression technique
to give
-1

YRy | (8)

0 _
B = (FO'F 0

0

They then treated E(x) directly as a nonlinear problem withm - p =g
parameters and employed the Hartley or Marquardt iterative procedure to
calculate an improved value of»gp, say g}. Obtainment of g? allowed,ﬁ}
to be calculated by equation (8). This procedure was repeated until g}
converged to g?in(é) wherein §?in(é) could be calculated. Results indi-
cated this procedure not to be any better (as far as computer time or
iterations to convergence) than the technique of considering the B as

well as the o parameters as nonlinear and using the Hartley or Marquardt
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techniques directly. Som= specific results are discussed in reference [3]
from which combarisons can be made to results presented in Chapter IV using
the algorithm to be presented.

Walling [23] used essentially the same approach as Drane and
Schucany, but considered the inner-relationship between the lineér and
nonlinear parameters when using the Gauss-Newton iterative algorithm to
calculate the estimate of the nonlinear parameters. Nelson and Lewis [15]
utilized Walling's approach together with the modified Gauss-Newton
(Haftley) algorithm. Both report that for some examples the number of
iterations required for convergence was less than that using a technique
where all parameters were considered as nonlinear. Initial starting
values for the nonlinear parameters were not considered by Nelson and
Lewis and neither they nor Walling presented any comparison of computer
time to cdnvergence between their described methods and the.methods using
fhe conventional all nonlinear approach. In both the Walling and Nelson-
Lewis methods the value of the linear parameters was calculated only after
‘the estimate of the nonlinear parameters was made at any particular itera-
'tion; i.e., E? remained édnstant for a gi&en ith iteration while searching
for a correction factor.to calculate g}+l utilizing a particuiar algorithm.

The same general method'suggested by Nelson and Lewis was implied
by Lawton and Sylvestre [10] in which they define a "reauced model"” and
épply the Hartley iterative technique to it to estimate the noﬁlinear para-
neters. Their reduced model is defined as E(X) = Fé_where é_is the vector
of least square estimates of the linear parameters as defined in eQuation

(6). 1t is not clear if their approach is mathematically the same as that

of Nelson and Lewis, but it would appear to be. Four models are presented



in which the same data are used to obtain a fit.l In each case, their
method reduces the number of iterations required to obtain convergence.
Again, nothing is said of computer time necessary for convergence or
starting vectors for the nonlinear parameters.

Papaioannou and Kempthorne [16] present an algorithm which mini-
mizes a particular function with respect to linear and/or nonlinear para=-
meters referred to as "parallel tangents and steepest descent." A sug-
gestion is made to write the equation to be minimized in terms of nonlinear
parameters only since é_can be written as (F'F)-lF'X. This reduces the
dimensionality of the problem from m to gq. They suggest that their method
then be used to obtain g?in which will allow in turn obtainment of ﬁ?in
No examples of this suggested approach to the nonlinear regression problem
"are given. This is exactly what Spillman [21], Stevens [22], and Drane[2]
each did for the exponential regression function. However, it would
appear to be computer time consuming in comparison with other known met-

" hods. The cunbersomeness of this method was also demonstrated by Drane
and Schucany [3]. Alsc, it would seem that stability problems might be
more frequently encountered in this approach.

All of the above methods which recognize the relationships. of the
1inear and nonlinear parameters have two primary advantages over tech—'
niques where all parameters are treated nonlinearly. These are:

1). The dimensionality of the vector of iterants and thus the
number of initjal guesses to be made is reduced from size
m=7p + q (nonlinear) to size q (linear-nonlinear).

2). The sum-of-squared-error surface is simplified because of
this dimensionality reduction. In some cases, faster con-
vergence and less sensitivity to starting guesses is achieved.
However, in many examples, which were run using the Nelson

and Lewis [15] and Lawton and Sylvestre [10] methods, this
was not found to be the case.



The algorithm presented in Chapter II for least squares estimation
of nonlinear parameters, when some of the parameters are linear, makes
use of the aforementioned fundamental approach, but with one additional
criterion which greatly reduces the number of iterations required to
reach convergence. In both the Hartley and Marquardt algorithms there
are times within a given iteration when the error sum of squares must be
calculated to ascertain the optimum correction terms to apply to the non-
linear parameters being estimated. In the methods described previously
once the linear terms have been estimated for a given vector of nonlinear
terms they are not calculated again within the iteration during the search
for the "best" correction terms. This algorithm proposes calculating the

linear parameter vector estimates within every iteration whenever the

error sum of squares is required for obtainment of the best correction
terms. This concept will become clear in Chapter II when the iterative
scheme is presented in detail. Theory and examples using this concept
are presented which will show, in many cases, a reduction in the number
of iterations required to achieve convergence compared with other methods.
Computer time required using this technique compared to other techniques
also will be presented. All computational work was performed on the

UNIVAC 1108 computer at the SMU Computing Center.



CHAPTER II
THEORETICAL BASIS FOR PARAMETER RECLASSIFICATION

The general theory of the nonlinear parameter reclassification
approach as advocated in Chapter I will be presented using maximum-
likelihood concepts (since, whenever e ~ N(0,I02) the least squares esti-
mate of O is also the maximum likelihood estimate of ©). Richards [1T]
alludes to this approach, but only indirectly as it will be applied here.
However, much of the following regarding maximum-likelihood estimation
is from Richard's suggested approach to the problem. The theory will
then be presentgd specifically for the iterative scheme as used in the

~

given algorithm to obtain O or (.,é).

jo >

For this problem we will consider maximum-likelihood estimates
which are asymptotically Jjointly normal and efficient. (The following
results will be true under less stringent conditions, but not necessarily
relevant.) Let éﬂg} be the maximﬁm—likelihood value of B for a given
fixed o, and é) éj é_ﬁe the maximum-likelihood values of ©, 8, and o,
respectively. As defined previously, O is the m x 1 vector of nonlinear
parameters and (ﬁﬁg) are the linear-nonlinear pafameter vectors as reclassi-
fied where B is p x 1, a is g x 1, andm =p + q.

Let B be: the matrik with elements bij’ where

38, (o)
bi‘i:”——_aa;j (1=1,2, ooy P33 =21,2, covs q)



Let L(a) = 2{c,B(a)} ,
n

where 2(0) = 2{a,8} = log T p(x,;0)
=] —h

and p(x;0) is the pdf of x given 0.

. 3 ~ .
Let T.(a) = — 2{a,B8(a)} (i=1,2, ..., q)
1 Bai
) _ 3%(e) | . _ = .
and xij =~ 3530, 0 =0 (i, =1, 2, cee, m) .
i Jd
M M L., L
Let (Aij) = A = 11 12 and A7 = 112
Moy Moo Loy oo s

where Mli’ L
are p X q matrices, and Myy, L22 are p X p matrices.

Now Eﬂg} is a solution of the equations

22(0) ,
—g— =0 (J=1,2, ..., p) . (9)
J .
Partial differentiation of equation (9) with respect to 0 50ps secs aq
gives )
322(0) P o92p(g) 3By(2)
= 5———:;“-~Ji:l— = 0 (i=1,2,000y Q3 3 =1,2,..5D) .
da,08 . B OB, da.
1] k=1 k) i
Putting o = é_in the above, we have in matrix notation
-Mp)y - MppB = ¢
where ¢ is the p x g null matrix.
Solving for B we obtain
-1
B = -My, My . (10)
For j =1, 2, ..., a, we have
3L(a) 5 5 5 . 3, (a)
e Ba 2{a,B(a)} + B 2{a,B8(a)} 5
3 J k=1 'k %5 (11)

10

11 are a x q matrices, M12’ ng are g *X p matrices, Myy, Loy
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The second term on the right-hand side of equation (11) is zero by

equation {9) and hence

Also, for 1i,]

and putting o

AL (a)
Y-V
*3
=1, 2, ..., q, we have
32L(a)  924(9) 922(0) 3gx ()

= +
da; 00, 30,365 4 L) 90,905 dag

I

¢ in the above, we have in matrix notation

92L(a) _ e o B
da,da, 11 7 12
1773
by substitution of equation (10) for B,
= M, o+ M M. Tt M
T 12702 21

and by properties of partioned matrices and their inverses,

By the same properties,

and

The

mate, (8),

-1
= -..Lll . (12)
=] -1

B = -My, My = Loy Ly (13)
-1 -1

Lop = Myy ¥ Lpy Iny - Dyp (k)

above results show that the complete maximum-likelihood esti-

together with its asymptotic covariance matrix estimated by

A—l, may be obtained by the following method:

(1)

(ii)

Obtain él’ é2’ vees ép as functions of the unknowns
a a ey O .
l, 2’ H] q

Substitute for Sl, 82, ooy Bp in the likelihood function

2{or in Bl/aai(i=l,2,...,q)] the functions from (i) to obtain



12

a modified likelihood function L(o_, ¢,, ..., @ ) and hence the
modified maximum-likelihood equatidns Ti(al, A5s vees aq) = 0
(i=1,2, ..., q). -
(iii) Using these modified equations proceed as if performing an ordi-
nary maximum-likelihood estimation procedure for gé finding also
the corresponding estimated information matrix (-34L(a)/80;3a,)

and its inverse. Equation (12) shows that this will give Lqq%

which is in fact the estimated covariance matrix of aq, U5 e slqe

(iv) From a we can now compute B, §_= Ejé), Mgg_l, and hence, using

equations (13) and (1k), we may obtain Lis and Lop to complete .
the estimated covariance matrix A™—.

The equations Ti(g) = 0 are difficult to solve in most instances;
therefore, an iterative procedure must be employed. The idea is to guess

0
an initial value of a, say o , and then essentially proceed through steps

i=-iv to obtain al

and thus g} [=é(g})] using a particular algorithm (Gauss-
Newton, steepest descent, etc.) Using g} this procedure is continued until
termination at some (ao*¥*,8¥¥) which satisfies some pre-determined criterion
such as the sum of squared error converging to the same value. The exact
method advocated in this dissertation will become clear in the following
presentation of the theoretical iterative approach.

