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GENERALLY APPLICABLE N-PERSON PERCENTILE GAME THEORY
FOR CASE OF INDEPENDENTLY CHOSEN STRATEGIES

John E. Walsh Grace J. Kelleher
Southern Methodist University* University of Texas at Arlington

ABSTRACT

Considered is discrete N-person game theory where the players choose
their strategies separately and independently. Payoff "values" can be
of a very general nature and need not be numbers. However, the totality
of payoff outcomes (N-dimensional), corresponding to the possible combina-
tions of strategies, can be ranked by each player according to their desir-
ability to that player. A largest level of desirability (associated with
one or more outcomes Oi) occurs for the i-th player such that he can assure,
with probability at least a given value o5 that an outcome with at least
this desirability level is obtained, and this can be done simultaneously
for all the players. This game theory is of a median nature when all the
oy are chosen to the 1/2. A method is given for determining Oi and an
optimum (mixed) strategqgy for every player. Practical aspects of applying
this percentile game theory are examined. Application effort can be
substantially reduced when the players have relative desirability functions
for ranking the outcomes. Some elementary types of relative desirability

functions are introduced.

*Research partially supported by Mobil Research and Development Corpora=~
tion. Also associated with ONR Contract N00014-68~A-0515 and NASA Grant
NGR 44-007-028.



INTRODUCTION AND DISCUSSION

The case of N players with finite numbers of strategies is considered.
Each player selects his strategy separately and independently of the
strategies selected by the other players. Mixed strategies are used.
That is, a player specifies selection probabilities (sum to unity, with
a unit probability possible) for his strategies and randomly chooses the
strategy used according to these probabilities.

An N-tuple of payoffs, one to each player, occurs for every possible
combination of strategy choice by the N players. These N-tuples are the
possible outcomes for the game. The number of possible strategy com-

binations is

N
M),
i=1

where r(i) 2 2 is the number of strategies for player i. The payoffs can
be of an exceedingly general nature. Some payoffs may not even be
numerical (could identify categories, etc.). However, the outcomes are
such that they can be ordered, according to relative desirability,
separately by each player. Also, all players know the correspondence
between outcomes and strategy combinations.

Ordering of outcomes should nearly always be achievable by use of
paired comparisons. That is, for each two outcomes, a player expresses
his preference (with equal desirability a possibility). An ordering
occurs when there is no circularity of definite preference. Frequently,
acceptable rules can be imposed that prevent circularity of definite

preference. A suitable numerical function of the N payoffs might be used



for ordering the outcomes. The amount of application effort can be reduced
substantially when each player has a realtive desirability (preference)
function for ranking the outcomes. Some methods for developing elementary
kinds of preference functions are introduced for the case of numerical
payoffs.

It is to be emphasized that an ordering of outcomes not only takes
into consideration the payoff to the player doing the ordering but also
the corresponding payoffs to the other players. Thus, to each player,
his ordering provides the relative desirability of what can occur for
the game, including what happens for the other players.

Expression of the payoffs to player i in matrix form is convenient
(called the payoff matrix for player i). Here, the rows correspond to the
strategies for player i and the columns to the combinations of the stra-
tegies for the other players. Let the strategies for player j be denoted
as 1, ..., r(j), where j =1, ..., N. For definiteness, the rows of the
matrix for player i are numbered 1, ..., r(i). BAlso, in the combinations,
the strategies for the other player with lowest designation number occur
first (listed according to increasing strategy number), those for the other
player with the next to lowest designation number occur second, ..., the
strategies for the other player with highest designation number occur last.

The material of this paper is an extension of that given in ref. 1
for two players and arbitrary percentiles. The basis for percentile game
theory is that each player should want the occurrence of an outcome that
has a high level of desirability to him. However, a player only
partially controls the out:ome choice and needs some meaningful criterion
(to guide him in the choice of a mixed strategy) that incorporates his

interests and is usable. The class of percentile criteria considered

.



in this paper is virtually always usable and, for each player, should
frequently include a criterion that reflects the player's interests.

For player i, let the outcomes be ordered according to increasing
desirability to him (i =1, ..., N). Also, player i specifies a
probability di that represents the assurance with which he wants to
obtain an outcome that has a reasonably high desirability. A largest
level of desirability occurs among the outcomes such that player i can
assure, with probability at least o that an outcome with at least this
desirability occurs. This can be done simultaneously for all players.
The outcome, or outcomes, with this largest desirability level is desig~
nated by Oi for player i.

