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AND RANDOM ACCEPTANCE ERRORS

Mark W. Smith “and John E. Walsh
Texas Instruments Incorporated Southern Methodist University

Abstract

Much work has been done in search theory. However, very little effort
has occurred where an object's presence at a location can be accepted when no
object is present there. The case analyzed is of this type. The number of
locations is finite, a single object is stationary at one location, and only
one location is observed each step of the search. The object's location has
a known prior probability distribution. Also known are the conditional proba-
bility of acceptance given the object's absence (small) and the conditional
probability of rejection given the object's presence (not too large); these
probabilities remain fixed for all searching and locations. The optimum
sequential search policy specifies that the next location observed is one
with the largest posterior probability of the object's presence (evaluated
after each step from Bayes Rule) and that the object is at the first location
where acceptance occurs. Placement at the first acceptance seems appropriate
when the conditional probability of acceptance aiven the object's absence is
sufficiently small. The policy is optimum in that, for any number of steps,
it minimizes the probability of no acceptances and, simultaneously, maximizes
the probability that an acceptance occurs and the object is accurately located.
Search always terminates (with probability one). Optimum truncated sequential
policies are also considered, Methods are given for evaluating some pertinent
properties and for investigating the possibility that no object occurs at any

location.



INTRODUCTION AND DISCUSSION

Development of efficient search policies has received much attention
(Ref. 1 and 2). Virtually without exception, however, these results are
for situations where observation (for detection of an object) is such
that there is zero probability of accepting an object's presence at a
place where no object is located. In practice, many important cases occur
where this probability is nonzero (although it often may be small).

This paper considers a case where the conditional probabilities
of acceptance and rejection (given presence,or absence,of an object) are
neither zero nor unity. The search space is discrete, with a finite number
N of possible locations. There is only one object and it remains stationary
at one of the 1ocations. The problem is to optimally identify a location
for this object subject to observing one location at each step of the
search (the same location could be observed at successive steps). Given
is a valid prior probability distribution for the true location of the
object. Also, the conditional probabilities of acceptance and rejection
have known values that remain the same for all locations and all steps of the
search.

A sequential search policy would seem satisfactory if, for any number
of steps, it minimizes the probability of not having identified a Tocation
and, simultaneously, maximizes the probability that a location is identified
and is the true location. The optimum policies considered have this property
(subject to a criterion).

The principal interest is in situations where the conditional probability
of acceptance given the object is absent (denoted by o) is small. Then, if the

conditional probability of rejection given that the object is present (denoted



by g) is not too large, there is a good chance that the first location
accepted is the true Tocation. Such situations are found to occur when
(1-8)/(N-1)a is much larger than unity. A criterion which identifies the
first location accepted as that of the object seems appropriate under these
circumstances (and corresponds to previous results for the 1imiting situation
of «=0). Given this criterion, and any number of steps, the optimum policy
minimizes the probability of no acceptances and simultaneously maximizes
the probability that a location is identified and also that the object is
at the location. A policy with this property is developed. The properties
obtained for this policy hold when «,8 <%, but may not be very desirable
unless (1-8)/{N-1)a is sufficiently large.

Consider the details of the optimum policy. At the first step, a
location with largest value for the prior probability of the object's presence
is observed. If the location is accepted, the object is said to be there and
the search is completed. When rejection occurs, the posterior probabilities
of the object's location are computed using Bayes Rule (from the location
observed, occurrence of rejection, the prior distribution, «, and 8). The
next Tocation observed is one with the largest of these posterior probabili-
ties, If acceptance occurs, this location is identified as that with the
object and search ends. When there is rejection, new posterior probabilities
are computed by Bayes Rule (from the location last observed, occurrence of
rejection, the previous posterior distribution, a, and g8). This procedure
is continued until an acceptance, which ultimately happens (with probability
one). Then search is terminated and the identified location is that where
acceptance occurred. When more than one location has the largest probability

s¥alue, one of them is randomly chosen on an equally-likely basis.