The modified Gauss-Newton method (Hartley) and the combination of
this method with the method of steepest descent (Marquardt) both seek to
minimize the error sum of squares with respect to the unknown nonlinear
parameters by the metth of least squares. The proposed algbrithm makes
use of the concept of reclassifying the nonlinear parameters into linear
and nonlinear ones and employing the above two techniques for estimation
of the nonlinear parameters. The method needs as input:

1). A set of observations of the independent variables Xy and
dependent variable vy

2). A subroutine which will read these data into the computer
in a specified manner.
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3). An algorithm that computes the partial derivatives of the
desired regression function(the program has an option which
will bypass this algorithm and use approximate partial deri-
vatives obtained by difference quotients if desired).

4). Initial guesses of the parameter vectdr which will minimize
the least squares function.

The algorithm allows the option of considering all the parameters
as nonlinear or reclassifying them as linear-nonlinear. Thus, the dimen-
sion of the parameter vector in item 4 above will vary according to the
option exercised in the program.

The procedure minimizes the function

0 .
' 2
QM) = ) lyy - £(xp1s Xpps ooes Xy 015 Ops +ees 0] (15)
h=1
where
n = number of observations
vy = dependent variable of the ith observation
_ <th . . .th .
Xij = J independent variable of the i observation
f = function to be fit

Oi = iT’h parameter of f

1]

Q(0) = a function of the m- tuple, 0 = (01, 05, ..., @m)'

When O is considered as all nonlinear the program takes the initial

0 ‘ . 0 . .min
guess O~ and computes the necessary corrections to @ to obtain @ , the
m - tuple which minimizes Q(Q). The corrections are computed by substituting
a first order Taylor approximation of f£(0) into equation§%}5) and forming
the least squares equations’Qi(Q) =0 fori=1, 2, ..., m, where Q(Q) is

written as

o) = ) [y, - £lx;0)1° (16)



and Qi(g) denotes the partial derivative of Q(0) with respect to 0;.

Substituting the first order Taylor approximation, equation (16) becomes

v 0 T Oys 12
Qo) = ) [y, - £f(x;307) - § £.(x30°)8,] (17)
el “h j=1 d°h J
. . . : __of
where if f is a function of (@l, 02, cees Om), then fi = 56;' and
2
fij = Séésg—-, the first and second partial derivatives of f with
i

respect to Oi

k th
Also, Oi = ith component of k O vector in the sequence
’ computed by the program starting with ©
h
é_k = Oik+l - Oik = it component of 6k s
! - —
and x, =k~ tuple (X171, Xjps =+es X5q)

Differentiating equation (17) with respect to 0; we obtain

T 0
Q;(9) = --Zth ly, - £(x,587) - ) f

h i -(zh;_P)aj] [fi(zh;gp)] (18)

J

(In this regard, equation A-4 is incorrect in reference (5) and should be
replaced with equation (18) above.) Setting Q;(0) = 0 in equation (18),

we obtain
n

m n
1L £y (e500) 7305, 10008 = T Ty, - 2xnsg®) £ilmpie® (19
which can be solved for m values of Gj . Once the values of éj'have been
computed, the algorithm utilizes a particular method (depending on whether
the Hartley or Marquardt technique is employed) to determine the optimum

magnitude of the correction.

Equation (19) can be written in matrix notation as
AsS=v (20)

where § = (87, 855 «v0y 6.)' , v = (
h



v ‘ 0 0 v 0 0,y
th [yh - f(EhQQ )] f2(}_(_h39_ )9 L | th [yh - f(?ﬁh§9 )] f (ﬁh:e ) and

A is an m X m matrix whose terms ajg are given by

M

£50x,30°) £.(x, 30°)

8k T 3

i=1
Equation (15) can be written in the follbwing form when reclassi-
fying the nonlinear parameters as linear-nonlinear:
: n
Q(B,0) = Zl [yh - Jil ngj(xhl,xhz,...,xhk; Gy 30p5eens aq)]2 (21)

where n, Vs and Xjj are as before and
§ ngj = function to be fit

Bi = ith linear parameter of the function to be fit

a, = ith

5 nonlinear parameter of the function to be fit

Q(g,a) = a function of the p-tuple (Bl, Bos v B ) and

g-tuple (a Gy Gny eens aq).

The assumption is made that 1 < p < m of the m parameters (@) are linear
and m - p = q are nonlinear.

When Q is reclassified as linear-nonlinear (EJQ) the program requires
only that an iﬁitial estimate of the nonlinear parameters, say 99, be pro-

vided. The function to be minimized then becomes

o O 0y12
Q<§J_P) = § BJgJ xhl,xhg,...,xhk; 01 Tlp seee sl )1° (22)
l Jj=1

The least squares estimate of B is obtained in the usual manner of diffe-
rentiating equation (22) with respect to Bj and setting the result equal

to zero. This gives p linear equations in p unknowns which can readily be
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solved for §Pe In matrix notation

g0 = (Frr) F'y | (23)

where the notation is the same as given for equation (8). Based upon this

gP we wish to form a better choice for the nonlinear parameters o than our

initial guessed estimate gps The program utilizes the same nonlinear ap-
proach described previously for O to obtain the correction to gp which
will provide a better estimate of a, say g}. Equation (20) can be partioned

in the following manner having reclassified the nonlinear parameters as

linear-nonlinear

o]
<

Ay Ay S | (24
Ap1 Ao S, Y

vhere
8 = (81, 8,5 -.vs 8)", the difference between the (k+1) and kth

iteration value for the B linear parameters

5., = (61, Sys vues Gq)', the difference between the (k+1) and K0

iteration value for the o nonlinear parameters

n .
¥y =(hz Y- §B 83 (%, 50 )]F( g go., [y~ §B g;( ) O)]Fg(ﬁ 6,3),

~

e L 3 8,%, 590, ,ao))'
0
Vo (2 [y~ E B gJ(__h,ao)]F*( ) 2 [yh E 8 g (%, 50 )]F*( a ),
=1 j 19 '—l
) 0 !
cos F ¥
,h~ —183g( ,OL)]q(x_h ))
and A is the previously described m x m matrix which has been partioned as

shown where A;y is p X p, A,, is D X q, Ayq is ¢ x p, and Ay is @ x q and

12
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n
where if F is a function of (8,a) equal to ; R Og (x ;ao), then F. = 9F
o =13 3 TR L
and Fj* = §%£~, the first derivatives of F with respect to Bi and o, for
J , ;
i=1,2, ..., pand J=1, 2, ..., q.
Equation (24) can be written as
A1183 *+ Apdy = vy (25)
Ror8y * A8y = v, (26)
But v = 0 by our choice of the least squares estimate of §P given gp.
Thus, equations (25) and (26) become
A 8§ +A § =0
1171 122 =
+ =
AQl—ﬂ, A22§2 22
which can be solved for QQ to give
5 = (A Aoyhqy AT
- 22 21711 12 -
\ (27)

A*—l v
-—2

Equation (27) is used by the program at each iteration to obtain
the correction terms for the nonlinear parameters. This equation essenti-
ally replaces equation (20) which is used when all the parameters are non-
linear. The program allows the option of using the Hartley or Marquardt
technique to obtain the solution to equation (27)._

Hartley's algorithm corrects o by only a multiple of §2, say r§2,
where -® < r < « yithin an iteration to give the minimum vélue for the

error, sum of squares, Q(_jﬁ). The value of r is not restricted to the
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[0,1] interval in this particular program as it is in Hartley's original
algorithm. The program calculates B for a number of values of r in arri-
ving at the value of r which minimizes Q(a|B).

The algorithm of Marquardt involves the system of linear equations

(A% + u)gz =y, (28)

where X is a scalar > 0, T is the identity matrix, and the solution §
gives the required steps to the next iterant. When XA = 0, equation (28)
is identical to the normal equations (éT) of the Gauss-Newton method and
yields the value of §2 which determines the exact minimum of Q(gjg);
whereas, on the other hand, as A > «, §2 becomes more nearly proportional
to 22 which (apart from a positive constant) is the negative gradient or
vector of stcepest descent of Q(a|B) at §P.
In summary, the iteration scheme is

1). Initialize a, call it oO.

2). Caleulate 80 = (F'F)7Ir'y = A TPy .

3). Calculate §20 = A*_l 22 using the Hartley or Marquardt

technique to obtain g}

(caleculating §P each time a trial
value of g} is required).

4). Check for convergence; if yes, proceed to step 2, and

stop. If no, proceed to step 2, and continue.



Under certain conditions the sequence {Ol} converges to ©

CHAPTER IIT

CONVERGENCE CRITERIA AND CONFIDENCE REGIONS

m:Ln

Conditions for convergence when O is considered as all nonlinear using

the Taylor series method are discussed in detail by Hartley [7]. In

summary, these conditions for f(x, ;0) are:

1).

2).

3).

When
convergence
are:

1).

__1,13

fi and fj. exist and are continuous in @ for all x —h’

i,j=1, 2, ..., m, where fi and fij are as defined in
equation (17).

There exists a bounded convex set S such that for every
m
OeS and every nontrivial finite set {ul} with 2 u.

“n i=1
E E ulf1 Eh :0) . This assumption will assure
h=1 [i=1
that the matrix of first partial derivatives has an inverse.

25 o,

There exists a @P in the interior of S such that Q(Qp) < a

- 1im | o . .
where Q = 5 inf Q(0) and S = complement of S. This assumption
guarantees that the search will stop within the area where
assumption 2 holds and that it will converge to a point in 5.

0 is reclassified as linear-nonlinear (gﬁg), conditions for

for the function 2 ngJ( so) u31ng the Hartley technique

Fi and Fj* exist and are continuous in (§)g) for all Xy
i=1,2, ..., p3J=1,2, ..., q, where F; and Fj* are as
defined following equation (24).

19
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2). There exists a bounded convex set W such that for every (Eﬁg)ew

and every nontrivial finite set {ui} and {uj*} with

(5o foes)o

i=1 5=1
DT wr s + (3, 3850) | (29)
u.F.(x,3;B,a) + u *F.¥(x ;B8,a >0 . 29
‘ E2noLsX . 3P s
p=l =1 ¢ T g1 4 d Th
3). There exists a gp in the interior of W such that Q(a®]g%) < q
= lim | ' o=
where Q = "5 inf Q(a|B) and W = complement of W.

Starting with the vector gp in assumption 3) above, Ep = (F'F)_lF'X

is computed. Because of assumption 2) the determinant of linear equations
(F'F)§P = F'y has rank p and thus can always be solved for the p x 1 vector
§9. The corrections to the starting vector gp are then computed. These
corrections are given by equation (27).