A method, which is oriented toward minimum application effort, is
given for identifying Oi when ai is given and for determining an optimum
mixed strategy for player i. Given a desirability level for Oi’ this
method tends to maximize the value of -

A desirability level, represented by Oi’ corresponds to each
possible value of di (0 < di < 1). However, only a finite number of
values are achievable for ai. A value is achievable for ai when, for
the Oi corresponding to ai, use of a strategy that is optimum for this
combination (Q/.l and Oi) cannot assure an outcome at least as desirable as
Oi with probability exceeding ai. For player i (and the method of
solution used), the achievable values of ai are determined by his ordering
for the outcomes and the location of the outcomes in the payoff matrix
for player i. Restriction of ai to achievable values would seem to be
advisable. For example, the nearest achievable ai value that exceeds the

stated ai should be an acceptable choice in many cases.



The application effort for using the method of this paper can be
very great. First, N payoffs need to be evaluated for every possible
combination of strategies, and the number of ccmbinations can be huge,
even when all of N, r(1), ..., r(N) are of moderate size. For example,
let N =10 and r(l) = ... = r(N) = 10. Then, the number of strategy
combinations is 10*° and the number of payoffs to be evaluated is 1031,
Of course, this application difficulty occurs for virtually all possible
methods of solution (not just for the percentile method). Second,
ordering of the outcomes can require huge effort, although this is
substantially reduced when preference functions are available. Third,
the solution can require appreciable effort, due to the huge sizes of the
payoff matrices for the players. In summary, great application effort
can be needed but this is principally due to the massiveness of the number
of outcomes (at least for the éase where the players have preference
functions for ordering the outcomes).

Some material is given for helping to reduce the effort in identify-
ing Oi and determining an optimum mixed strategy for player i. More
specifically, for player i, consider all outcomes that are at least as
desirable as a given outcome. The locations of these outcomes are
marked in the payoff matrix for player i. Depending on the locations, a
bound is obtained for the probability with which player i can assure
the occurrence of an outcome with at least the desirability level of the
given outcome.

It is to be noted that, for given ai, assuring at least the desira-
bility level of the corresponding Oi is the best that can be "forced"

by player 1 with probability at least Ui.



The next section contains a statement of the method for identifying
the Oi that corresponds to a given di and of determining an optimum
mixed strategy. Some elementary types of preference functions are given
in the next to last section. The final section contains some proposi-

tions that provide a basis for the method of solution.

METHOD OF SOLUTION

The method used applies to each player and is stated for player i.
Results are fifst stated for the case where the value specified for oy
can be anywhere in the interval 0 < o, £ 1. fthen, modifications for the
case of achievable ai are considered. Markings of the outcome locations
in the payoff matrix for player i are used in the method of solution.
The r (i) rows correspond to the strategies of player i and the
N
c(i) = 0 r(P
j=1
jtl
columns correspond to the combinations of strategies for the other players.
The case where the specified a, is at most 1/2 is considered first.
For the initial step, mark the position(s) in the payoff matrix of player
i for the outcome(s) with the highest level of desirability to player i.
Next, also mark the position(s) of the outcome(s) with the next to highest
desirability level. Continue this marking, according to decreasing desir-
ability level, until the first time that marks in all columns can be
obtained from a set of rows whose number does not exceed l/ai. If
r(i) - s(i) is the smallest number of rows for such a set, player i can

1

assure a marked outcome with probability at least [r(i) - s(i)] 7,



which is at least di’ with a probability exceeding (r (i) - s(i)]_l being
possible. ©Next, remove the mark(s) for the outcome(s) that have the
smallest desirability level (among the outcomes that received marks).
Then, by the following procedure, determine whether some one of the
remaining marked outcomes can be assured with probability at least o -
The procedure is to replace the marked positions by unity and all others
by zero. The resulting matrix of cones and zeroecs is considered to be the
payoff matrix for player i 1in a zero-sum game with an expected-value
basis. Some one of the outcomes corresponding to the marked positions
can be assured with probability at least oy by player i 1if and only if
the value of this game to player i 1is at least o

Suppose that the resulting game value is less than ay - Then, Oi
consists of the outcome (s) with marking(s) removed at this step. Other-
wise (game value 2 di), remove the mark(s) for the outcome(s) with the
smallest desirability level among those still having marks. Then, by the
procedure just described, determine whether some one of the remaining
marked outcomes can be assured with probability at least di' If not
{(game value < “i), the maximum desirability level that can be assured
with probability at least oy is the level corresponding to the outcome (s)
with marking(s) removed at this step. If a probability of at least ai
can be assured, continue in the same way until the first time some one
of the remaining marked outcomes cannot be assured with probability at
leastlai. Then, the maximum desirability level that can be assured with
probability at least di is the level for the outcome(s) with marking (s)

removed at this step.



