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Most of the literature of signal detection assumes a parametric signal mode! of the
form f(t) = BS(t — to) where the amplitude § and the time of arrival t, are unknown.
Many of the questions remain unanswered about signals of the form fS(at — to) where a
is an unknown scale parameter. Several basic results are presented about the reception of
signals of this more general form.

The Likelihood Ratio Test for detection is developed and curves of probability of
detection as a function of signal-to-noise ratio are given for various false alarm rates.
Detection in the case of multiple observations is also considered.

Estimation of the unknown signal parameters §, a, to and the unknown noise
variance o2 is treated. The maximum likelihood or least squares estimators for these
parameters are given, along with an iterative computational technique. The large sample
distribution of the estimators is also given.

Two types of signal classification problems are discussed and the Bayes decision

rules for their solutions are presented.
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CHAPTER 1
STATEMENT OF THE PROBLEM

1.1 Introduction

The general topic of signal detection has been for many years the subject of some
very fruitful statistical research, resulting in a voluminous literature. There are a few
fundamental papers (i.e., Slepian'® , Middleton and Van Meter”, and Chapter 2 of Van
Trees'' ) which indicate how to formulate detection and estimation problems for a
general signal whose exact form depends on several unknown parameters. But by far the

largest part of the literature assumes a signal model of the form

f(t) = BS(t = t,)

where only amplitude § and the time of arrival t, are unknown. This assumption permits
the theory to be developed in much sharper detail than is possible for the more general
signal model. Many good textbooks are available which consider detailed questions about
the detection and estimation of signals of this form, such as Van Trees'! , Helstrom?,
Middleton® , Davenport and Root!, Y.W. Lee’ and Lawson and Uhlenbeck*. These
textbooks with very specific results are usually more valuable to the working system
designer than are the more fundamental papers upon which they are partially based.

This dissertation is an attempt to extend the general topic of signal detection in
another direction, and that is to begin a collection of detailed results pertaining to a

slightly more general signal model of the form

f(t) = BS(at — to)

where the new parameter a represents an unknown linear scale distortion. Results will be
obtained in the following chapters concerning some of the questions ordinarily asked

about detection, parameter estimation, and classification.

1

1.2 The Classical Problems

The reception of signals in the presence of noise presents many statistical decision
problems. These can be roughly divided into three areas, signal detection, parameter
estimation, and classification. These types of decision problems can be illustrated with an
example. Figure 1.1 shows a signal reception process involving all three types of decision
problems.

Suppose that a voltage or waveform v(t) is observed at the terminals of a receiver.
This received waveform is observed over an interval of time that could contain a signal
S(8,t), and the observer must choose between two possible alternative hypotheses: (Hy)
there. is no signal, and the input consists of noise alone, V(t) = N(t), or (H, ) the signal is
present, and V(t) = N(t) + S(@, t). This decision represents the detection part of the
process, and because of the stochastic nature of the noise, it can be formulated as a
statistical test of hypotheses.

If the decision is yes, there is a signal S(f, t) present; the next problem in the
sequence is to estimate the unknown parameters § of the signal. All of the standard
techniques of statistical estimation theory are applicable subject only to limitations on
the amount of prior knowledge or assumptions available concerning the statistics of the
signal and the noise or system costs. A common example of a signal parameter to be
estimated occurs in radar, where the signal is displaced in time an amount t, which is
proportional to the range to the reflecting target. By estimating the signal parameter tq
based on the observed data V(t) = N(t) + §S(t — to) the radar system can then indicate
the range to target.

The last of the three decision problems is that of classifying the received signal.
Classification means the assignment of the signal to one of a set of preassigned classes.
Decoding the signal and deciding which letter of the alphabet it represents is an example
of classification. Deciding, on the basis of its observed parameters which type of emitter
the signal came from is another example. In some cases the classification problem is more
easily formulated as a test of multiple hypotheses. Suppose there are M sources active
and the kth source emits the signal Si(t), k = 1, 2,..., M. After observing the received

waveform V(t), the observer must choose between the M + | hypotheses:



V(t) = [

'

N(t) + S(8, t) , Under H,
N(t) Under H,

DETECTION

Nol

l YES

PARAMETER
ESTIMATION

=1

ESTIMATES OF SIGNAL
PARAMETERS §

W=

CLASSIFICATION

SIGNAL CLASS DECISION

Figure 1.1 Signal Reception Process

Hy: V(1) = N(B)
H,: V(t) = Nt) + S, ()
H,: V() = N(t) + S,(t)

Hy @ V() = N(t) + Sy (1)
This formulation is slightly different in that it includes the detection problem. This latter
formulation is sometimes called the M-ary detection problem.

These three general categories encompass a large part of the statistical decision
theory used in the study of communication systems, but are by no means exhaustive.
Also there are many variations of the problems within each of the three categories that
are worthy of separate studies in themselves. The material in this dissertation will include
only the most basic of the questions that could be asked about the reception of signals

from the generalized class described below.

