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ABSTRACT
The data (continuous) are n independent observations that are
believed to be a random sample. The possibility exists, however, that
as many as J of the largest observations, and as many as K of the small-
est observations, are ocutliers. That is, these observations are from
populations that are different from the population yielding the other
observations (which number at least n-J-K). The interest is in obtain-
ing suitable estimates for the mean and variance of the population
yielding the other observations. J and K are given and relatively small,
with both S 2nA, where A is specified and $ 1/4. When the population
yvielding the other observations is continuous, has moments of all orders,
and is well-behaved in some other ways, estimates are developed that are
unbiased if terms of order n—l+A+2€a1e neglected. Here, € can be arbi-

trarily small but is positive.
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Research and Development Corporation. Also associated with ONR Contract .
N00014-68-A~0515.



INTRODUCTION AND RESULTS

The data are n independent observations from contimuous univariate
populations. These observations are believed to be a random sample and
estimates are desired for the population mean and variance. However,
there is the possibility that as many as J of the largest observations
and as many as K of the smallest observations are from populations that
differ from the population yielding the other observations. Then, the
interest is in obtaining suitable estimates for the mean W and the
variance 0% of the population yielding the random sample (of size at
least n~-J-K) that consists of the other observations. The values of J
and K are given and relatively small. Specifically, 0 £ J, K = ZnA,
where A is given and such that 0 = A < 1/4.

Let the order statistics of the n observations be denoted by

x(1) < x((2) < ,.. <x(n~1) < x(n).
Then, x(1), ..., x(k) and x(ntl1-j), ..., x(n) are from populations that
differ from the population yielding x(k+1), ..., x(n-j), which constitute
a random sample of size n-j~k. Here, j = O implies that none of the
largest observations are from differing populations and k = 0 implies
that none of the smallest observatiéns are from differing populations.
The values of j and k are unknown but satisfy j < J and k = K.

The properties stated for the estimates presented do not hold in
general. These estimates are not applicable unless n is at least moder-
ately large and the population yielding the random sample of size n
satisfies some conditions (at least approximately). Besides being contin-

uous, this population should have finite moments of all orders and should



have a density function that is analytic and nonzero throughout the
range of possible values. A more exact statement of these conditions is
given in the Derivations section.

The estimates could be stated in many ways. The statement given
here uses all of x(k+1),...,x(n-j) with equal weighting. These are the
only observations that are known to be from the population with mean
and variance 02,

The estimate of p is denoted by §(J,K) and the estimate of 0% is
S(J,K), where i(J,K) equals

(n=J-K) " x (K+1) + x(K+2) + ... + x(n-0)]
and S(J,K) equals
(n-0-K=1) "L[x(k+1)® + ... + x(n-3)3]
-[ (n=-3-K) / (n-J-k-1) I1x(J ,K) 2.
These estimates have the properties

E[X(3,K] = p + o(n TTAYE)

o? 4+ o(n-l+A+Ze),

E[s(J,K) ]

Var[x(3,K)] = 0°/n + o(n_l).

var[s(J,K)] = O(n_l)r

where € > O is a fixed but arbitrarily small constant. It is to be
remembered that 1/4 is the largest possible value for A.
The next, and final, section contains an outline of the derivations

for the properties of x(J,K) and S(J,K).



OUTLINE OF DERIVATIONS

The relationships occurring in the derivations are similar to
those arising in ref. 1. For brevity, much of the verification is only
outlined, with referral to ref. 1 for more details,

The basic approach is to state x(J,K) and S(J,K)in terms of x(k+1),
«essx(n-j), which is a random sample from the population considered,
Plus additional terms. Then, expressions whose expectations are U and
0%, respectively, can be identified and the additional terms are shown
to be unimportant for n sufficiently large.

Some notation is introduced first. The mean of the sample of size
n-j-k is denoted by x(j,k) and is obtained from the expression for x(J,K)
by letting J = j and K = k., The arithmetic average of the order statistics
x(k+1l),...,x(K) ,x(n=-J+1) ,...,x(n-j) is denoted by y and the arithmetic
average oﬁ the squares of these order statistics is represented by Y?.

Let F(x) be the cumulative distribution function of the population

(t)(z) ’

yielding x(k+1),...,x(n-3), and let X for £t = 0,1,2,..., be defined

by

F[X(o)(z)], X(t)(Z) = th(())(z)/cizt.

(0)

The more exact conditions on F(x) are: X (z) can be expanded in Taylor
series about each of the values z = (k+1)/(n-j-k),...,K/(n-3-k),

(n=-J4+1) /(n-3-kK) , ..., (n=-j) /n-j-k) and, for each series, T[X(okz)]bdz can
)

be evaluated using term by term integration (b~1,...,4). Also, the

(t)

magnitude of ti (z) is at most O(l) with respect to n for these values



of z, (t=1,2,...), and the X(O%z) are at most O(ne), where € > 0 is

‘arbitrarily small but a fixed constant. For t = 2,3,..., the magnitude
of ztx(tj(z) is at most o(l) for these values of z.

These conditions (taken from ref. 1) are not very restrictive for
practical situations involving contimious populations. The first part
justifies some expansions that are used. The magnitude relationships
for the X(O%z) are motivated by the consideration that this is the case
when all the population moments exist. The relationships involving the
x(t%z) for t 2 1 hold for nearly all continuous populations of practical
interest.

The expectation of x(J,K) is considered first. The value of x(J,K)
can be expressed as

[ (n-3-k) / (n=-J-K) 1% (F,k) + [(I+K-3=k)/(n-0-K)ly

Thus,

E[X(3,K0] = p + o(n” ey,

since

- . €
Elx(3,kK 1] = u, E(y) = o[ (n-j-k) ]

. A
and j,k,J,K are O(n ).

Next, consider the variance of §(J,K). By a method very similar to
that used in ref. 1 (for the variance of m considered there), the vari-
ance of §(J,K) is found to be 0%/n + o(n—l). The principal use of this
result is in evaluation of the expectation of S(J,K). Another result for

this purpose is

E(z®) = var(2) + [E(2)]?,



which applies, in particular, when Z is an order statistic. From the

stated conditions, and material in ref. 1,

. 2¢
E(z®) = o[ (n-3j=k)“"]
when Z is any of x(kt+tl),...,x(X) ,x{(n-J+1),...,x(n-3).
Now, consider the expectation of S(J,K). The value of S(J,K) can

be expressed as
[ (n=j=k-1) / (n-0-K-1) ] (n-j=k-1) "T[x (k+1)2 + ... + x(n-3)2]
- [ (J+K-§-K) / (n-J-K~1) ] ¥Y°
- [ (n=3-K) / (n-J-K-1) ]x(J,K) 2.
Thus, E[S(J,K)] equals
[ (n-j-k-1) / (n-J-K-1) ] (0%+u?) - (J+K—j—k)(n—J—K—l)_lO[(n—j—k)ze]
= [(n=3-K) / (n-3-K-1) ] [63/mto(n"]) + w2 4 o 1T
- o? + o(n-ItAt2e

The fact that var[S(J,K)] is o™y is verified by a method very similar

to that used in ref. 1 (for the variance of sz considered there) .
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