Now, consider the case where ai > 1/2. Mark the matrix positions
of the outcomes according to decreasing desirability until the first
time that no less than (1 - ai)-l columns are needed to obtain unmarked
outcomes in all rows. Then, player i can assure some one of the marked
outcomes with probability at most a., but ordinarily near oy When the
smallest number of columns needed equals (1 - ai)_l, the possibility
exists that a marked outcome can be assured with probability o, - If
this equality occurs, determine the probability with which a marked outcome
can be assured by player i. Otherwise, where the smallest number of
columns exceeds (1 ~- ai)_l, also mark the position(s) of the outcome (s)
with the highest desirability level among the remaining unmarked positions
and determine the probability with which a marked outcome can be assured.

To make the probability determination, for both possibilities,
replace the marked positions by unity and the unmarked positions by zero.
Consider the resulting matrix of ones and zeroes to be for player i in
a zero-sum game with an expected-value basis. Player i can assure an
outcome of the marked set with probability o, or greater if and only if
the game value (to him) is at least ai. When the resulting game value
is at least ai’ for either possibility, Oi consists of the marked out-
come (s) with the smallest desirability level.

When the game value is less than oy also mark the position(s) of
the outcome(s) with the highest desirability level amont the outcomes
not yet marked. Determine, by the procedure just given, whether an out-
come of the marked set can be assured with probability at least ai. If
so, Oi consists of the outcome(s) marked last. Otherwise, continue

marking the positions of outcomes according to decreasing desirability
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level until the first time that an outcome of the‘marked set can be
assured with probability at least ai. Then, Oi consists of the outcome (s)
marked last. A simplification occurs when ai > 1 - 1/c(i}. Then, the
marking continues until the first time that a pure strategy occurs that
consists of all positions in a row being marked.

Now, consider determination of an optimum strategy for player i.
Use the matrix marking of all outcomes whose desirability level is as
least as great as that of Oi' Replace the marked positions by unity and
the other positions by zero. Treat the resulting matrix as the payoff
matrix for player i in a zero-sum game with an expected-value basis. An
optimum strategy for player i in this zero-sum game is ai—optimum for
him. Also, the value of this game to player i 1is an achievable ai that
is the nearest achievable value at least equal to the stated value for a -

Next, consider cases where the value wanted for di is stated but the
requirement of an achievable oy is imposed. The nearest achievable value
at least equal tp di is determined by the method given for the case of
general o, . When the stated o, is not achievable, the nearest smaller
achievable value is determined by first removing the mark(s) for Oi in
the marking that consists of all outcomes at least as desirable as Oi'
Then, the remaining marked positions are‘feplaced by unity and the other
positions by zero. The value of the resulting zero~sum game to player i
is the nearest achievable value that is less than the stated ai.

The solution method used requires that the positions of all outcomes
with equal desirability to player i be simultaneously marked in his
payoff matrix. This tends to maximize the probability of assuring at

least a given level of desirability for the outcome that occurs and to



reduce the amount of application efforf. Other ways could be used,
however, in which not all outcomes of equal desirability are marked at
the same time. 1In fact, an approach like the preferred sequence method
of ref. 2 could be used to mark each outcome separately. These special

methods could possibly be useful in some cases but are not considered

in this paper.

ELEMENTARY PREFERENCE FUNCTIONS

Almost complete freedom is available to a player in his ordering
of the possible outcomes for the game. This does not imply, however,
that any way chosen for doing this ordering is necessarily satisfactory.
In fact, great care can be needed in determining a suitable ordering.
This great freedom is a valuable asset, but only if used carefully and
wisely. Several examples of elementary preference functions are given
to illustrate considerations in the development of satisfactory preference
functions.