By a well known rgsult'in matrix algebra, A¥ = Ay, - A21All—lA12
is non-singular since All and A are non-singular by assumption 2. Therefore,
we can say the determinant of linear equations A*§2 = 22 has rank g and can
thus be solved for the g x 1 vector §2. .

Now consider the function

v

Ar) = a@® +rs ) for 0<r <1 (30)

and denote by r' the value of r for which Q(r) is a minimum on the interval

0 <r < 1. (The implication of r outside this interval for this algorithm

1 0

will be discussed‘later.) Let o7 = o + r'§2. Then
alel) < qa®) <@ (31)

so that g} lies in the interior of W.
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The above computation is repeated at ﬁ} and g}, etec. There results

a sequence of vectors (EF’EF):‘t =1, 2, ..., all within the convex set W
with §F being the least squares solution given some g? and we can say
lim +
t > o Qo) = Q¥* (32)

Consider a point of accumulation o** of this bounded sequence and sub-

Q
sequence o with

Since
lim =
s >« Q(a®) = Qla**) < Q(af) <

D
~~
W
rogd
A

it follows from assumption 3 that o*¥* must be an interior point of W. We
shall now show that at this limit point, o*¥, the first partials, Qi(gf*)
for i=1,2, ..., q, must all be zero.

Let the ié** be the solution to equation (27); i.e.,

A*i** = l).

2

, (35)

where A¥ and v are evaluated at ao¥*¥.

Because of the continuity assumptions and equation (29)

lim s
s> w _§ = %% (36)
i i
Further, from equations (35) and (29)
q n 5
) Qg lo¥¥) (e¥x = 2 ] (£, (x ;u¥¥) 6%} " <o, (37)
i=1 - + h=1 “h :
provided
q
E L 8¥% > O
i=1 *
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But equation (37) implies that the differential of Q in the direction pro-

2
portional to the ié** is negative. Therefore, assuming that % is** is
i=1
strictly positive, it follows from equation (36) that for all o in a

small neighborhood of o** the differential of Q in the direction proportional
to the iGS would be smaller than a fixed quantity, say e. Since the second
differential of Q in these directions (this differential may be defined

as the differential with regard to the variable r as defined by equation

(30) with o® replacing gp) is bounded over a unit distance by a bound, call
it M, it follows that the minimum of Q in the direction of iss must be

below Q(EF) by at least the amount er - éMr2 where r is the fractional dis-

tance moved in the direction proportional to iGS from QF, Choosing

le]

s
r¥ = min(1, —ﬁrﬁ the minimum of Q in the direction proportional to ;8

1
‘¢ ) by at least the amount ;‘er*. This contradicts

equation (32) which states that the Q(g?) of the original sequence t
converges to Q¥¥* which also would be the limit of the subsequence Q(g?) .

¢ 2
Thus, a contradiction is reached unless 2 ;8%%¥" = 0 yhich implies, be-

i=1
cause of the full rank of equation (35), that

S
}, Q’l (g_**) =0.
.21

t .
Therefore, a subsequence g? of the sequence o converges to a solution o¥¥

of the least squares equations

Q, (a**) =0 (i=1,2, ..., a) .

The original sequence g? will converge to o¥¥* for almost all problems since
1
if there were an infinite subsequence of g? not converging to o¥*¥*, then a

. subsequence of these, gF" would tend to a limit o¥*** # o*¥. Then Q(a¥*¥) =

Q(o***) and o*** must be a stationary point. It is highly improbable that
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oh’

such that Q has two stationary points yielding precisely the same wvalue

there would be a regression surface and set of observations, Eh and y

of Q. The above convergence proof rests on this assumption that Q has no
two stationary points yielding the same values of Q.

The above convergence proof for the Hartley technique using the
linear-nonlinear approach is presented with r on the [0,1] interval sinée
this is the interval originally chosen by Hartley and in widespread use.

As noted previously, this algorithm allows r to range over the (-o, +)
interval, but in a somewhat restricted sense. There is a particular
criterion in the program which goﬁerns its final value for any given iter-
ation as it is allowed to vary. The range of r for this program together
with the method employed for its calculation does not alter the assumptions
made on f(éh;Q) or _§1 ngj(zh;g) to obtain convergence, nor does it change
the above proof to a;y great extent.

The algorithm of Marquardt when O is considered as all nonlinear

involves the system of linear equations given by
(A+2I)s§ = v

where A, §, and v are as defined in equation (20), X is a scalar > O and
I is the identity matrix. The theoretical basis for this algorithm was
presented by Marquardt [11] in three theorems. Meeter [14] gives an alter-
nate and more general proof of Marquardt's Theorem 1 and diécusses iﬁs
implication on Marquardt's Theorem 2.

Marquardt's algorithm as applied to @ when feclassified as linear-

nonlinear (g,g) involves the system of linear equations given by

(A%% + AT)S = v (38)
-2 -2



where A¥, §Q, and v, sre as defined in equation (27) and A,I are as defined
previously. The three theorems and their proofs remain the same as for @O
g, and v, are substituted, respec-

considered as all nonlinear when A¥, §
the theorems and their pfoofs will

tively, for A, §, and v. Therefore,
not be repeated hege. Marquardt discusses convergence prcofs in his paper
[11}. His discussion is applicable here with the above substitutions made
for A, §, and v.

As pointed out by Draper and Smith [L], an idea of the nonlinearity
in the model can be obtained after estimating @_(or o in the case of para-
meter reclassification) by evaluating the ellipsoidal confidence region
obtained on the assumption that the linearized form of the model is valid
around éﬁé), the final least squares estimate of O(a). These are given by

the fellowing expressions:

(0-6)'A'A(0-0) img{;) F(m, n-m, l-a) (39)
for the all nonlinear approach, and
N R R o 8)
(o-0) A¥ 'A% (0-0) j_ggﬁ%iﬂk-F(q, n-m, l-o) (40)

for the linear-nonlinear approach, where A and A* are evaluated at @_and é
- (implying at E_also), respectively, F(m, n-m, 1-a) is the 1l-o point (upper

o-point) of the F distribution with m, n-m degrees of freedom.

i+l

i+l and Q? (g_ and

When the difference between successive values O
g? in the reclassification approach) is sufficiently small so that the
linearization procedure terminates with Q?+l = é_(g}+l = é), then Q(é)(Q(é))
is a minimum value of Q(0) (Q(a)) to the accuracy imposed by the termination
procedure selected. The ellipsoid above will not be a true confidence

region when the model is nonlinear.
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An exact confidence contour is defined by taking Q(Q) in the all
nonlinear case or Q(a) in the linear-nonlinear case to be a constant, but
since the correct distribution properties in the general nonlinear case
are not known one is not able to obtain a specified probability level.

However, the contour can be chosen such that

Qo) = Q(é){l + 2= F(m, n-m, 1-a)} (L1)
for the all nonlinear approach, and

a(e) = ()1 + 2 Flq, nom, 1-0)) (k2)

for the linear-nonlinear approach which will give an approximate 100(1-a)%
confidence contour in the nonlinear case (equation (41) would provide an
exact 100(1-a)% ellipsoidal confidence contour if the model were linear).

While suitable comparisons of mean sguares can still be made visually,
the usual F-tests for regression and lack of fit are not valid, in general,
in the nonlinear case.

Measures of nonlinearity suggested by Beale[l] and discussed by
Guttman and Meeter [6] can be used to heip decide when linearized results
provide acceptable approximations. Beale defines a theoretical measure of
nonlinearity and intrinsic nonlinearity, NO and N¢, together with corres-
pohding empirical measures of these quantities, ﬁ@ and ﬁ¢. He shows (exten-
sions of Beale's work being made here by the author to the linear-nonlinear
approach) that if N¢ is not too large equations (39) and (40) are confidence
regions for O and a, respectively, with associated probability greater than
or equal to l-o if the right-hand side of equation (39) is multiplied by

1+ E%E-N¢ (m = 1)

©op e nm2) x5 2)
(n-m)m ¢ -
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and if the right-hand side of equation (40) is multiplied by

1+— N (q = 1)

+——3—n( +2) N (q

(n+q)a ¢ 2) .

|v

Hartley [8] presents a method that allows the construction of exact
confidence regions for © in the general case of nonlinear regression. The
analysis rests on the fact that one can decompose the error sum of squares
into two quadractic forms known as regression sum of squares of rank m and
residual sum of squares of rank n-m and that these two forms will be inde-
pendently distributed as 02x2 for m and n-m degrees of freedom (by Cochran's

theorem), thus providing an exact 100 (1-a)% confidence region for O as

regression sum of u s m
£255 square — F(m,n-m,1-0) .
residual sum of squares — n-m

However, to be valid the above procedure requires the decomposition of the
error sum of squares such that f(zh;g) is represented approximately as a
m-term linear form of parameter functions wi(e); i.e.,

m

;@) = 1 wg(0) 2y

i=1
where w;(0) are a reparameterization of the 0, and Zy; form a n x m matrix
of rank m which does not depend on ©. This method is not unique as it not
only depends on the function to be fit but also on the method of lineari-
zation used. There is also the possibilit& that the resulting confidence
region may be useless depending on the choice for the linear approximation
of f(EhSQ)- Seibert [19] suggested a meésu;e of efficiency of Hartley's

exact confidence regions. Williams [24] also discusses the problem of exact

confidence regions in nonlinear regression. His approach is essentially



that of Hartley's (linearization of f(gh;g) ), but not on as general a scale.
Both methods provide exact confidence regions, but only after some simpli-

fying assumptions on the function to be fit.



CHAPTER IV
EXAMPLES, DISCUSSION OF RESULTS, AND CONCLUSIONS

Many example problems were performed using the algorithm as des-
cribed. The results of four of these models for one particular data set
each, as well as two of the same models for 25 data sets each, will be
presented to afford insight into the effectiveness of the new method when
reclassifying the parameters to be estimated from all nonlinear to linear-
nonlinear. These problems show quite markedly the variation in results
which can be obtained depending on the model to be fit, the observed data,
and the starting parameter vector considered.