1.3 Linear Scale Distortion

Throughout this dissertation we shall say that f(t) and S(t) are the same under a
linear scale transformation if there are real numbers a and t, such that f(t) = S(at — t,).
There are many ways in which signals may undergo linear scale distortions. The most
obvious is the Doppler effect. 1f the signal S(t) is transmitted and there is a relative
velocity v/c between the transmitting and receiving platforms (v/c merely expresses the
velocity v in units of ¢, the propagation velocity of the signal), then the signal S(at — t;)
will be observed at the receiver, where a = 1 + v/c. In radar applications and in
electromagnetic communication systems, the ratio of velocities v/c and the ratio of signal
bandwidth to center frequency are so small that scale distortion in these cases can be
handled rather simply. Almost all signals in these problems are modeled as in (Helstrom?,

page 13).
S(t) = A(t) cos [wt + ¢(t)]

where A(t) represents an amplitude modulation, and ¢(t) represents a phase modulation.

Since 1 + v/c is very little different from one in the radar application, and since the



carrier frequencies w are so great compared to the signal bandwidths, the Doppler effect
is approximated as a shift in the carrier frequency w. The envelope function A(t) and the
phase function ¢(t) are assumed to be invariant. This approximation works well in radar
but is completely worthless in many other problems. In both passive and active sonar, for
example, the signal bandwidths and velocity ratios are such that more exact treatment is
required to yield usable answers.

Other problems which involve linear scale transformations include the following.

1. In automatic processing of speech data, there is a scaling problem because
some speakers utter the same words or signals faster than others. Indeed the
same speaker does not always talk at the same rate.

2. Medical data and other biological data have a scale ambiguity because growth
rates vary, or pulse rates vary or the rate of any physical process may vary,
although the signal, or phenomenon signature for which one is searching may
be invariant under a linear scale transformation.

3. For a two dimensional scale transformation, consider that in image recogni-
tion there is a magnification parameter which is not always available to the
observer.

1t may be argued that many scale distortions like the above are not actually linear

but are linear to a first order approximation, so it is felt that a theory based on linear
distortions would handle these problems better than that which assumes no scale
distortion.

The problems discussed in this dissertation, then, will be concerned with the

observation of samples V; from the process V(t) = N(t) + S(at — t5), or

Vi = V() = N; + 8S(at; — t)

where
S(t) is the known signal form
B is the unknown amplitude of the signal

a is the unknown linear scale distortion parameter
to

4 is the unknown time of arrival of the signal

N; are noise samples of known statistics, usually assumed
to be white, or uncorrelated Gaussian random variables,
unless otherwise specified

t; =i+ At are sample times regularly spaced at intervals of At

The samples V; will be observed for a length of time, T, long enough so that either
the signal is entirely contained within the interval (0, T) or it is not present at all. In the
literature of signal detection theory when this assumption is made the signal is said to be
well imbedded in the interval. On the basis of these observed samples the observer will be
asked to judge whether or not the signal, S, is present in any form, and if it is, to
estimate its parameters. In the M-ary detection problem, S may be one of several known
signal forms S, S,,..., Sy, and the observer will be asked to judge which one it
actually is, based on the observations V;.

If the scale distortion parameter a is equal to one, these questions become the
classical ones that are treated in detail in the textbooks already referenced. It will be the
contribution of this paper to extend these results to signals having undergo ne linear scale

distortions and to find the new decision rules implied.



CHAPTER II
DETECTION IN WHITE GAUSSIAN NOISE

2.1 Signal Detection and Statistics

Suppose the known signal form S(t) is zero outside the interval (0, r) as depicted
in Figure 2.1A, where 7 < T. The epoch 7 will be called the signal duration and T will be
called the observation time. Given the observed samples V; = V(t;) over the interval (0,
T) the.observer must decide whether or not there is any signal of the form S(at — ty)
completely contained within the observation interval. Figure 2.1B shows an example of
how S(at — t;) might be related to the observation interval (0, T). If the signal is
present, it will be added to a noisy background, so no matter what procedure he uses to
make this decision there is always a chance that he may be wrong. Figure 2.1C shows
how the combined observation of signal plus noise might appear. Although the detection
decision can be treated as a Bayes decision problem if loss functions and prior distribu-
tions can be specified, it will be treated here as a Test of Hypothesis. The error
probability that will be specified is the probability of declaring that there is a signal
present when in reality there is none. This is called the single scan false alarm probability.

To state the Test of Hypothesis formally use the model

V(t) = N(t) + SS(@at — to).

On the basis of this model and the samples V,, the observe must test the hypothesis
Ho: 8 = 0 against
H,: 8 #0.

The Likelihood Ratio Test will be used for making this decision. This detection
criteria is called the theory of the “Neyman-Pearson Observer” in radar texts, presumably
because Neyman and Pearson first proposed the Likelihood Ratio Test in 1928. Let
f(VI8) denote the conditional joint likelihood function of the observations ¥ given the

value of B. This likelihood function also depends on the values of the unknown

10

n, denote the number of sample points in the interval (0, to/a),

n,; denote the number of sample points in the interval (0, to/a + 7/a),

n denote the total number of sample points in the interval (0, T)

Assuming the alternative hypothesis H, to be true, that is § # 0, the samples V,

are given by
Vi=N; +68@at; —ty). i=1,2,...,n

Assuming the noise samples N; to be white (or uncorrelated) and Gaussian with mean

zero and variance 02, the joint likelihood of the observed V; is the product

fVIg+=0) =1L, - L, - Ly

where
fly
1 —V3/2g*
L, = —e !
! l l\/’m
i=l
n,
L= I_I 1 F28 N V-aSGat-t,))
ﬁo
Fag+l
n
1 V.39
L, = ¢ Vit /24
I I\/’ﬁo
i=n,+1
n n, n n,
1 _yajggt _y.aja (/2N Vi i
f(l’|3*0)=| I I I o Vitfe I I Vi 120", I Ie(uzq)[vl BS(aty—t,)1?
VZno
i=1 =l i=n,+1 =ng+
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Substituting this value of § back into Equation (2.2.3), we find