Let the preference function used by player i be denoted by
Di(pl’ ceey pN), where (pl, ceey pN) is a general outcome. The
possible values of Di(pl’ caey pN) are real numbers and increasing value
represents increasing desirablity to player 1 (equal value represents
equal desirability).

For simplicity, but without great loss of generality, values of
p, are expressed as real numbers, in the same unit, which are such that
increasing values of P; represent nondecreasing (usually increasing)
desirability to player i. Also, as a standardization, Dl(pl’ c.eey P

N

is considered for all the examples. The forms used for Dl(pl, ey pN)
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are always such that, in their use, any differences in the kinds of
units used for Pyy -5 Py do not cause difficulties in the statement
of Dl(pl’ oeay pN).

The first example involves additive changes in the pi and the

situvation is such that an addition of A to p. has the same desirability

1

to player 1 as the combination of an addition of eiwiai to P, for
i=2, ..., N. Here, a, is positive, e, is 1 or -1 (dependinc on
whether an increase or decrease is to occur), W b e W = 1 with all

W, o2 0, and A can be positive or negative. The preference function

N
(a) _ )::
Pl (pl, eeny pN) = Py + A & eipi/ai

(a)

should be suitable, since Dl (pl + A, Pyy +vvy pN) equals
N N
+ + ]E: .p./a. = 2::
1 A+ A elpl/a1 p, + A ei(pi + eiwiai)/ai

i=2 i=2

(a) .
equals Dl (pl, p2 + e2w2a2, ooy pN + erNaN) for all possible values

of Pis vy pN.
The second example involves multiplicative changes in the pi and

requires that they all have positive values. The situation is such

that multiplication of p1 by the positive factor (1 + B) has the same

desirability to player 1 as the combination of multiplying pi by the

factor (1 + eivi)wi for i = 2, ..., N. Here, 0 < vy < 1, the value of B

can be positive or negative, ei = 1 or -1 (depending on whether an

increase or decrease is to occur), and v, + ... +w_=1, with all

N

w, 2 0.
i
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The preference function

(m)

N
Dl (pl, ceey pN) =loglc)p1 + E {[ log 0(1 + B)] /[1Og10(1 + eivi)]}loglopi

i-2 1
should be suitable, since D{m%ﬂ.+ln 1 I Y pN] equals
N
Aloglo(l + B)p, + 1—22 {lloglo(l + B)1/[1log,, (1 + ej.Lv:.L)]}loqlopj.L

N
W,
i
= y
loglopl + }:; {[1og10(1 + B)]/[loglo(l + eivi)]}loglo(l + e,v,) Py

W, W,

(m 2
equals Dl %pl,(l + e2v2) p2’ ceey, (1 + e v

N cy .
for all positive valuves
N N) pN] p v

of Pys <y Pye
The third example involves both addition and multiplication, where

changes in Pys - p_ are by addition and changes in p

P voey pN are by

J+1’

multiplication (with p “++5 Py all positive). The situation is such

J+1’

that an addition of A to p, has the same desirability to player 1 as the

1

combination of an addition of ejwjaj to pj for j =2, ..., J, and multi-

W
plication of pj by (1 + ejvj) J for j = 3 +1, ..., N. Here,

Wy ot W = 1 with all wj 2 0, the value of A can be positive or

negative, and the ej, aj, vj have the same properties as for the first

and second examples. The preference function

N N
(am) -1
D, (Pys, +-+» P =P, +A Ze.p./a.+l\ E [log, (1 + e .v.)] "log, b,
1 1 N 1 Enc A B joa+1 10 i3 3
. . (am)
should be suitable, since D1 (pl + A, Poy ves pN) equals
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J N
=1
p1 + A + A z ejpj/a. + A Z [10910(1 + ejvj)] 1oglopj

j=2 ] j=J+1
N N
-1 wj\
=Ep, +A Z'e.(p.+e.W.a.)/a.+A z [log, . (1 +e.v.)] "log, . (l+e.v.) p.
0
1 joz 373 333 jeon 10 33 1 3373
w
(am) J+1
equals D1 [pl,p2-+e2w2a2, ceay pJ-rerJaJJ1-+eJ+le+f Pyypr ** s
WN
(1 + eNvN) pN] for all permissible values of Pys --e5 Py

The final example also involves both addition and multiplication,
but P, changes by multplication. BAgain, as a standardization, the changes

in Pyy vy o are by addition and the changes in p --+y P are by

J+1?