The four models to be discussed are:

Model No. Function
All Nonlinear Linear-Nonlinear
N @leoex Blealx
2 el+92ee3X B, +8 2e°‘l
3 e>le@2}(+e3eOhx B e g 2ea2x
b O +. . 401 5T Byfy+e . +B10f1g
where, in Model 4, fy = xof, fo = X3F, wouy £14 7 ¥llf and

£ = 1/(1 + exp[0y(x7+05)]) for all nonlinear and f = 1/(1 + exp{al(xl+u2)])
for linear-nonlinear. In addition, x; is a continuous variable and
Xpy «eey X7 are all 0 - 1 variables.

28
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The following data were used in the comparison of the four models
using one set of data each: The data used for Model 1 was the same as
that used by Lawton and Sylvestre [10]. Data for Model 2 was taken from
a fertilizer experiment described by Hartley [7]. Data for Models 3 and
4 were from experiments performed on blood plasma and cats, respectively,
and were furnished by Drs. G. T. Shires and John Dietschy, University of
Texas Southwestern Medical School, and Dr. Barbara Kent, Emory University
School of Medicine. '

Table 1 presents the results of fitting the above four models with
the data described above using both the Hartley and Marquardt techniqués
when considering the parameters as all nonlinear and linear-nonlinear.
Table 2 presents the same type information for Models 2 and 3 when more
than one data set was considered. Dabta used to obtain the Table 2 re-
sults for Model 2 were from experiments reported in the literature while
those for Model 3 were from further blood plasma experiments.

The error sum of squares was essentially the same at convergence
for all four methods in Table 1 for any given model and for all data
sets considered in Table 2 except in some cases where convergence did
not occur in 50 iterations. The iteration cutoff was set at 50 due to
computer time and cost limitations.

The number of iterations to convergence of the linear-nonlinear
method was better than or equal to that for the all nonlinear method
using the Hartley technique for all 25 data sets for Model 2 and for 14
data sets for Model 3 as shown in Table 2. The opéosite trend was obser-
ved when the Marquardt technique was used as 9 and 10 data sets for Models
2 and 3, respectively, afforded less or equal iterations to convergence.

Table 3 shows the average number of iterations to convergence for Models 2
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TABLE 2

COMPARISON OF THE NUMBER OF ITERATIONS TO CONVERGENCE FOR LINEAR-

NONLINEAR VERSUS ALL NONLINEAR PARAMETERS FOR 25 DATA SETS

Method Iterations to Ccnvergence

Less Same Greater

Model 2 (25 Deta Sets)

Hartley 23 2 0

Marquardt 2 T 16

Model 3 (25 Data Sets)

Hartley 9 5 11

Marquardt 3 T 15
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TABLE 3

AVERAGE NUMBER OF ITERATIONS AND AVERAGE COMPUTER TIME PER
ITERATION FOR THE NONLINEAR AND LINEAR-NONLINEAR

METHODS USING HARTLEY AND MARQUARDT TECHNIQUES

Average No. of Itera- Average No. of Itera- Average UNIVAC 1108
Method tions to Convergence®® tions to Convergence**¥* Computer Time Per
Tteration {sec.)

L Mcdel 2

H-NL* 1k, 52 T7.76(4) i

H-NLA4L 5.76 5.76(0) A5

M-NL 18.96 9.1.6(6) .15

M-NL+L 34.88 15.64(1k) .25
Model 3

H-NL 23.08 12.89(7) 1.21

H-NL+L 30.08 11.69(12) 1.21

M-NL 25,88 14.53(8) .37

M-NL+L 36.40 19.09(1k) .63

See Table 1 for symbol definition and convergence criteria.

¥%¥ A11 25 data sets included in average.
¥%¥¥ Only those data sets where convergence occurred in less than 50
iterations included (that number given in parentheses for more
than 50 iterations)
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and 3 using the 25 data sets for the four methods considered. There was a
significant improvement in iterations using the new method employing- the
Hartley technique for Model 2 while the iterations were essentially the
same for Model 3. However, the iterations were greater for the new method
in both Models 2 and 3 using the Marquardt approach.

It was found that the method of parameter reclassification from all
nonlinear to linear-nonlinear did not improve the number of iterations at
convergence (except for a few isolated cases) unless the step was included
during a given iteration to calculate B (linear parameters) for every trial
value of o (nonlinear parameters). This step adjusts the sum-of-squared-
error to its greatest lower bound which is a function of the nonlinear para-
meters only. This adjustment is not made in the Hartley or Marquardt met-
hods for the 311 nonlinear approach except accidentally.

Computer time for each iteration for the linear-nonlinear method
compared to the all nonlinear method was essentially the same when using
the Hartley approach, but was greater (approximately l%-times greater) for
the Marquardt approach. This is emphasized in Table 3.

The model chosen to be fit, observed data, and starting parameter
vector govern the final results using the described techniques so greatly
that it is difficult to generalize about the merits of the methods. How-
ever, from the work accomplished thus far, one can conclude the following
in regard to the new method presented:

1). The dimensionality of the vector of iterants is reduced (and
thus the number of initial guesses to be made) which simpli-
fies the sum-of-squared-error surface.

2). Because of the dimensionality reducfion less sensitivity to

starting guesces is achieved and, in many cases, faster con-
vergence is obtained because of less iterations to convergence.
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3). Improved results (less iterations and/or computer run time)
are obtained for the linear-nonlinear method when using the
Hartley technique, but not when using the Marquardt technique.

Good starting values will in most instances allow an iterative
technique to converge to a solution much faster than would otherwise be
possible. Also, if multiple minima exist or if there are several local
minima in addition to an absolute minima, poor starting values may result
in convergence to an unwanted stationary point of the sum of squares sur-
face. The reduction in dimension of the initial parameter vector using
the new method will help in this area. The starting vectors used for the
four nodels studied in Table 1 were those supplied by the experimenter.
Those for Models 2 and 3 studied in Tables 2 and 3 were obtained by the
author upon analyzing the 50 data sets. The results reported could differ
somewhat depending on these starting vector values, but it is highly un-
likely that the conclusions would be altered.

The model chosen to be fit for a given set of observations is of
prime importance in the ease of solution, regardless of the algorithm used.
If the solution matrix, A or A¥, is ill-conditioned then perhaps another
- model should be considered rather than more complicated techniques than
those discussed here. Regardless, one should consider more than one model
unless a great deal is known about the experiment as to its expected re-
sults and model form.

There are other areas of research which could be considered for
future work hased in part on this dissertation. Some of these are:

a. Consideration of a nonlinear least squares procedure which

takes proper account of observational errors in both the x
and y variables rather than just the y variable.

b. Incorporation of Aitken's §2 process (a numerical procedure

discussed in most recent textbooks on numerical analysis) in

the algorithm to possibly decrease the number of iterations to
convergence.
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Consideration of the "jackknife" procedure to reduce the bias
of the least squares parameter estimates obtained from the
algorithm presented here.



APPENDIX

COMPUTER PROGRAM FOR LEAST SQUARES ESTIMATION OF KNONLINEAR

PARAMETERS WHEN SOME OF THE PARAMETERS ARE LINEAR

The model for nonlinear regression for this computer program is
written
E[Y] = F(X,A)
where: Y is some response variable.

E is the expectation operator.

>
.
93]

the input vector controlled with NX elements.

A is a vector of parameters with M elements.
' is called the function and relates X and A to the expectation
of Y.

The parameters A are in general nonlinearly involved. They can all
be considered nonlinear or reclassified linear-nonlinear, depending on the
method of analysis chosen. The user of this program is required to have N
paired observations on X and Y (N > M) from which he desires a least squares
estimate of A, say A. The user has the option of three algorithms:

1). Marquardt's Algorithm [11].
2). Hartley's Algorithm [7].
3). A mixture of the above two algorithms.

Convergence is defined in terms of two conditions:

1). The maximum absolute relative change in the parameters
less than EFS]1 which is input to the program.

36
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2). The relative change in error sum of squares (SSE) less
than EPS2 which also 1s input to the program.

Convergence is met when both of these conditions are satisfied.

This program allows the user to fix any number of the parameters
and obtain estimates of the other parameters under this constraint.

There are two primary steps to setting up a problem for this
algorithm:

I. Parts of three FORTRAN subprograms must be written.

iI. The data and cards specifying the options, parameters, and
their initial values must be prepared.

I. Subprograms to be Written

A. Subroutine CREATE

The variables in the observations are called the input variables.
As each observation is read these input variables are placed in an array U.
The X and Y variables are then created from the U array. The X variables
are read into the U array first followed by the Y values for any given ob-
servation. The program allows for the identification (ID) of each obser-

vation (X,Y) vector. The defined variables are as follows:

Symbol Comment
U Vector of input variables.
NIV Number of input variables.
IN Card reader designation set in subroutine SETUP (the

tape, card reader, and punch unit numbers peculiar to
the computer being used must be set in this subroutine
by the user).

X Vector of X wvariables.
NX Number of X wvariables.
Y Vector of Y variables.

D Identification for each (X,Y) observation vector.
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Symbol Comment
C Vector of constants to be read in as parameters for

use in this subroutine, if desired.

A format statement numbered 1 must be prepared for a given problem
to read in the (ID,X,Y) values for each observation. Use G format for the
(X,Y) variables and alphanumeric (not more than A8) for the ID identifi~
cation. See the program listing for an example of this subroutine.

B. Function F

The specific function to be fitted is fixed in the program
through this subprogram. The statements should finally produce an evalu-
ation of the expectation of Y given the vectors X and A. This value must
be designated F. In addition, there must be a subprogram within Fuhction
F designated ENTRY FSUBK(X,A,K,KEY). This function is used only when the
parameters are designated linéar—nonlinear, but must be included in the
subroutine regardless. Of course, if it i1s not used it matters not what
the statements of ENTRY FSUBK are. The specific function which is multi-
plied by each linear parameter A(X) is fixed through this subprogram.
This functional value modifging each linear parameter A(K) is also desig-
nated F and the statements should produce this value. The defined vari-

ables for Function ¥ are:

Symbol Comment
X Vector of X variables.
NX Number of X variables.
A Vector of parameter estimates.
M Number of parameters.

C Vector of constants to be transmitted to subroutine PD.
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The defined variables for ENTRY FSUBK are:

Symbol Comment
X Vector of X variables.
A Vector of parameter estimates.
K Subscript telling which of the A parameter estimates

are linear.