The probability of correctly selecting the dbject's lTocation can be
made as near unity as desired. For fixed 8, it is found that this can be
accomplished by having o sufficiently small. However, the largest usable
value for o increases as B decreases, so that having 8 small is desirable.

Optimum truncated sequential policies are also obtained. Here, a
maximum is §pecified for the number of steps. The search policy is the
same as that already given through this number of steps. When rejection
occurs for all the steps, search ends and the identified location is one
with largest posterior probability (computed after the last step). The
probability of correct decision is less than for the policy without trunca-
tion but has very nearly the same value when the maximum for the number of
steps is sufficiently large. Computations can be made to determine a suitable
maximum number of steps.

The prior distribution for the object's location is assumed to be
completely known and valid. No consideration is given to situations where
the prior distribution is unknown in any respect or is inaccurate.

Exact expressions are developed for some properties such as the pro-
bability of correct location, the expected number of steps to search termina-
tion, and the probability of search termination within a stated number of
steps. These expressions can be evaluated as closely as desired (exactly
when the number of steps is limited) by direct utilization of the optimum
policy being considered. Upper and lower bounds are developed for the
properties considered that involve an unlimited number of steps. These
bounds tend to be the same value with an increasing number of steps and are
useful in deciding when an approximation to an evaluation is sufficiently

acCurate.



Part of the approach to providing bounds consists in using the uniform
distribution (probability 1/N for each location) as the prior distribution.
That is, part of one of the two bounds is evaluated on the assumption of a
uniform prior distribution. In particular, a probability of correct decision
evaluated for the situation of a uniform prior distribution is a lower bound
for values of this probability. Also, an expected number of steps to search
termination obtained on this basis provides an upper bound, etc. A desirable
feature of bounds determined from the uniform distribution is that they often
have reasonably uncomplicated expressions of a closed form. Then, sufficient
conditions on a and 8 for obtaining desired values of properties can be
determined from examination of an uncomplicated function of a and 8.

Sometimes an object is believed to be at some one of the locations
but its occurrence is not certain. That is, the possibility exists that
no object is present at any location. Then a form of truncated policy
should be used, since the policy with an unlimited number of steps is cer-
tain to ultimately identify a location even when no object occurs. For
such a truncated policy, the conclusion that there is no object is adopted
after the maximum number of steps is reached without an acceptance. Accep-
tance at any of the steps implies that there is an object and identifies its
location (search also stops). Here the prior distribution used for a search
policy is conditional (it is given that the object occurs). Ideally, the
policy used should provide a good chance of claiming that no object occurs
when this is the case and also of finding it (including location) when there
is an object. Such an ideal situation is found to occur when a is sufficiently

small and the maximum for the number of steps is suitably chosen.



Sometimes « and B are related so that decreasing the value of either
one increases the value of the other. Then a "best" combination of values
can often be determined for o and 8. A specific example involving communi-
cations search is given in Ref. 3. Also, some potential fields of practical
application for the optimum sequential search policies, with emphasis on
electronic problems, are mentioned in Ref. 3. The material of Ref. 3
(unpublished) provides the basis for chh of this paper and will be
referred to again when derivations are considered.

Statement of notation and of expressions concerning the properties
considered occurs in the next section. Justification of these results,
and of the optimum properties stated for the sequential policies, is
outlined in the following section. The final section is concerned with
the situation where the possibility exists that no object is present at

any location.

NOTATION AND RESULTS

The locations are identified by ¢ (2=1,...,N). The location numbering

is such that

po(l) > po(2) > el 2 po(N),

where po(z), nonzero, is the prior probability that the object is at

location & and
po(l) + ... + po(N) = 1.