No. n
- 1
Max In f(V§ # 0) = =2 In (210?) —— E V32 o+ E ;2
2 202
i=1

The natural log of this likelihood function becomes

"o n ﬂ i=n +l
In f(V|6$0)=—-—llln (21r02)—LZ v;? -~]— Z \A
- 2 20? ! 20? 1 n, 2
=1 =n,+ 223) . S(at; — to) ZVJ S(at; — to)
1 n B i v _ jen  +t
—27 [V, — BS(at; — to)]? 202i=n 4 ! n,
i=n +1 . ¢ Z [S(aj — tq)]2
gt

To find the value of § which maximizes this expression, we set
1

n
Max In f(V|B # 0) = == In (2m0?) - — z v;2
i - 2 202

d
=—Inf(VIB#0) .
ag " (HIPE0)
(2.2.5)
n, n, ’
1
0=— z [V, — BS(at; — to)] Sat; — to) (2.2.4) Z Vi Stat; - to)
i=n +] 1 i=n+l
4+ —
202 n,
{S(at; — to)]?
or iFngtl
n,
z V, S(at; — o)
- Enotl Let 2 and Q denote the values of a and t, which maximize
n, n 2
E [S(at; — t5)]? -
g+l E V; S(at; — to
Fhl . (2.2.6)
n

Z [SGat; — to)]?

gl
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where n, and n, are also functions of a and t,. More explicitly
n, = largest integer less than (to/aAt)
n, = largest integer less than (to/a + 7/a) /At,

Note that for any value of o, the numbers 2 andﬁ also maximize f(VI8 # 0). So

n
- 1
Max In f(V|8 # 0) = —>In (2m0?) — — z V2
202
1

B, a,t 2
y y L0
@27
n‘ 2
Z v, s@t; —43)

1 Li=ngs1
201 n,
E [5G, — 2
i=ng+l

where Q, /t}, are the quantities which maximize the expression (2.2.6). To find the value

of 07 which maximizes In f(V|8 # 0), we differentiate Equation (2.2.7).

d
0= a0t Max In f(VI # 0)

a,t0,8
n, 2
n E V; s@t — 1)
—11._1_2\/1 _I__F_n°+_l- — 2.2.8
202 2¢% 204 n, @28
o
‘ E (S@t; —T)1*
=N+
or n 2
) E Vv, SGy -1)
AN 1 i
0 = E E V12 - E——_— .
nl

" Z (SAY; — )12

imn +l
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So the second term of Equation (2.2.2) for 1n X is obtained by substituting this value for

4/1} into Equation (2.2.7), or

ny

zvi scat; - %)

n ) 1 =N +1
Max  In f(VIf# 0) = — In (210} — — vp
2 2(4) n

B.atg,0° o A
" E [St; - 1912

. =1 4

Max  Inf(VIB#0) = _g In (2m0%) — '% 2.2.9)

Baty,0f

Now the first term of In X is
n

n 1

Max In f(V|g=0) = Max |-~ = In 2n0?) - — E v;?

ato,0 - o2 2 2n0
i=1

Taking the derivative with respect to o?, we get

n
n 1 V.2
0=——+-— i,
20? 20‘2 '
i=1
n
1
ot =~ E A (2.2.10)
i=1

or

and

Max Inf(VIg=0) = — gln (2m0?) - % . 2.2.11)

a,ty,0?
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Finally we find In A by subtracting Equation (2.2.9) from Equation (2.2.11).
A= g In (216%) — %m (213%)

= %ln (0% /a?)

n, 2
Z v, SGt, — &)
2InA= -n Infl — (2.2.12)
n nl
Dy sy o
i=l j=ng+1

Now since any statistical uncertainty involved in this problem arises from the noise
samples V; which we have assumed to be normally distributed, it will be assumed that
regularity conditions hold, hence the joint maximum likelihood estimators ii\, 9, Q, f;
tend to multivariate normal random variates and are asymptoticatly efficient (Kendall®,
page 54).

With these conditions, the asymptotic distribution of the test statistic (—2 In A)
under the null hypothesis is central x? with one degree of freedom, a result originally due
to Wilks'? . The single degree of freedom is implied because only the value of the scalar
parameter § was tested.

Using the test statistic in the form of Equation (2.2.12) permits us to choose the
detection threshold or critical value for the test independent of the noise power or length
of record n.

From a table of the x? distribution (Owen®, page 50) the critical value can be read
as a function of 7, which is the significance level of the detection test, or one minus the
single scan false alarm probability. For example, a false alarm probability of 0.01 implies
v = 0.99 and the detection threshold is £ = 6.635. Anytime the test statistic (2.2.12)
exceeds 6.635, a signal detection will be declared. Values of the detection threshold for

three other typical false alarm rates are shown at the top of Figure 2.2.