KEY Integer set equal to 0 in subroutine ESTLIN - not used.

C. Subroutine PD

The estimation algorithm requires the partial derivatives 0?
the function F with respect to the parameters. Subroutine PD fixes these
derivatives in the program for each parameter. However, if estimated
partial derivatives are desired (designated by an input option), then this

subroutine need not contain any statements. The defined variables are:

Symbol Comment

X Vector of X variables.

NX Number of X variables.

A Vector of parameter estimates.

M Number of parameters.
FXA Value of the function evaluated at X and A.

C Vector of constants defirned in Function F;

P Vector of the partial derivatives. The partial deri-

vatives of the function vith respect to each par:meter
are set equal to the P vector.

WATE Faztor to be used for a weighted least squares ajproach,
if desired. The value of WATE must be designatel in

this subroutine. Set WATE=1.0DO if this approach is
not desired.

ITI. Input Dats
The user of this program must specify values for certain input data.

In addition, a set of control cards will be needed which direct the computer
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to compile and execute the program. The control cards will depend on the

user's particular machine installation. The card input data format follows.

Ttem 1 - Information Card (Format 20AkL)

One card on which the user may describe his problem. Any

characters may be used.

The information on this card is printed out at

the beginning of the computer print out.

Item 2 - Observation Control Card (Format TIS)

Columns Symbol
1-5 N
=10 NIV

11-15 NX
16-20 NY
21-25 NC
26-30 OPT1
31-35 0Tl

Comment
Number of observations.
Number of input variables.

Number of X's.

Number of ¥Y's. If NY=0, then NY is set to 1.
At present, NY must be set to 0 or 1.

Number of constants to be read in for use in
Subroutine CREATE. If NC=0, skip item 3.

Not used.
Data print-out option. If O0T1l=1, the program

will not print out the original observation
data.

Item 3 - Data Constants (Format 4G20.10)

This item is used to enter constants for use in the creation

of the X's and Y's in Subroutine CREATE. If NC=0 in item 2, this item

must be skipped.

Columns Symbol
1-20 c(1)
21-40 c(2)
1-20 c(5)

Comment
First constant.
Second constant.

Fifth constant.

Use only as many cards as necessary to enter
the NC constants declared in item 2.
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Item 4 ~ Observations (Format designated in Subroutine CREATE)

The following rules pertain to the observations:

a. Fach observation must start a card record. The observations
may have more than one record.

b. The first item in each observation must be the observation
identification (ID). Any alphanumeric characters may be used
with the maximum being 8 such characters. This identification
is printed out with the original data.

¢. There must be exactly as many input variables as declared in

item 2.

These follow the identification with the X wvalues

followed by the Y values.

Ttem 5 - Model Control Card (Format 3Ik,4(1X,I1),5Ik,10AL)

Columns Symbol
1-b M
5.8 NFP
9-12 NLP

1k OPTL
16 OPT2
18 OPT3
20 OPTh

Comment
Number of parameters.

Number of fixed parameters. If NFP=0, then
item 7 must be deleted.

Number of linear parameters. If NLP=0, then
all the parameters are considered as nonlinear;
otherwise, the algorithm uses the linear-
nonlinear approach for the parameter estimation.

Estimated partial derivative option. If OPT1=0
then Subroutine PD is used to obtain the
partial derivatives. If OPT1=1, the partial
derivatives are approximated (finite diffe-
rences) in Subroutine ALGOR.

Algorithm option.

OPT2=1, Marquardt Algorithm.
OPT2=2, Hartley Algorithm.
OPT2=3, Mixed Algorithm.

Residual analysis frequency. If OPT3=0, then
the residual analysis is performed only at
the beginning of the iterations and after
convergence. If OPT3=J(1<J<9), then tEe ana-
lysis will be performed after every T iter-
ation.

Not used.



Columns

21-2h

29-32

33-36

3740

41.-80

Symbol
MAXIT

KEPS1

KEPS2

KL

L2

Comment

The maximum number of iterations. If MAXIT=0,
then there is no limit on the number of iter-
ations.

The absolute value of the exponent in the
first convergence condition. EPS1=10~KEPS1
where the maximum absolute relative change
in parameters being less than EPS1 is the
first convergence condition. If KEPS1=0,
then KEPS1 is set equal to 3.

‘The absolute value of the exponent in the

second convergence condition. EPs2=10"KEPS2
vhere the relative change in SSE being less
than EPS2 is the second convergence condition.
If KEPS2=0, then KEPS2 is set equal to 6.

Absolute value of the exponent in LAMBDA(A).
Please see Marquardt's paper [11]. LAMBDA =
10°KL,  1f KI=0, then KL is set equal to 2.

Absolute value of the exponent in NU(v). See
Marquardt's paper [11]. wu=10*KN, 1r Kkm=o0,
then KN is set equal to 1.

These columns may be used for information
specific to the model. This is printed out
at the beginning of each estimation procedure
run.

Item 6 - List of Fixed Parameters (Format 20IL)

entered through this item.

The indices of the parameters which are to be fixed are

If in item 5, NFP = 0, then this item must be

deleted. The list must be in ascending order.

Columns Symbol
1-k LFP(1)
5-8 LFP(2)

Comment
Index of first fixed parameter.
Index of second fixed parameter.

Continue for as many additional cards as
necessary.



Ttem 7 - List of Linear Parameters (Format 20IL)
The indices of the parameters which are to be considered as
linear are entered through this item. If in item 5, NLP=0, then this item

must be deleted. The 1list must be in ascending order.

Columns Symbol Comment
1-4 LLP(1) Index of first linear parameter.
5-8 LLP(2) Index of second linear parameter.

...... cesc s Continue for as many additional cards as
necessary.
Ttem 8 - Parameter Initial Estimates (Format L4G20.13)

The initial estimates of the parameters are entered through
this item. If NFP # Q in item 5, then the initial parameter values indexed
in item 6 are considered fixed. If NLP # 0 in item 6, then the initial
parameter values indexed in item 7 are not used in the program as these
are calculated from the nonlinear parameter initial estimates. However,

initial values must be read in for all parameters even though they may not

be used.
Columns Symbol Comment
1-20 A1) Initial estimate of first parameter.
21-40o A(2) Initial estimate of second parameter.
1-20 A(5) Initial estimate of fifth parameter.

..... ceene Use only as many cards as necessary to enter
M parameters declared in item 5.
Item 9 ~ Data Set Terminatiou
Item (5,5,7,8) sets may be repeated for as many different

styles of analysesras lesired. A blank card following item 8 will



terminate the consideration of the data set. This item may be followed by
another item 1, etc., for another data set. A blank card is required for
the proper termination of censideration of a data set.

The following model was used to provide specific examples of the
Subroutine CREATE, PD, and Function F which appear in the computer listing
which follows:

E(Y) = A(L)EXP[A(2)X(1)] + A(3)EXP[A(M)X(1)],

where EXP is the exponential functicn.
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FORTRAN V LEVEL 3, MOD 1 MAIN PROGRAM

DOUBLEPRECISIONRAL,RA2,RA3,RAL ,RAS ,RA6,RAT ,RA8 ,RS1,RS2,RS3,RSk,C
((JOM;IONRAl(Ms) ,RA2(30) ,RA3(30),RAL(30),RA5(30) ,RA6(30) ,RAT(30),RA8
-(30
-,IA1(30),IA2(30),C(30)
-,RS1,RS2,RS3,RSL
-,Is1,I82,I83,Ish
-,N,NX ,M,IR,IP,IW,IT1,IT2,IT3

APPROPRIATE UNIT NUMBERS MUST BE SET HERE
IR-CARD READER, IP-PUNCH, IW-PRINTER
IT1 AND IT2-SCRATCH TAPES OR DISCS

[eRPNONOREP!

IR=5
IP=-3
TW=6
IT1=17
REWINDIT1
IT2=18
REWINDIT2

101 CALLSETUP
CALLALGOR
GOTO101
END

SETUP

SUBROUTINESETUP
DOUBLEPRECISIONRAL ,RA2,RA3,RAL ,RA5 ,RA6 ,RAT ,RA8,RS1,RS2,RS3,RSk
DOUBLEPRECISIONID,INFO,U,X,SST,SYY,SY,Y,C
INTEGEROPT1,0T1
DIMENSIONINFO(1),U(1),x(1)
COMMONRAL (L465) ,RA2(30) ,RA3(30) ,RAL(30) ,RA5(30) ,RA6(30) ,RAT(30) ,RA8
~(30)
-,181(30),TA2(30),C(30)
-,RS1,R82,RS3,RSh
-,I81,182,183,ISh
-,N,NX,M,IR,1P,IW,IT1,IT2,IT3
EQUIVALENCE(RAL(1),U(1)),(rRA2(1),%(1)),(RA3(1),INFO(1))
-,(RS1,88T), (RS2,SYY), (RS3,SY)
1 FORMAT(1H153X,24HDEPARTMENT OF STATISTICS/50X,
*¥29HSOUTHERN METHODIST UNIVERSITY//10X,
*¥3THWEIGHTED NONLINEAR ESTIMATION PROGRAM)
2 FORMAT(20AkL/T715)
3 FORMAT(//11X,20Ak)
4 FORMAT(//11X,23HNUMBER OF OBSERVATIONS=IT)
5 FORMAT(11X,26HNUMBER OF INPUT VARIABLES=IL)
6 FORMAT(/11X,1LHNUMBER OF X'S=I16)
21 FORMAT(//11X,16HX AND Y MATRICES)
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7
300
C
C
C
301
L3
PMT
C
C
C
C
1
2
1102
102

WRITE(IW,1)
READ(IR,2)(INFO(I),I=1 20), ,NIV,NX,NY,NC,0PT1,0TL
WRLTF(fR 3)(INFO(I),T=1,20)
IF(OTl.EQ.l) GO TO hoo
WRITE(IW, )N
WRITE(IW,5)NIV
WRITE(IW,6)NX

SY=0.0

SYY=0.0

IF(NC.EQ.Q) GO TO 300
READ(IR,7) (C(J),3=1,NC)
FORMAT (4G20.,10)