The steps of the search are i=1,2,... and one location is observed, for

possible detection of whether the object is there, at each step. mi(l) equals



the number of times that location ¢ has been observed during steps
1,...,i-1. The location e; is such that, for use of an optimum policy,

(1)
(e;) = max[B/(l—a)]m1 p.(2)

mi(ei)
Kipoley) = [B/(1-a)] Pote) = ma 0

10

and is the location observed at the ith

step of the optimum policy. If
the maximum occurs for more than one location, the value of e; is chosen
randomly so that all possibilities are equally likely (to avoid bias).
For evaluation of properties, however, the value used for e, is the smallest
number among the possibilities.

Knowledge of «, 8, N, and the po(z) combined with methods of evaluat-
ing e; and Ki over all i is sufficient both for application of an optimum

policy and for evaluating properties of this policy. For a truncated optimum

policy, the maximum number M of steps is also given.

Now consider statements of properties. In all cases optimum policies
are used. Exact results for the general situation with no truncation are
presented first. These are followed by exact results for the general
situation with truncation. Next some results for a uniform prior distri-
bution are given. Then, ways of developing bounds for some of the exact
properties are stated. Finally, some conditions are given on o, g, N for
assuring sufficiently high probabilities of correct decision.

The probability that the first acceptance is at the object location is

P = (1-8) ) (1-a) "2k.p, (e;).
i=1

The probability that the first acceptance occurs on or before step n and

also correctly locates the object is



n
P, = (1-8)2(1-001"1 Kipo(es).
i=1

The probability that search will terminate on or before the nth step is

n
Pr'1 = 1-(1-0)" + (1-u-8)(1‘0)n-12 K-ipo(e-i)'
i=1

O0f course, the probability that there are rejections at all of the first n
steps is 1—PA.

Since the last two terms of PA tend to zero as n-+>«, there is unit
probability that search terminates. In fact, search terminates with proba-
bility one for any search policy with the property that, ultimately, every
location is observed an unlimited number of times.

The expected number of steps to termination of search is

L= Hl-(l-a-e)z(l-a)"‘l K;p, (e )}.
i=1

The median number of steps to search termination can (conservatively) be
evaluated as the smallest value of n satisfying PB > 1/2. For a perfect
detection device (a=8=0), the expected number of steps to search termination
is easily seen to be

N

ES 2 po(z).

2=1

Now, consider the general situation with truncation. For n <M, the
probability that the first acceptance occurs on or before the nth step is

Pn’ as given for no truncation. The probability of correctly locating the



object is

PM + (l-a)M KM+1 po(eM+1).

For n <M, the probability that search will end on or before step n is Pé.

The expected number of steps to termination is
M-1
1
M- 25 Pi .
i=1

The median number of steps to termination can (conservatively) be determined

as the smallest n satisfying Pﬁ > 1/2, and equals M if no such n exists.
Next, consider the specié] situation of a uniform distribution.

Examination of the results for the general situation shows that these are

determined when expressions of the forms KrN+s po(erN+s)’

rN+s ) rN+s
ES (l-a)1 Kipo(ei)’ and ES Kipo(ei)
i=1 i=1

are evaluated for the uniform distribution, where 0 < r < », 1 <s <N.

It is found that

1
Kees PoCrmies) = 8/ (1-)]",
ri+s )
Z (1-0)""1 Kipoleg) = Uy(rits) =
i=1

] - 0-M 06" 1m0 DY 100V 1 6710 1 (1000

rN+s
DKy pgley) = Uylriies) =
i=1

(1-[8/(1-0)] 1/ [1-8/(1-a)] + (s/N)[8/(1-a)]",



and closed-form expressions for P_, P_, P.s etc. can be directly stated
in terms of a, B, N, and perhaps n or M.
Consideration of the uniform distribution is useful because of

some inequalities that occur. Specifically, consider

r2N+s r2N+s
i-1
(l-a) Kipo(ei) and z Kipo(ei)’
i=r1N+1 1=r1N+1

where 0 < ry < Ty <=, 1 <s <N, and the po(z) have an arbitrary set of

values. The inequalities

roN+s
i-1
> (el kop (e) > U (ryles) - Uy (rN),

i=r N+l

r2N+s

D Kb (e;) 2 Uy(roNts) - Uy(rN)