PROBABILITY OF DETECTION (SINGLE SCAN)

16

FALSE ALARM PROBABILITY[ 0.1

0.05 0.01

0.001

DETECTION THRESHOLD [ ] 2.690

I

CEEH I

o= 0,1
.

LIT

Q= 0,05

i

o= 0,01

JUBSNBREET

3.840 6.€35

”

= 0,00

1.0

SIGNAL TO NOISE RATIO (S/N)

Figure 2.2 Probability of Detection Versus (S/N)

10.839
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Alternately, the test can be expressed in terms of the sample correlation coefficient

2
nI

Z v, SGt, ~ )

=0+

= - (2.2.13)

n n,
2 :vf E (s@y -1
i=1

J=ny+l

From Equation (2.2.12), we see that the critical region —2 In A = € is equivalent to

221 -et (2.2.14)

Consequently, a signal detection could be - declared anytini: the sanple correlation
coefficient r? exceeds this value.

The probability of detection of a given signal with a given wnplitude B,, or the
power of the test at § = f, can also be evaluated. Kendall? gives the procedure on page
231. Since there is only one degrec of freedom involved in this test, the power can be
obtained from the x? distribution function. Under the alternate hypothesis § # 0, the
test statistic (—2 In ) is asymptotically distributed as a nonceilrai X* with one degree of

freedom and noncentrality parameter
vgp 1 (ﬁ - ﬂu)z = Vgg_‘ * #32

where Vg, is the variance of the ML estimator 8. The inverse of Vg is shown in Chapter

111 of this dissertation t-» be given by

nl

_ ?Inty 1
Vis 1=—E( w—)s; z [S(at; — to)12.

i=n ,+1

18
So the noncentrality parameter above becomes

n

) , B Z 2
Vgg (6 - ﬁo) = —; [S(ati - to)]
[

i=n +1

Evaluated at § = f,, the given signal coefficient, this noneentrality parameter becomes

PEEC RIS
n, +1

o?

We will now relate this noncentrality parameter to the signal-to-noise ratio which is
defined to be the total signal energy divided by the average noise power per unit

bandwidth, and for which we will write S/N.

2 18,S(at; — to)]? Zwasmi -~ t]?

ny+l _ nHl

g? n

--E Niz
n

1

Multiplying numerator and denominator by the time increment At, the sums become

approximations for integrals, and the noncentrality parameter can be written as



19

(to+n)fa

Z[ﬁ,s(ati —t))? 16,5t — t,)]? dt
o+ _ tga
o? B T

1
p— 2
nE N2 (t) dt

Multiplying the identity (n/T) - At = I into the denominator, we have

(to+n)fa

Zm,smi —t))? [8,5at; - to)]2dt

i+l _%h
o,2

1
At Bl N?
T (t) dt

The numerator of the right side is seen to be the total signal energy, or the S part of
S/N. The expectation in the denominator is seen to be the average noise power, or energy

per unit time. Let N* denote this total average noise power.

1
*=E N2 (t) dt
N T (t)

20

Then the noncentrality parameter can be written

Z (8, S(at; — tp))?

i=n 4+ _ S
g2 At - N*

Since the data is sampled at a rate of 1/At, the total average noise power N* appears
spread over the Nyquist bandwidth of 1/2At. Consequently, the average noise power per
unit bandwidth, or the N part of S/N is equal to the average noise power N* divided by
the bandwidth 1/2At.

N=2-At-N*

The noncentrality parameter becomes

l n
= 2 (8,5at; — to)]? = 2 + (S/N) -

i=n

So the probability of detection (on a single scan) of any signal in white Gaussian
noise is seen to depend only on the signal-to-noise ratio, and not on the form of the
signal. The values of this probability of detection or power of the test can be obtained
from the x? distribution function. From Kendall®, page 231, we write the expression
for the power in terms of the noncentrality parameter 2 (S/N) for a LR detector with a
single scan false alarm probability of . Substituting 2 (S/N) for the noncentrality parameter

in Kendall’s expression, we have
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w . The joint likelihood of the V ; is
4(S/N)?
P= ax* 1 + ————— 2.2.15
x [ 1+4(S/N) (2.2.15)
L=L, *L; * L,
1+2(S/N)
[ x* (1) where
1+4(S/N)
The curves in Figure 2.2 show this single scan probability of detection as a ng m
| | l I 1 vy
function of signal-to-noise ratio (S/N) for several values of the single scan false alarm L= — ¢ Viei /24
- S Inge
probability o. The values were obtained by a two-way linear interpolation between the =l k=1

values given in the Biometrika Tables®, page 122.

n
2.3 Detection by Multiple Observations Cn
L, = 1 ~(1/20" [Vy ; ~ 8S(at; ~ 1,)]
Suppose the same signal of known form is contained in several segments of 2 N €
independent noise, as is the case in active sonar and in some passive applications. That is, Fotl k=l