CONTINUE

PUT X'S A¥D Y ON THE DISC

DO301K=1,N
CALLCREATE(U,NTV,IR,X,NX,Y,ID,C)
WRITE(T Tx;:D,(x(J),J=1,NX),Y
SY=8Y+Y

SYY=8VY+Y®Y

CONTIRUE

REWINDITL

SYY-av#ay/FLOAT(N)
..Eq.al GO TO Lol
2(TW,21)

CALLP! 11(1 NLONX,1,I7T1,IW)

1 RETURY

END

SUBROUTINEPMT(U,N,NX,NY,IT,TW)
DOUBLEPRECISIONID,U
INTEGERTYPR,

PRINT THE X AND Y VALUES
TYPE 3 INDICATES X, TYPE L INDICATES Y

DIMENSIONU(L),TYPE(LO),INDEX(L0)
FORMAT(/llA,QHID}Y,Q(hX,Il,lH(IB,lH)QX))
FORMAT (8% ,48,0G12.5)

NV=NX+NY

D0101J=1,NV

IF(J-NX)1102,1102,102

TYPE(J)=3

INDEX(J)=J

GOT0O101

TYPE(J)=h
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INDEX(J)=J-NX
101 CONTINUE
NC=RV
NCB=9
Jl=1
201 IF(NC-NCB)701,700,700
701 NCB=NC
700 J2=J1+NCB-1
WRITE(IW,1)(TYPE(J),INDEX(J),J=J1,J2)
D0202I=1,N
READ(IT)ID,(U(J),J=1,NV)
WRITE(IW,2)ID,(U(J),J=J1,J2)
202 CONTINUE
REWINDIT
NC=NC-NCB
IF(NC)801,801,800
801 RETURN
800 J1=J2+1
GOTQ201
END

ALGOR

SUBROUTINEALGOR
DOUBLEPRECISIONRAL ,RA2,RA3,RAL ,RA5 ,RA6,RAT ,RA8,RS1,RS2,RS3,RSh
DOUBLEPRECISIONLAMBDA,NU,ID,MAXRCP,INFO,X,W,A,G,V,D,P,U,T,SST,SYY
-,8Y,F,ANGLE,C,WATE ,ONE,A11,A12,A13,A1L ,SUM
-,EPS1,EPS2,ETA ,FLTN,AY ,SSE,ESTVAR ,ESTSD,R1 ,R2 ,RCSSE, Y ,ESTY ,H,PI,DI
-,PHI,PSI,DELTA,SSET,THETA ,XI,SSEL,SSE2 ,DEN,CHG ,RCP ,DUMMY
INTEGEROPTI. ,OPT2,0PT3,0PTh
DIMENSIONX(1),w(1),A(1),T(2),P(1),D(1
-,LFP(1),LvP(1),LLP(30),A11(L465) ,A12(3
-,INFO(20)
COMMONRAL (L465) ,RA2(30) ,RA3(30) ,RAL(30),RA5(30) ,RA6(30) ,RAT(30) ,RA8
-(30)
-,RS1,R32,RS3,RS8k
~-,I81,182,183,IckL
-,N,NX,M,IR,IP,IW,IT1,IT2,IT3
EQUIVALENCE(RA1(1),w(1)),(RA2(1),
-,(RAS(1),P(1),D(1)),(RA6(1),U(1)),(RAT(1),G(2
-,(Rs1,s8T),(RS2,8YY), (RS3,SY)
-,{(181(2),LFrP(1)), (1A2(1) ,LVP(1))
8 FORMAT (/11X ,37H¥*¥ESTIMATED PARTIAL DERIVATIVES*¥#)
13 FORMAT(16X,2HA(I3,2H)=G18.10)
14 FORMAT(16X,2HA(I3,2H)=G18.10,3X,5HFIXED)
16 FORMAT(/11X,12HY STATISTICS//16X,4HSUM=G19.10/16X,5HMFAN=G18.10/16
- X,LHSYY=G19.10/16X,4158T=¢19,10)

),U(1),6(1),v(1)
0,30),A13(30,30) ,414(L465)
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37 FORMAT(13X,4G15.5,G20.10)

61 FORMAT(/14X,19HPARAMETER ESTIMATES10X ,6HCHANGETX,10HREL CHANGELX,
-1THNEGATIVE GRADIENT,3X,17HCORRECTION VECTOR)

62 FORMAT(11X,2HA(I3,2H)=G18.10,2G15.5,2G20.10)

63 FORMAT(11X,2HA(I3,2H)=G18.10,7X,5HFIXED)

64 FORMAT(/11X,4HSSE=G22.10,3X,14H(SST-SSE)/SST=G13.5/11X ,8HMLE VAR=G
-18.10,3X,14H(SYY-SSE)/SYY=G13.5/11X ,THMLE SD=G19.10,3X,15HREL CHAN
~-GE SSE=(G12.5)

101 ETA=1.0D-0bL
EPS1=1.0D-03
EPS2=1.0D-0%
LAMBDA=1.0D-02
ONE=1.0DO
NU=1.0D+01
READ(IR,1)M,NFP,NLP,0PT1,0PT2,0PT3,0PTs ,MAXIT ,KEPS1 ,KEPS2 K1, KW,
*(INFO(T),I=1,10)
J. FORMAT(3Ik,  4(1X,I1),5IL,10AL)
IF(M)1001,2001,1002
1001 RETURN
1002 TF(KEPS1)1003,100%,1003
1003 EPS1=10.0%%(-KEPS1)
1004 IF(KEPS2)1.005,1006,1005
1005 EPS2=10.0%%(-KEPS2)
1006 IF(X1,)1007,1008,1007
1007 LAMBDA=10.0%%(-KL)
1008 TIF(K1¥)1009,1010,1009
1009 NU=10.0%% (+KN)
1010 WRITE(TW,3)(INFO(T),I=1,10)
3 FORMAT(1H155X,20HPARAMETER ESTIMATION//11X,10AL)
WRITE(IW,S5)M,EPS1,EPS2,LAMBDA ,NU
5 FORMAT(//11X,21HNUMBER OF PARAMETERS=IL//11X,11HEPSILON(1)=1PG1L.2
~/11X,11HEPSILON(2)=1PG1k.2/ /11X, THLAMBDA=1PG18.2/11X ,3HNU=1PG22.2)
PLIN=N
AY=SY/FLTN
WRITE(IW,16)SY,AY,SYY,SST
CALL KLOCK
67 FORMAT(80X,LHTIME,F7,2)
IF(NFP)1021,1021,1022

READ FIXED PARAMETERS
READ INITTAL VALUES OF PARAMETERS TO BE ESTIMATED

1022 READ(IR,11)(LFP(TL),I=1,NFP)
11 FORMAT(20IL)
1021 IF(NLP.EQ.0)GO TO 1024
READ(IR,11)(LLP(T),I=1,NLP)
1024 READ(IR,2)(A(I),I=1,M)
2 FORMAT(4G20.13)
WRITE(IW,12)
12 FORMAT(/11X,24HPARAMETER INITIAL VALUES/)
LFP(NFP+1)=0
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LLP{NLP+1)=0
J=1
Ja-1
K=0
IF(NLP.EQ.0)GO TO 1025
CALL ESTLIN(N,IT1,NX,NLP,LLP,A,A11)
1025 CONTINUE
D0103I=1,M
IF(I.EQ.LFP(J))GO TO 102
IF(I.EQ.LLP(JJ))GO TO 1103
1102 K=K+1
LVP(K)=I
WRITE(IW,13)I,A(I)
GOT0103
1103 JJ=JJ+1
WRITE(IW,15)I,A(T)
15 FORMAT(16X,2HA(,I3,2H)=,G18.10,3X,6HLINEAR)
GO TO 1029
102 J=J+1
WRITE(IW,1L)I,A(T)
1029 T(I)=A(T)
G(1)=0.0
V(I)=0.0
103 CONTINUE
NVP=K
LVP(NVP+1)=0
NE=NVP*(NVP+1)/2
CALLRESID(Y,N,NX,IT1,A ,M,IW,SSE,0,C)
ESTVAR=SSE/FLTN '
ESTSD=DSQRT(ESTVAR)
R1=(SST-SSE)/SST
R2=(SYY-SSE)/SYY
RCSSE=R1
WRITE(IW,6L4)SSE,R1,ESTVAR,R2 ,ESTSD,RCSSE
IF(0PT1-1)1031,1032,1031
1032 WRITE(IW,8)
1031 L=0
301 L=L+1
CALL KLOCK(TIME)
WRITE(IW,67) TIME
CALL KLOCK
WRITE(IW,21)L
21 FORMAT(///11X,13H%¥¥ ITERATIONIS5,LH *¥¥*//20X,6HLAMBDAOX ,5HDELTAJOX
~,SHTHETA11X , 3HPHI15X ,3HSSE)

1J=0
D0302I=1,NVP
U(1)=0
D0302J=1,1
IJ=1J+1
W(IJ)=0.0

302 CONTINUE
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C

8101
8102
31k

1311

311

765k
7655

316

313

8199
8200
312

322
321

18

IF(NLP.EQ.0) GO TO 31k

DO 8102 I=1,NVP

DO 8101 J=1,NLP
A12(I,J)=0.0D0

CONTINUE

DO 321 K=1,N

READ(IT1)ID, (X(J),J=1,NX),Y
ESTY=F(X,NX,A,M,C)
IF(OPT1~-1)1311,311,1311
ANALYTIC PARTIAL DERIVATIVES
CALLPD(X,NX,A,M,ESTY,C,P,WATE)
GO TO 313
ESTIMATED PARTIAL DERIVATIVES
D0316I=1,NVP

IVP=LVP(I)
H=ETA*DARS(T(IVP))
IF(H)T654,7654,7655

H=ETA

T(IVP)=T(IVP)+H
P(IVP)=(F(X,NX,T,M,C)-ESTY)/H
T(IVP)=A(IVP)

CONTINUE

IF(NLP.EQ.0)GO TO 312

DO 8200 I=1,NVP

IVP=LVP(I)

DO 8199 J=1,NLP

JLP=LLP(J)
A12(1,3)=A12(T,J)+P(IVP)*P(JLP)
CONTINUE

1J=0

D0322I=1,NVP

IVP=LVP(I)

PI=P(IVP)
U(I)=U(I)+(Y-ESTY)*PI*WATE
D0322J=1,1I

JVP=LVP(J)

