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1. Introduction and Summary

This paper concerns the use of the method of maximum likelihood
in estimating the parameter of the geometric distribution from
samples which are truncated at arbitrary points in either or both
tails of the distribution, It is shown that the maximum likelihood
estimator is the solution of a polynomial of'high degree, and a
table is given for solving the maximum likelihood estimating equation,
The asymptotic variance of the estimator is presented and this result
is used in studying the effect of truncation on the asymptotic
efficiency of maximum likelihood estimation, The efficiency of the
maximum likelihood estimator for truncated samples relative to the
maximum likelihood estimator for complete samples is derived, and
it is shown that for any given sample size the estimator for
truncated samples always provides less information about the parameter
than the one for complete samples,

The geometric probability mass function is given by

*This research was accomplished while under partial support from
NIH Grant GM-951 and ONR Grant #NO014-68-A-0515.




f(x) x-1

p(l-p)x-lz pq ix=1, 2, ...
= 0 , otherwise (1.1)
and the cumulative distribution function F(x) is
F(x) = 1-q%, x=1, 2, 3,...
where q = 1-p. The mean and the variance of the random variable X
having this probability mass function are 1/p and q/pzrespectively°

The maximum likelihood estimator of p based on a complete random

n -1
sample of size n say Xl, X2, ...,Xn is(iEI xi/") .

Let X be a random variable having probability function (1.1) and
if the truncation points on the left and the right are at a and b

respectively then the truncated probability function of X from (1.1) is

f(x) = pqx-l/(qa-qb-l) v X = a+1' a+2' seey b-1

0 , otherwise, (1.2)

The transformations Y= X - a and d = b - a reduce (1,2) to
y-1

PO ____ . Y=1. 2! 30 “eey d-1
d-1
g(y) = l—q
0 , otherwise . (1.3)

In effect, because of the lack of memory property enjoyed by this
distribution [1], (1.3) is a geometric distribution singly truncated
on the right at the point Y = d. In the derivation of the maximum
likelihood estimator the transformed variable Y and the mass function
(1.3) will be used.

2, Maximum Likelihood Estimation

For a random sample of size n, the likelihood function is

n
Ly -n
d-l)-n n i=1
p

L= (1-q q .



The following equation (2.1), which is a dth degree polynomial in

ﬁ, gives the maximum likelihood estimator of q(a = l—a
by the invariance property).

n n _ n n
( L yi-nd-i-n) Qd + (nd -z yi) ad 1~<Z yi) Q + % y;-n=0. (2.1)
i=1 j.:l i=1 i:l

Given values of d, n, and.glyi = ny, one can compute the value
of ﬁ using an iterative techni;;e such as the Newton-Rhapson method
to solve equation (2.1). It can be shown that there is only one root
in the range 0 < a < 1.

In order to avoid the necessity for an iterative solution to

equation (2.1), a table which can be used to obtain approximate

solutions for Q is constructed. From equation (2.1),

7= (-0 - a8+ 1y - 4 - f e D (2.2)

In Table 1 values for d in the range 3 < d < 27 are given in the
left hand column of the page. The selected values for Q are given
across the top of the page. For each pair of values of d and Q. the
value of y computed from equation (2.2) is given in the table.

To use Table 1 in solving for ﬁ. use the row of values for ?
corresponding to a specified value for the parameter d. Once y is
located in the table, the value of 6 can be read from the top line
of thé page. The rate of change of y with respect to 9 seems to be

sufficiently constant to permit linear interpolation.

3. The Asymptotic Variance and Efficiency

For the random variable Y with the probability function (1.3),

after some algebraic manipulation, and using the fact that



EQY) = [(1-dg® T + (a-1)q%1/(1-@)(1-¢%"D)

1

it can be shown by following the method [2, p. 236] that

05 = (l/n)[qz(1—q)2(l—qd-l)z]/[q—(d—l)2qd_l+2d(d-2)qd-(d—l)2qd+l+q2d_1]°(3'1)

2
where E is the expected value operator andgp d@&enotes the asymptotic
A p
variance of p,
The asymptotic efficiency of one estimator relative to a second
estimator is defiiied as the ratio of their asymptotic variances.
The asymptotic variance of the maximum likelihood estimator for

truncated samples is given by (3.1). For the complete sample estimator

(éc = 1/x), the asymptotic variance is given by

g 2
o ¢ = atl-q@) /n,

The equation (3.1) can be written in the form

2
05 = 05 {1/[1-&1-1) 2 1-@ -4 H 2] . ] (3.2)
C

Hence the efficiency ¢ of ﬂ relative to Gc is given by

¢ = czﬁ/og = 1-0a-1 342 (1-1-¢%"H 12 (3.3)
C

S ST T



The second term on the right is always positive and varies be-
tween O and 1, depending on the value of q:

lime=1, lime = O,
q-0 q-l

Consequently, the maximum likelihood estimator for truncated
samples is in general less efficient than the maximum likelihood
estimator for complete samples.

If Fisher's terminology is used and the information function I

is defined as

I = -E(d® log L/dq2) = [03]—1 '
then it can be seen from equation (3.3) that an estimator based on

a truncated sample of size
n [1/[1"( d-1 )2qd—2{(1—q)( ]__qd"l)"l }23]

provides as much information about the parameter as an estimate
based on a complete sample of size n.

Table II presents values of ¢ computed for selected values of
p and d. The table indicates that the truncated sample estimator‘is
very inefficient if either p or d is small. 1In these cases it is
advisable to use relatively large sample sizes in order to reduce
the variance of the estimafor. On the other hand, as p takes on
larger values the estimator becomes highly efficient. Consequently,
in cases in which it is reasonable to assume that the value of the
parameter is large (near unity), it may be economically advanta-
geous to use truncated samples to estimate the parameter, rather

than going to the additional expense of obtaining a complete sample.
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