V(1) = Ny (t) + BS(at — tg)
Va(t) = Na(t) + BS(at — tg)

w1 o
: 5= e VK
Vi (1) = Ny (1) + BS(at — tg) To

=N, 41 k=1
where again f, a, t, are unknown parameters to be estimated and N, (t), N, (t), ..., N, ()
are independent Gaussian processes.
Again suppose that these functions are sampled at times t; = i * At yielding the .
n, m
samples Vy ; = Vi (t;), and suppose that the noise samples N ; = Ny (t;) are uncorrelated. e—l/la’z Vi d W
I l k=1
We first show that the numbers S? and Vi, i=1,2...,n are sufficient .
i=
statistics, when n, m
L= 1 nm . ~1/20°Y (Vi -6Stati—to)]?
il ) 2T o ’ ! ¢ k=l (
A E Vi,i» i=1,2,...,n ! i=ny+1
k=1 n
| | ‘”Wg Vi
' € k=1
L i=n,+1 J
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23
Squaring the quadratic factor and combining terms, we get A
m
1w
- k=l =l
]
u nd
I ] 120 20 Vi3 2
k=1 m
i=1 R o .
n V= Viis i=1,2,...,n ,since
nl
Y R L e(l/a’)ﬂS(lti——ta)z Viib . k=1
o | l k=1
i+ . -
the likelihood ratio statistic must be a function of these sufficient statistics. The
n
n — (n /206" [S(at;—t,)}? derivation of the test in this form will proceed almost exactly as in the previous case.
. e °
| =notl J
' )
e-(l/?a’)sv’

n

!
1/a*)8S(at;—t, )V
L= (2#02)_""'/2' l. l Ie( 1a*)BS(at;—t, )V |
i=n, +1
s
I I - (m/2a%)0" (S(atj~t,))*
M €
i=n,*+1 J

\

Since the joint likelihood function depends on the data only through the numbers

S and V;, i = 1, 2,..., n, these are shown to be jointly sufficient statistics.

Operationally, this means that one can summarize the data in this way, namely, compute



CHAPTER 1II
ESTIMATION OF SIGNAL PARAMETERS

3.1 The Estimators

The next problem to be discussed is that of estimating the signal parameters, once
it is decided that a signal is present. Two of the most powerful techniques for estimating
unknown parameters in the presence of statistical uncertainty are the method of
maximum likelihood and the method of least squares. Since we have assumed the noise
variables N; in the model V; = N; + $S(at; — to) to be normally distributed, these two\
methods produce identical results in this problem. This can be seen in Equation (2.2.3).

L. AAA . - .
The quantities §, a, t, which minimize the quantity

n

Z [V; - BSGat; ~ t)]?

i=n,+1

will also maximize the log likelihood function In f(VI # 0). The approach chosen here
will be the method of maximum likelihood. The maximum likelihood estimator of the
unknown parameters 8, a, to, o2 is defined to be the set of numbers fi\ Q, t/:,, 9 which
maximizes the likelihood function, evaluated at the observed values V;,i=1,2,...,n.
This is exactly the same set of parameters that was chosen to maximize the denominator
of the likelihood ratio in Equation (2.2.1), so most of the work of finding the maximum
likelihood estimators was done in Chapter 11. The results will be restated below.

From Equation (2.2.6) we get the ML estimators Qand t/:,. The values of a and t,

A A
which maximize f(VIB = 0) are the a and t, which maximize the expression (2.2.6). So
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"l 2 n, 2

Z V,SAt, —4) Z VS(at; — to)

i=n,+1 - Max L i=n,+1 G
n, a, to n,

Z (s, - 412 Z [Stat; - ta)]?

=N, +1 _ i=n 41

From Equation (2.2.8) we restate the ML estimator of ¢2.

n, 2

. Z VSt -4
1 i=n_+
- va _ = - ! (3.12)
= Z (8@ — £

i=ng+1

@

And finally, from Equation (2.2.4) it can be inferred that the ML estimator for 8 is
given by

nl

Z V,S@t — 1)

i=n ,+1

Z (S, — 451

i+l

b= (3.1.3)

Under the general regularity conditions, maximum likelihood estimators are consistent
and efficient for large n. Furthermore the joint ML estimators tend to a multivariate
normal distribution as n gets large. These results are given in Kendall®, page 54. The
variance-covariance matrix of this limiting distribution is calculated in part 3 of this

chapter.
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3.2 Successive Approximation of Estimators

The estimators fi\ and 6! have been obtained in explicit form above, so their
computation presents no particular difficulty once the values of % and t/:, are known. No
method for calculating these two estimators is given, however, since they are defined
above to be those values of a and t, which maximize the right side of Equation (3.1.1).

Conceivably one could perform an exhaustive grid search, that is, to calculate the

quantity
n, 2
Z vis@t, — 1)
Q= i”:” G.2.1)
Z (SGat, — 11?
i*ng+1

for each of a large number of discrete number pairs a, 7 and select the largest. Since a
two-parameter search can require excessive computations, an iterative technique is
suggested to reduce the number of computations. A sparse grid search would still be
required to provide a starting point for the iterative procedure. Newton’s method for
finding the maximum value of Equation (3.2.1) will be developed below.

Suppose a;, 7; are the values at the ith stage of the iterative process which are
considered to be fairly close to the ML estimators Q and {\ , and it is desired to find new
values a;,; and 7;,; which are even closer. The truncated Taylor Series for Q(a, 7) about

the point (g, 7;) is

Qa, 7) = Qa;, 7)) + (a — a) %9 (-1 Q
da aj7j T 8i.7i
1 32Q 32Q 92Q
+ = PRY _ )2 _
: I(a al) : ai,ri+ v Tl) T ai,fi‘ ne ai) " Ti) dadr asTi
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Differentiating with respect to a and 7, we get the two equations

9Q _9Q 02Q 32Q

- =5 +(a-3) —5 +(r—1)—

da  daly Yoat " dadr|y, o,

9Q _9Q 02Q 92Q

b A _a) —% +(r - 1) —

o orl @ T W gl WA
i Ti LIT a7y

We wish to find the point (a, 7) such that the two derivatives on the left side of these
equations are zero, since this is a necessary condition for Q to have its maximum value at
(a, 7). Accordingly, we shall choose the next values in the approximation process to be

the values a;,1» Ti+1 which make the two derivatives equal to zero at that point.