IJ=1J+1
W(IJT)=W(IJ)+PI*P(JVP)*WATE
CONTINUE

CONTINUE

IF(NLP.EQ.0)GO TO 32L

MULT A1l TIMES Al2 TRANS. TO GIVE Al3
DO 20 J=1,NVP

DO 19 I=1,NLP

SUM=0.0D0

DO 18 K=1,I

KK=I*(I-1)/2+K

SUM=SUM+A11 (KK)*A12(J,K)
IF(I.EQ.NLP)GO TO 4

KMP=I+1

50



C

17

19
20

28
29
30

1332
332
331

999

DO 17 K=KMP,NLP
KKK=K*(K-1)/2+I

SUM=SUM+A11 (KKK)=A12(J,K)
A13(I,J)=SUM

CONTINUE

CONTINUE

MULT Al2 TIMES Al3 TO GIVE AlbL
DO 30 J=1,NVP

DO 29 I=1,J

SUM=0.0D0

DO 28 K=1,NLP

KK=J%(J-1)/2+1

SUM=SUM+A12(J ,K)*¥A13(K,T)

A1L (KK )=sUM

CONTINUE

CONTINUE

1J=0

DO 323 I=1,NVP

DO 323 J
IJ=IJ+1
W(IT) =W(I1I)~(ALL(IT) %WATE)

3 CONTINUR
R

t REWIND ITL

PR

T

CONDITIC
I=0

J=0
DO3351I=1 VD
II=I1+1
DI=ONE/DSQRT(W(IT))

W(II)=0ONE

D(I)=DI

IVP=LVP(I)

G(IVP)=U(T)

U(1)=U(1)D1

D0332J=1,1

IJ=TJ+1

IF(I-J)1332,332,1332
W(IT)=W(IJ)*D(J)*DI

CONTINUE

CONTINUE

IF(LAMBDA) 999,501,999
WRITE(I72)(W(1J),1J=1,0E),(U(I),I=1,NVP)
REWINDITZ

IF(0rT2-2)1501,501,1501

=3
-4
@]
[Sha

I SYSTEM OF EQUS.

=

1

-

MARQUARDT ALGORITHM

1501

Lol

PHI=1.0

PSI=LAMRDA/NU
READ(172)(w(1J),1J=1,NE),(U(I),I=1,NVP)
REWINDIT?

I1I=0

DOL02I=1,NVD



II=II+I
W(II)=1.0+PSI
402 CONTINUE
CALLCF1(W,NVP,DELTA)
CALLCF4(W,NVP,U)
9000 DOL03I=1,NVP
IVP=LVP(I)
V(IVP)=U(I)*D(I)
T(IVP)=A(IVP)+V(IVP)
403 CONTINUE
IF(NLP.EQ.0) GO TO 9010
CALL ESTLIN(N,IT1,NX,NLP,LLP,T,All)
9010 CALLRESID(X,N,NX,IT1,T,M,IW,SSET,1,C)
IF(NVP-1)9003,9002,9003
9002 THETA=0.0DO
GO TO 9004
9003 THETA=ANGLE(V,G,M)
9004 WRITE(IW,37)PSI,DELTA,THETA,PHI,SSET
IF(SSET-SSE)M11,1411 ,1411
1411 PSI=NU¥*PSI
IF (DABS((SSET~SSE)/SSE)-EPS2) 500,500,401
22 IF(OPT2-1)1541,541,1 hg ~
1541 XI=1.0 LS 5H 15 o0 cAmBOA = PST
SSE1=SSET
GOTOS512
500 READ(IT2)(W(IJ),IJ=1,NE),(U(T),I=1,NVP)
REWINDIT2
WRITE(IW,555)
555 FORMAT(18H ABANDON MARQUARDT)
C HARTLEY'S ALGORITHM
501 IF(NVP.EQ.1) GO TO 9001
CALLCF1(W,NVP,DELTA)
CALLC¥L4(W,NVP,U)
9001 DO505I=1,NVP
IVP=LVP(I)
V(IVP)=U(I)*D(I)
505 CONTINUE
IF(NVP-1)9006,9005,9006
9005 THETA=0.0DO
GO TO 9007
9006 THETA=ANGLE(V,G,M)
9007 LAMBDA=0.0
XI=1.0
503 CALLHART(A,V,KVP,LVP,XI,T)
IF(NLP.EQ.0)GO TO 9008
CALL ESTLIN(N,IT1,NX,NLP,LLP,T,All)
9008 CALLRESID(X,N,NX,IT1,T,M,IW,SSE1,1,C)
WRITE(IW,37)LAMBDA,DELTA,THETA,XI ,SSEL
IF(XI-1.0)511,512,511
512 XI=0.5%XI
SSE2=SSEL
IF(DABS(XI)-EPS2) 525,525,503



511

1521
521

9009

1524
1525
52k
525
1532

1602

1603

160hL

602
1632

632
631

2002
2001
601

DEN=55E-2.0%SSEL+SSE2
IF(DEN)1521,1521,521

IF{8Sr2~88E) 532,512,512
PHI=0.5%XI(3.0%SSE-kL.0%3SSEL+SSE2) /DEN
CALLHART(A,V,NVP,LVP,PHI,T)
IF(NLP.EQ.0)GO TO 9009

CALL ESTLIN(N,IT1,NX,NLP,LLP,T,All)
CALLRESID(X,N,NX,IT1,T,M,IW,SSET,1,C)
WRITE(IW,37)LAMBDA,DELTA ,THETA ,PHI,SSET
IF(SSET-SSE)152k4,52h 524
IF(SSET-SSEL)1525,525,525
1F(SSET-SSE2)5h1,532,532
IF(SSE1-8SSE)525,512,512
IF(SSE2-8SE1)532,1532,1532

SSET=SS8EL

PHI=XI

GOTO537

SSET=SSE2

PHI=2.0%XI
CALLHART(A,V,NVP,LVP,PHI,T)

1 WRITE{IW,61)

IF(NLP.EQ.0)GO TO 545

CALI, ESTLIN(IN,IT1,NX,NLP,LLP,T,A1l)
CONTINUR

MAYROP=0.

="

0

JJ=1

DOADLTI=1 M

IF(7.5Q.TFP(J))GO TO 1602
IF(I.EQ.LLP(JJ))C0O TO 1603
GO TO 602

WRITE(IW,63)T,A(T)

J=J+1

GOTO601

A(T)=T(1)
WRITE(IW,1604)1,A(T)
FORMAT(11X,20A(,I3,2H)=,618.10,7X,6HLINEAR)
JJ=JJ+1

GO TO 601 ,

CHG=A(I)-T(I)
IF(A(T1))1632,632,1632
RCP=CHG/A(T)

GOTO631

RCP=1.0E+35

A(T)=T(1)
WRITE(IW,62)I,A(I),CHG,RCP,G(I),V(I)
RCP=DABS (RCP)
IF(RCP-MAXRCP)2001,2001,2002
MAXRCP=RCP

CONTINUE

CONTINUE



1691
2691
66

691
1692
3001

692

RCSSE=(SSE-SSET ) /SSE

SSE=SSET

ESTVAR=SSE/FLTN

ESTSD=DSQRT(ESTVAR)

R1=(S8ST-SSE)/SST

Ro=(SYY-SSE)/SYY
WRITE(IW,64)SSE,R1,ESTVAR,R2,ESTSD,RCSSE

IF (MAXRCP-EPS1)1691,691,601
IF(RCSSE-EPS2)2691,691,691

WRITE(IW,66)

FORMAT(///11X,35H*#*%%% CONVERGENCE IS MANIFEST %¥%%%//)
CALL KLOCK(TIME)

WRITE(IW,67) TIME
CALLRESID(X,N,NX,IT1,A,M,IW,DUMMY,0,C)

GOT0101

IF(OPT3)1692,692,1692
IF(FLOAT(L)/FLOAT(OPT3)-FLOAT(L/OPT3) )692,3001,692
CALLRESID(X,N,NX,IT1,A,M,IW,DUMMY,0,C)
IF(L-MAXIT)301,695,301

695 WRITE(IW.2){A(I),I=1,M)

ESTLIN

100

GOTO101
END

SUBRQUTINE ESTLIN(N,IT1,NX,NLP,LLP,A,A1l)
DOUBLE PRECISION W,U,ID,X,A,D,DELTA,DI,FI,FJ,Y,FSUBK,AlL
COMMON W(k65),%X(30)

DIMENSION U(30),LLP(1),D(30),A(1),A11(1)
1J=0

DO 100 I=1,NLP

U(I)=0.0

DO 100 J=1,I

IJ=IJ+1

W(1J)=0.0

CONTINUE

DO 300 NN=1,N

READ (IT1)ID,(X(J),J=1,NX),Y

1J=0

KEY=0

DO 200 I=1,NLP

ILP=LLP(I)

FI=FSUBK(X,A,ILP,KEY)

U(I)=U0(I)+Y*FrI

DO 200 J=1,T

IJ=1J+1

JLP=LLP(J)

FJ=FSUBK(X,A,JLP,KEY)

W(IJ)=W(IJ)+FI*FJ
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200 CONTINUE
300 CONTINUE
REWIND IT1

C PRECONDITION THE SYSTEM OF EQUATIONS

II=0
IJ=0
DO 400 I=1,NLP
II=II+1
DI=1.0DO/DSQRT{W(II))
W(II)=1.0D0
A11(IT)=W(II)
D(I)=DI
U(1)=U(1)*DI
DO 390 J=1,T
IJ=1J+1
IF(I.EQ.J)GO TO 390
W(IJ)=W(1J)*D(J)*DI
A1L(3T)=w(1g)

290 CONTIKUR

00 CONTINUR

o

c SOLVE THT SYSTEM
TF(NLT.EQ.1) GC TC 700
CALL CFL{W,NLP,DELTA)
CALL CFh(W,NLP,U)
CALL CT3(A11,KLP)

TO0O I1I=0

1J=0
DO 600 I=1,NLP
II=IT+1

ALL(TI)=A12(II)}*D(1)*D(I)
DO 590 J=1,1
IJ=IJ+1
IF(I.EQ.J)GO TO 590
A11(TJ)=A11(13)*D(J)*D(T)
590 CONTINUER
600 CONTIKUE
DO 500 I=1,NLP
ILP=LLP(I)
500 A(TILP)=U(T)*D(T)
RETURN
END