multiplication {with Pys pJ+ ey Py all positive for this case). The

1.’
situation is such that multiplication of p1 by the positive factor (1 + B)
has the same desirablity to player 1 as the combination of an addition of

W.
e.w.a, to pj for j =2, ..., J, and multiplication of pj by (1 + ejvj)J

JJ3
for j = J+1, ..., N. Here, w2 + ... + WN = 1 with all wj 2 0, the

value of B can be positive or negative, and the ej, aj, vj have the same

properties as for the first two examples. The preference function

J
_ »
D1 (pl, v pN) = 1oglop1 + [loglo(l + B)1] 5 ejpj/aj
N
V. 1 .
+ jjg;l {[10910(1 + B)]/[loglo(l + ejv])]} oglop]

(ma}

should be suitable, since D1

(1 + B)pl, Pys veey pN] equals
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J

1og10(1 + B)pl + [1ogl0 1 +B)] E ejpj/aj
j=2

N
+ E {[1og10(1 + B)]/[logl0 1+ ejvj)]}log

p.
j=J+1 03

1
J

= log, P, + [log, (1 + B)] }[: ej(pj + ejwjaj)/aj
=2

N
w.
z : 3
+ {[1og10(1 + B)1/[log, (1 + ejvj)]} log, (14—ejvj) P,

j=J+1
w
(ma _ J+1
equals Dl %pl, P, + € W85y weey P + erJaJ,(l-+eJ+1vJ+l) Py "" 2
N
(1 + eNvN) pN] for all permissible values of Pys «ees Pye

Of course, any strictly increasing function of a preference function

provides an equivalent preference function.

SOME PROPOSITIONS

The statements about the probability inequalities when marks in all
. columns can be obtained from r (i) - s(i) rows, and about ummarks in all
rows from no less than (1 -~ diyl columns, follow from

THEOREM 1. When the marked popsitions of outcomes in the matrix for

plaver i are such that marks in all columns are obtained from x (i) - s(i)

rows, player i can assure occurrence of a marked outcome with probability

-1
at least [r(i) - s(i)] , or at least di when r (i) - s(i) = l/ai.

COROLLARY. When the unmarked positions of outcomes in the matrix for

player i are such that unmarked positions in all rows arxe obtained from

c(i) ~ t(i) columns, the combination of other players, which have the

c(i) columns are strategies, can assure an unmarked outcome with proba-

1

bility at least [c (i) - t(i)T . Thus under these circumstances, player

-14-



i can assure a marked outcome with probability at most 1 - {c(i) - t(i)Tl,

or at most ai when c(i) - t(i) =2 (1 - di;l-

Proof of Theorem 1. When r(i) - s(i) = 1, so that some row is fully

marked, the probability is unity that a marked outcome can be assured by
player 1i.

Now suppose that r(i) - s(i) > 2. Let P and

ceey P,
1’ 7 (i)
Qys +ees qé(i) be the mixed strategies used. The probability of the

occurrence of a marked outcome is

r (i)

Z Py

k=1
where Qk is the sum of the q's for the columns that have marked outcomes
in the k-th row. The largest value of this probability that player i can

assure, through choice of P is

1t Pry?

G = min (mﬁx Qk)'

ql, L) qC(i)

Let k[1], ..., k[r(i) - s(i)] be r(i) - s(i) rows that together contain
marked positions in all columns. For any minimizing choice of the values

for Qys oney qc(i)’ all of are at most G.

%1 o Xird) - s
Hence,

[r(i) - s()lc = Q + ...

k (1) o

P %@ - s 7
so that a probability of at least {[r (i) - s(i)]_l can be assured by
player i.

The remaining part of the method of solution has as its basis

THEOREM 2. A sharp lower bound on the probability with which player

i can assure occurrence of an outcome of a specified set whose positions

-15-



are marked in his payoff matrix, and identification of one or more

optimum strategies for him in accomplishing this, can be obtained from

solution for the value to player i of a zero-sum game with an expected-

value basis. The payoff matrix for player i in this game has the value

unity at all marked positions (in the original matrix for player i) and

the value zero at all other positions.

Proof. Let arbitrary but specified mixed strategies be used for the

rows and for the columns. With the matrix considered for the zero-sum
game, the expression for the expected payoff to player i is identically

equal to the expression for the probability that a marked outcome occurs.
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