3Q a2Q 2Q

0=— +(a, —a) — + (1, — ) —
94,5 (Bt =0 5 8.7 Tt =7 ar 3,70

9Q Q 7Q

= = + (2, —a) —— + (T, —T)) —
07| g my @1 =2 0adr|,, -, Tier =7 L P

We can now solve the above 2 X 2 linear system to find the two increments (a,; — )
and (3, — 7;) necessary to find the new approximations for the point (a, 7) at which
the two derivatives are zero. This condition alone does not guarantee the maximum,
but, if the sparse grid search has located the starting point close enough to the maximum,
then the “stationary point,” (a, 7), approximated in this way will actually be” the ML

estimator (4, T3).

Let
0,- 2 o -1
da ai,ri ar airi B ﬂ
) 22Q o - 22Q a7 Badr S i
R T ai ™ 3r? st
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Then the solutions of the linear system are:

Tieg — T T (Qf : Qaa - Qa : QBT)/D
3 — 3 =(Qy * Q, — Q, - Q,)/D
where

D= (Qar : QM - Qn ) Qaa) .

So if the ith approximation (g;, 7;) is close to the desired values o {:,) which maximize
Q (and also In L), then the values (a;4;, T;+1) computed by adding the increments above
should be even closer. The derivatives above can be evaluated numerically. Since these are
functions of the observations, they are themselves random variables, and the probability
is zero that the denominator D above will be zero. If this ever happens, however, the
values of the iterates a;, 7; can be changed a small amount, and the process can proceed.
This successive approximation technique for ML estimators has been used by the author
in detecting signals of the type shown in Figure 2.1 with no particular difficulty. As
signal-to-noise ratios get lower, however, there are more local maxima, so the starting
points must be chosen with more care. When S/N gets lower than 0.1, the process

occasionally will not even converge.

3.3 Distribution of Estimators

The estimators 9, 1/3\ Q, ﬁ, are the coordinates of the point at which the likelihood
function reaches its maximum. Since the likelihood function also depends on the noise
values N; observed, the peak will be displaced in a random manner. The estimators, which
are measures of the location of the peak, are therefore random variables. In this section
we will derive the variances and covariances of 9, 3, Q, ﬁ,.

From Kendall® page 54, we sce that the joint ML estimators tend, under regularity
conditions, to a multivariate normal distribution, with dispersion matrix whose inverse is

given by

) 3% In L dinL dlnL
V") = -E = . . 3.
( i ) (aeraes) E (aef ael ) ’ (3 3 1)
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Remembering the expression
l‘lu n
n 1 1
InL=—=1In(2n0%) — — E V2~ — E \'/%
2 202 207
i=1 i=n,+1
| n 3.3.2)
o E IV, - BS(at; — to)]
i=ng+l
we begin the derivation by writing the four derivatives
n,
alnL 1 Z
36 = ? S(ati - to) [Vl - 6S(ati - to)] 3.3.3)
i=n,+1
nl
alnL § ,
Pyt E t; S’ (at; — to) [V — BS(at; — tg)] (3.3.4)
iFn,+1
nI
dlnL - ,
= S'(at; — to) [V; — BS(at; — to)] (3.3.5)
atg a
i=n,+1

n, n n, 2
alnL_—-_11_+_1_ v+ v+
90? 267 2% E i E i E [V; — BS(at; — todl
=1

i=n,+1 g+l

(3.3.6)

We will first show that the estimator ?\is asymptotically independent of the other three

estimators B, 4, fy. That is, all of the covariances (Vs o), (Vy o), (Vy,, o2) are zero.
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it follows that the dispersion matrix itself is of the form

V.o = (82 In L)
. woct M (33.8)
", QA -
- gl 2
=B\ 5 " z [V; — BS(at; — tg)]
i=ny+1

and consequently the three covariances involving 0? are zero. The variance of z;) can now

_ 92 InL
K (T)

Substituting in the derivative of Equation (3.3.6) with respect to 6%, we have

be evaluated simply.