RESID

SUBROUTINERESID(X,N,NX,IT,A,M,IW,SSE,K,C)
DOURLEPRECISIONID,A,X,SSE,U,V,Y,FLTN,Z,R,ESTY ,BETAL ,BETA2 ,SKEW,C,F
DIMENSIONA(1),X(1) ,c(1)
-, U(h),v(M)
62 FORMAT(/11X,17THRESIDUAL ANALYSIS//20X,2HID11X,1HY8X,13HESTIMATE OF



63
65
66
67

1606

601

605

602

603

606

607

CFl
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- YSX,8HRESTDUAL)

FORMAT (16X ,A8,3G15.5)

FORMAT(//17X ,6HMOMENTS5X ,10HABOUT ZERO10X,10HABOUT MEAN)
FORMAT(16X,15,2G20.10)
(

FORMAT(//11X ,8HBETA(1)=G18.10,3X ,8HBETA(2)=G18.10,3X , 9HSKEWNESS=G1

-~T7.10)

IF(K-1)1606,606,1606
WRITE(IW,62)
DO601I=1,4

U(1)=0.0

CONTINUE

DO602L=1,N
READ(IT)ID,(X(J),J=1,NX),Y
ESTY=F(X,NX,A,M,C)
R=Y-ESTY
WRITE(IW,63)ID,Y,ESTY,R
7=R

DO605T=1,4

U(r)=u(z1 )+7

7=7%R

CONTINUE

CONTINUE

REWINDIT

SSE=U(2)

FLTN=N

DO603I=1,h
U(1)=U(1)/TLIN

CONTINUE
v(1)=0
v(2)=u(2 )~U(1\**2
V(3)=U(3)-3.0%U(1)*U(2)+2.0¥U(1)**3
V(L)=u(L)=40¥U(1)*U(3)+6.0*% (U(1)**2)*¥U(2)-3.0%¥U(1)**k
WRITE(IW,65)
WRITE(IW,66)(1,U0(1),v(1),I=1,4)
BETAL=V(3)*%2/(V(2)**3)
BETA2=V (L) /(V(2)**2)
SKEW=DSQRT (BETAL)* (BETA2+3.0)/(2.0%(5.0¥BETA2-6.0¥BETA1-9.0) )

WRITE(IW,67 )BETAL,BETA2,SKEW
RETURN

SSE=0.0

DO60TL=1,N
READ(IT)ID,(X(J),J=1,NX),
SSE=SSE+(Y- F(“,NX A,M,C))
CONTINUE

REWINDIT

RETURN

END

Y
£¥%D

SUBROUTINECF1 (A ,N,DELTA)
DOUBLEPRECTSTONA ,DELTA,S,AIT



DIMENSIONA(1)
DELTA=1.0
I=N
NN=N¥*(N+1)/2
IJ=NN
101 J=I
II=1J
102 K=I
KI=IT
KJ=IJ
S$=0.0
104 K=K+1
1J(K-N)1301,1301,103
1301 KI=KI+K-1
KJ=KJ+K-1
S=S+A(KI)*A(KJ)
GOTO10kL
103 I1F(J-1)801,802,803
801 A(IJ)=(A(IJ)-S)/AII
GOT0803
802 AII=DSQRT(A(II)-S)
803 IJ=IJ-1
J=J-1
IF(J)1102,1102,102
1102 DELTA=DELTA¥AII*AII
A(II)=AII
I=I-1
IF(I)1101,1101,101
1101 RETURN
END

CF3

SUBROUTINECF3(A,N)
DOUBLE PRECISION A,T,S,TII
DIMENSIONA(1),T(40)
IJ=0
DOLOLI=1,N
IM1=I-1
L=1J
IF(IM1.EQ.0)GOTOLOT
DOL02J=1,IM1
I=L+1
T(J)=A(L)

402 CONTINUE

LOoT TII=A(L+1)
K0=0
DOL01I=1,T



Loh
408

ho1

CFh

201

202

c (2)
1201

302

301

S$=0.0
IF(IM1.EQ.0)GOTOLO8
DOLOUK=1,IML
IF(K.LE.J)KJ=KO+K
IF(K.GT.J)KJ=KJ+K-1
S=S+T(K)*A(KJT)
CONTINUE

S=-S/TII
IF(J.EQ.I)S=1.0/(TII**2)+S
IJ=IJ+1

A(1J)=8

KO=K0O+J

CONTINUE

RETURN

END

SUBROUTINECFL (T,N,X)
DOUBLEPRECISIONT,X,S
DIMENSIONT(1),%X(1)
SOLUTION OF T'Y=B
IT=N*(N+1)/2

I=N
X(1)=X(1)/T(11)
II=1I-I

IJ=IT

IP1=I

I=I-1

S=X(1)
D0202J=IP1,N
IJ=IJ+J-1
S=8-T(IJ)*X(J)
CONTINUE
X(1)=8/7(11)
IF(I-1)1201,1201,201
SOLUTION OF TX=Y
IJ=1
x(1)=x(1)/7(1)
DO301I=2,N

S=X(I)

IM1=I-1

IJ=IJ+1
D0302J=1,IM1
S=S-T(IJ)*X(J)
IJ=IJ+1

CONTINUE
X(1)=s/T(1J)
CONTINUE

RETURN

END
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HART

SUBROUTINEHART(A,V,NVP,LVP,PHI,T)
DOUBLEPRECISIONA,V,T,PHI
DIMENSIONA(1),v(1),T(1),LVvP(1)
D0101I=1,NVP
IVP=LVP(I)
T(IVP)=A(IVP)+PHI*V(IVP)

101 CONTINUE
RETURN
END

ANGLE

DOUBLEPRECISTONFUNCTIONANGLE(X,Y,N)
DOUBLEPRECISIONX,Y,SXX,SYY,SXY,XI,YT,COSINE
DINET sTO8X(1),v(1)
SX¥=0.0
SYY—0.0
SXY=0.0
D0101T“H_ﬁ
FI=X(1)
yI=v(T)
SXX=CXY+XI*XT
SYY=SYY+YiFyI
SXY=0XY+XI#YT
101 CONTINUE
~ COSINE=8XY/DEORT(SXX¥SYY)
ANGLE=DACOS(COSINE) ¥*57.2957T79DO
RETURN
END

CREATE

SUBROUTINECREATE(U,NIV,IN,X,NX,Y,ID,C)
DOUBLEPRECTSIONID,U,X,Y,C,A
DIMENSIONU(1), Y(l) C(l)
C¥%%  PFORMAT (1) NUMBER IT 1
CH%¥ (2) FIRST FIELD A-FIELD OF MAX WIDTH 8 FOR ID
CH¥% (3) FOLLOW WITH G- OR D-FIELDS FOR INPUT VARIABLES
CEEHXX PLACE TORMAT AFTER THIS CARD FHRELENEREER PRI LR XA SRR RARLFXNANERRRRREXY
C THE FOLLOWING PROGRAM CALCULATES THE X-MATRIX USING 'CREATE'
1 FORMAT(AS,2G10.0)
CR%EXXR PLACE FORMAT BEFORE THIS CARD PX T ETELIL L DL ER L L X I LT L L DDDEL TR L TS E ks
READ(IN,1)1D,(U(J) ,J=1,NIV)
C¥%%%%  PLACE FORTRAN STATEMENTS CREATING X AND Y VARTABLES AFTER THIS CARD¥*
x(1)=u(1)
y=u(2)
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CHREXEREXRAKXRRAKURRARN R RRR AR KA AR R XL LR ERA XX R R R AL EREXRRRRERXXRXRTERRBUHRRDR
C¥%*¥%  PLACE FORTRAN STATEMENTS CREATING X AND Y VARIABLES BEFORE THIS CAED
RETURN
END

DOUBLEPRECISIONFUNCTIONF (X,NX,A,M,C)

DOUBLEPRECISIONX,A,C,SUMAX,E1,E23

DIMENSIONA(1),X(1),c(2)

C¥%%%¥% PLACE FORTRAN STATEMENTS FOR EVALUATING F AFTER THIS CARD ##¥xmus
C***************%*%*%******%**%%%*%**%*%%%%****%ﬁ%%%%*%*%*%**%%%%ﬂ:

El=A(2)*X(1)

IF(E1.GT.170.D0) E1=170.DO

E23=A(L)*X(1)

IF(E23.GT.170.D0)E23=170.D0

C(1)=DEXP(E1)

C(2)=DEXP(E23)

F=A(1)*C(1) + A(3)*C(2)

RETURN

ENTRY FSUBK(Y,A,K,KEY)

El=A(K+1)*X(1)

IF(E1.GT.170.D0) F1=170.DO

F=DEXP(E1)

RETURN
C*****%*%%%*%%***%%**%*****%%******%%%*%%********%*ﬁ***%%%%*%*%%%&%*%%%*%%
C¥¥%%% PLACE FORTRAN STATEMENTS FOR EVALUATING I BEFORE THIS CARD ##v¥sd

END

HRRBRRF

PD

SUBROUTINEPD(X,NX,A,M,FXA,C,P,WATE)

DOUBLEPRECISIONX,A,FXA,P,C,WATE

DOUBLEPRECISIONU,V

DIMENSIONX(1),A(1),P(1),c(1)
C¥%%¥% PIACE FORTRAN STATEMENTS FOR EVALUATING PARTIAL DERIV AFTER THIS

—~CARD %¥%
c*******%%**%****%********************%*****%%******%**********%***%%%%*%
C  CALCULATES FIRST PARTIALS

WATE=1,0DO0

P(1)=c(1)

P(2)=X(1)*A(1)*c(1)

P(3)=C(2)

P(h)=x(1)*A(3)*C(2)
C****************************************************************% FYXAR¥

CRREXRXXRRXEXXXAEXLXRAXERAXXRARXR R XXX AKX RRRREXRXRRRERL XA RRRRRX R
CREXRRXEX XXX XXX KR LR RXRRREA UK RRRRRELERREEARAXRRAXERXXRRXX RN X NN P REREN
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C¥#%¥¥ PLACE FORTRAN STATEMENTS FOR EVALUATING PARTIAL DERIV BEFORE THIS
~CARD '
RETURN
END
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