i=r1N+1

are satisfied for all possible sets of values for the po(z). Thus,

B N+s rlN

(1-0) " Kip (e1) > D (1-a) 7 Hkep (e0) + U (rphivs) - Up(r M)
i=1 i=1

and

r2N+s rlN
ZS Kipo(e;) > :E; Kipg(e5) + Up(ryNts) - Uy(ryN)
i=1 i=1

10



Suppose that r2N+s is exceedingly large so that evaluation of Kipo(ei)
would require much effort for that many steps. Often, a value occurs for
r such that rlN is not excessive but large enough for the stated lower
bound to be near the true value. The lower bound involving Ul(r2N+s) is
especially useful for rs infinite.

| Upper bounds are also needed in determining sufficiently accurate

approximate values. The bounds developed are

r2N+s . ’
Y )k ey
i=1
rlN \
. r r N+s
< 2 (1=a) " Kp (e ) (1/a)K, y pfe, ) [(1ma) T =(1-0) 2],
i=1 1 !
roN+s
25 Kipo(ei)
i=1
rlN
= Kipo(ei) ¥ [(FZ'rl)N+s KrlN Do(erlN)]’
i=1

iand follow from the inequality
Kipoles) 1-ijo(ej)’ (i<3).

hese upper bounds can be used, in combination with the lower bounds, to
etermine when rlN is large enough to assure that a good approximation is
ained. The approximation could, for example, be the arithmetic average

the upper and lower bounds. The upper bounds are especially useful when

11



"2
i-1
> () (e
i=1

is to be evaluated (maybe with ro infinite). The forms of upper bounds
are also usable when rlN is replaced by any integer in the range 1 to

2

in approximate evaluation of P_, P Pa, and L. The exact results for the

n’

~uniform distribution furnish Tower bounds on the possible values of P_, L
and PA.M_Ihey provide upper bounds on the possible values of

L, M- _Z: Pis and the median number of steps to termination. These
closed };im expressions are reasonably uncomplicated and can be used to

establish conditions on o and g that are sufficient to assure desired

.values of properties (at least a stated value for P, P.,or PA; at most

n
-a stated value for the expected or median number of steps to termination).
As an example, consider that at least a value P is desired for

?pr' Use of P_ for the uniform distribution provides the relation

18 1o (-0 [1-6 (100" 1] > b

for Na<<1l and g<1l, this becomes, approximately,

(1-8)/(N-1)a > (1+g)/2(1-P),

that (1-8)/(N-1)a should be much greater than unity for P large. A
mewhat related problem, non involving P_, would be to choose o and g

that the posterior probability (of correctness) for the accepted location

12



js at least P irrespective of the step at which accéptance occurs. The
minimizing posterior distribution at the step just before acceptance is
the uniform distribution. Then the posterior probability of correct

location after acceptance on the next step is seen to be

a(l-B)[(l—a-B)Na(a/(l-a-B) + 1/N)]-1,

since the situation is the same as that of a uniform prior distribution
and acceptance at the first step. The requirement that this value is at

~ least P provides the (equivalent) inequality
(1-8)/(N-1)a > P/(1-P).

. #ere too, (1-8)/(N-1)a should be much greater than unity for P large.

QUTLINE OF JUSTIFICATIONS

Detailed derivations of the various expressions used in proofs for
ﬁear]y all of the results have been given in Ref. 3. Thus, nearly all

é} the justification given here is only sketched, and often uses the

eded expressions without consideration of their derivations.