1
=E |-~ 2 S(at; — to) [V; — BS(at; — to)]

i=n,+1

-
1
=g{= E S(at; — to) [N;]
04
i=ny+1
1
== E S(at; ~ to) * E(Np)
Y
i=ng+l Vsl =-E £
o°,a (204)
vﬂ g G

n, n n,
1
+—E E Vi o+ E v, + z IV, — BS@at; — t,)]?
()
i=1

Similar steps will show the other two inverse elements (V,;,,) and (V,“',,z) to be zero. i=n +1 =g+l

So the inverse of the dispersion matrix has the form

n
n 1
Swhde bl DINC
-1 T = | (1] ¢
vi=1lv, 0 0 0 i=1

3.3.7
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Because Equation (3.3.7) contains the null vectors, it follows that the large sample
variance of 72 is given by

4

Var () = Vyu o = ¢ (3.3.9)

The other elements of the inverse matrix A ~! can be found by similar steps of
differentiation and expectation. The results are given below. To facilitate the expression
of results, we shall adopt the shorthand vector notation indicated. Also S'(t) denotes d/dt
S(t).

l"I

1 1
V! == Z [SGat; — tp)12 = — (S)T (9 (3.3.10)
g o?
i=n,+l
n|
Voa ! = % Z t; S'(at; — to) S(at; — to)
14
ne (3.3.11)
£ #sHT (8)
01
I B I
Vol = - S'(at; - to) S(at; — to)
=ng+l
3.3.12)
= —ﬂ SHT (9
02
e
Via' = " Z t2 [S'(at; — to)]?
d i=n,+1

g (3.3.13)
= — (18T (t8")
ot T
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n
-1 = ﬁz ! 2
Vol m 2 f [S'at; ~ to)]
¢ i=n°+l
@ (33.14)
= T E)
o
)
Vior,! =ﬁ_2 2 (S'Gat; - t)]?
’ =N+
(3.3.15)

2
£ 8T (8"
o?

Since each of the elements above of the matrix A~! has the factor 1/0?, we shall write

[(©T©®  BOTUS) BT ()

1
AL = 2HBUsHT (§) FUS)HT (18) —-B2(sHT (§) (3:3.16)
68T (®) - (ST (18) B ST ()

| (R + [(S), BL8"), ~B(SH]
AT == ] usHT (3.3.17)

o2
-psHT

When the signal form S(t) is specified, the matrix A of variances and covariances of the
estimators can be calculated for various values of the true parameters §, a, to. The fact
that the joint ML estimators are consistent implies that as the number of elements in the
vector (§) gets large, the bias of each of the estimators approaches zero. So if the
sampling rate is quite large (or the vector S has many elements) the joint ML estimators
6, Q, f; are approximately distributed according to the multivariate normal distribution

with mean (8, a, to) and variance-covariance matrix A. The joint density is given by
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B-s
m__ﬂ(l/z(ﬁ—ﬁ,g—a,ﬁ—to)A“ A—a
am? Q )

Substituting Equation (3.3.17) for A~ , the quadratic form in the exponential becomes

1 ©F -6
—@-p8-a% -t [ asHT| 1®, 8u8). 6N |4 -2
g

BT -t

Or, letting Q denote the quadratic form, we have

n,

Q= L E {(@— B SGat; — t) +BLA — a)t; — (fy — to)] S'(at; — to)}

i=ng+1

2

(3.3.18)
where

=3
S =5, SO

e T . A A .
So the limiting joint distribution of the estimators §, a, Q can be written as

-11/2
lé_le -/ Q
(2")3/2

where Q is specified in Equation (3.3.18). Evaluation of the determinant A~ from

Equation (3.3.17) would then allow one to use this large sample approximation for the

36

probability that the error in any one of the parameter estimates would exceed a given
value.
. 2] R A A e .
Since ¢g? was shown to be independent of @, a, to, its limiting distribution is

normal with mean o2 and variance 20°/n.



CHAPTER 1V
CLASSIFICATION OF SIGNALS

4.1 Classification Based on Parameter Estimates

The diagram in Figure 1.1 was referred to as an example of the problems
encountered in the reception process. It will become apparent in this chapter that this
example is not general enough to represent all of the problems that might arise when
more than one class of signals is considered.

The situation visualized in Figure 1.1 is perhaps the simpliest of the classification
problems which involve linear scale transformations. That is, there is only one signal forim
S(t), but the signal could have been generated from one of several sources. As the
diagram indicates, the signal will first be detected, its parameters estimated, and then
judgement must be made, on the basis of the parameter estimates, as to which source
generated the received signal. To make this judgement with a reasonable degree of
success, there must be some difference between the parameters of the signals generated
from different sources. This difference can be either deterministic or statistical. In this
section it will be assumed that the true parameters §, a, t, of the detected signal are
themselves chance variables, samples from a distribution characteristic of the source class
from which the signal was generated. The distribution of the true signal parameters §, a,
to of signals generated from the kth source will be assumed to be multivariate normat
with mean (B, ay, toyx) and variance-covariance matrix Zy. If the signal does indeed
belong to the kth source class, then the joint conditional distribution g(g,a, tolk) is given

by

B - By

_3/1__7_8-1/1 B — B, a—ay, to — te) i a -~ ay
1/2

(2m)2 {Zy?| to — toy
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e A A L . .
But since the joint conditional distribution f(f, a, QIB, a, tp) is given in Equation
AN -
(3.3.19), we can write the probability distribution of the estimators (8,4, f\o) conditional

upon k, the index of the source class.

[qnd
—~
=

> talB, a, to) * g(B, a, tolk) df - da < dt,  (4.1.2)

Once the likelihood functions above have been obtained, for all source classes k = 1,
2....M, a variety of classification procedures are applicable. We shall present here the
Bayes classification rule, because it is general enough to include several of the other
methods. This procedure assumes a great deal of prior knowledge about various elements
of the problem.

Let p,, Pz,.... Py denote the prior probability of occurrence or relative
frequency of occurrence of the M source classes. Let C(jli) denote the cost of classifying
an observation into class j when the signal really came from source class i. We assume
that the p; and the C(li) are known for all i and j. Suppose that a signal is detected, and
its parameters are estimated to be (6, 3\, {,\,). The conditional probability of this signal

having come from source k is
P(kif 2, )
Using Bayes rule, this can be expressed as

AAA
Pk LG, a, tolk)
M

E AAAL
p; LGB, a, toli)

=1
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If we classify this signal as having come from source j, the conditional expected loss for

. . - . . A A .
making this decision given the estimated parameters (8, a, Q) is

. - e LB 3 k)
ZC(jlk) Pkif, 5, %) = Z oGl ———"—— . @13)
k=1

k=1 A A
_5_ p, LB, 2, Gl

We minimize this expected loss if we choose j so as to minimize Equation (4.1.3). All

that is necessary is to calculate the term

M
N
Z k) py LB 2 ol
k=1

for all j and select the j which gives the minimum. This is the Bayes classification
procedure for minimizing the expected loss. It is customary to think of this rule as
dividing the space of observations into m mutually exclusive and exhaustive regions R,
Rz,..., Ry such that if an observation falls within region Ry the Bayes rule will assign
it to source class k. The hope is that this mapping will result in a convenient expression
of the classification rule, as for example a linear discriminant. In the modern age of high
speed computers, however, the advantages offered by such a mapping are not as
important as they once were. In some cases the expression (4.1.4) itself can be used as a
computational procedure without difficulty.

An important subcase of the Bayes rule occurs for the simple loss function, defined
to be

0,ifi=]
1, if i #j

CGliy = l
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In this case, the computation can be simplified somewhat. The summation (4.1.4) can be

written as
M
AA A A
E v LB, 3, %16 - p, LB, & ol (4.14)
k=1

and is seen to be minimum for the same j for which

p; LB & 51 4.1.5)

is maximum. Since all errors were weighted equally in the loss function, this is the rule
which minimizes the probability of misclassification, or the average error rate. Since the
expression (4.1.5) is the joint a posteriori likelihood function for the four variables (fi\, :/1\,
Q, k), the Bayes rule for the simple loss function can be considered to be the maximum

likelihood decision for the source class k.

4.2 M-ary Detection
Another general problem in signal classification can be described as Tollows.
Suppose the observer is given the data V; = V(),i=1,2,..., nand is required to
choose one of the M + | hypotheses
H,: V(1) = N(t)
H, :V(t) = N(t) + 8S;(at — to)
H, :V(t) = N(t) + S, (at — to)

Hy :V(1) = N(t) + BSy (at - to)
where S;(t), S,(1),..., Sy(t) are distinct, known signal forms. This problem is
illustrated in Figure 4.1. Again, it will be assumed that the signal parameters are
unknown to the observer. The Bayes rule for this classification decision will now be
discussed.
For each hypothesis Hy, the maximum conditional likelihood function is given by

Equation (2.2.9) to be
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V(t)
@ .. o . S
..0...0-:f :.'. e . . _ . .. ; '.-.. — . . ..' -...o ,;;
* . % Lt ... ." <. ‘. K '.' oT
HyPoTHESES Ho: V(t) = N(t)
H,: V(t) = N(t) + BS(at — to)
H,: V(1) = N(t) + S, (at - to)
Hy : V(t) = N(t) + BSy (at — to)
S, (V)
i .. .....0 T ——
.- .o. -'°.' T
S T
® T —
... .l.. T
Syt
-""“‘o
. -°'-..‘_'r .
T

Figure 4-1. Signal Ensemble for M—ary Detection
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LMVik) = -; In(2ma,}) ~ % 4.2.1)

where @, is given by Equation (2.2.8) to be

n, 2

. > Visdt - )

ol
E vp - BT (4.2.2)

i=1 .
Z (St — T2

i=ngy+1

4
ol =

S —

for k # 0, and from Equation (2.2.10) we have

Al
ol = E vz 4.2.3)

The estimators U/P,a,;; to/\k are now different for each of the M + 1 hypotheses.

Letting pg, py, - - . , py denote the prior probabilities of each of the M + 1 hypotheses,
the conditional probability of the hypothesis H, given the data V can be inverted using
Bayes Rule to give

Vik
Pkjy) = P MY
M

Z )

i=0
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The conditional expected loss for making decision j becomes

M M
px L(YIk)
2 Cilk) P(k[¥)= ZC(ﬂk) 7'5—-—— 4.2.4)
k=0 k=0

Z pi LYl

=0

where, as before, C(jli) denotes the cost of choosing hypothesis Hj when H; is really true.

The expected loss in Equation (4.2.4) is minimized by choosing the j for which the

numerator,
M
E CGlk) pp LYIK)

k=0

is the least. Substituting Equation (4.2.1) for L(V|k) yields the expression

M
2 Gk py [—; In (2137 _;] 4.2.5)
k=0

The Bayes rule for the M—ary Detection problem can now be stated: Choose the
hypothesis H; for which the expression (4.2.5) is minimized where the gk\’ are given by
Equation (4.2.2} and Equation (4.2.3). If the foss function is simple and equai prior
probabilities of occurrence (p,) k =1, 2,..., M are assumed, the rule becomes simply:

. . . e
Choose the hypothesis H; for which the estimate ojz of the noise variance is the least.
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