First, consider verification that for any number of steps n an
timum policy minimizes the probability that rejections occur at all of
eps 1, ..., n. Mathematical induction is used to establish the form
- the probability that rejections occur at the first n steps for any n.

f'the first step (n=1) and location 24 observed, the probability of

ction is easily seen to be

(1-&-8)[(1-&)/(1-&-8) - Po(ll)]'

13



Now consider n > 2 and assume that the probability of having rejections

at the first n-1 steps, with location %5 observed for the ith step, is

m:(2;)

n-1
(1) ()2 [ - ST ()T pien] (2)
i=1

 ,The jnduction is completed by showing that (2) implies the expression

n .
(1-a-6) (1-0)" [{525- ) () wotep)] (3)

for the probability of rejection on the first n steps, where location

th step.

n is observed at the n
For verification of (3) from (2), the probability of rejection on
eps 1,...,n is expressed as the probability of rejection on the first
1 steps multiplied by the conditional probability of rejection on the
h step given that the first n-1 steps yielded rejections. The conditional

'obability is found to be

m;(25) ms(2;)

n
e D) ote)] [ ;li (2]

General verification of (3) implies that, for any number of steps,
ptimum policy minimizes the probability of all rejections. That is,

s minimum for 2. = e.s (i=1,...,n) since

m.
K;p,(e.) = mla.x[B/(l-a)] T pg(g5)

;
11 possible choices of 2 and for all i.

14



Next, consider an outline of the proof that, for any number n of
steps, an optimum policy maximizes the probability that the first acceptance
occurs within the first n steps and is at the object's location. Suppose

th

g‘that location ¢, is observed at the 1™ step (i=1,...,n). The probability

. that the first acceptance occurs at step i and is at the object's location

equals the probability of rejection on the first i-1 steps multiplied by
two conditional probabilities. One is the conditional probability of
k ceptance at step i given that the object is at ¥ and that steps

..,i-1 yielded rejections. This probability equals 1-g. The other

% the conditional probability that the object is at 25 given that steps

..,i-1 yielded rejections. This probability is found to be

) mi(zi) ) i-1 mj(zj) 1
(130?8) (T%E) p0(£1) [llafﬁ B ;§; (Tga) po(lj)]
j=

roduct of the three probabilities simplifies to

. .(25)
(1-8) (1-0) "1 [0/ ()] T T (2,),

n : (2,)
(e S ) 0e] T b () (@)
i=1

eneral expression for the probability that the first acceptance
within the first n steps and is at the object's location.

Use of an optimum policy maximizes (4) for every value of n, since
‘ m, (%)

2y = ey maximizes [e/(l-a)] L po(zi) for all i. When the number

ps is unlimited, this result shows that an optimum policy results

15



in the maximum probability that the first acceptance occurs at the object's

location. For truncation at M steps, the probability of a correct decision

is

Mys 1 (Zppe 1)
(1-0)" [/ (1-)] ™M (1)

M
. m:(2.)
+(1-8) > (1)l (1-a)] T V()
i=1

r the general case. Use of an optimum policy, so that 25 = ey,
1,...,M+1), evidently maximizes this probability.
For an optimum strateay, expression (3) equals 1-P. and expression (4)

uals Pn' Letting n>= in Pn yields P_. Expressions for the truncated

equals L for use of an optimum policy, which evidently minimizes its value.
The exact results for a uniform prior distribution and an optimum
¥0110w directly from the fact that the locations are observed in the
order 1,2,...,N,1,2,...,N,1,2,... . This determined order of search

the basis for the inequalities (1). Examination of the way that

.) is selected from among the possibilities shows that

16



K.p_ (e.) > K

iYoo' i 1+1po

That is, the quantity
most equal to a value

maximum value. This,

er

25 Kipo
i=r1N+1

15nd that

i

i

(e;4,7)  and Ky, .p (e y.) > [B/(l—a)]rpo(s)-

on the right side of one of these inequalities is at
in a set over which the quantity on the left side is the

combined with the properties of the po(z), shows that

]
2
() > > [8/(1-a)]% = Uy(r,N) = Uy(rN)

j=r1
r2N+s
S ”2

z Kipo(ei)iﬁ[s/(l'a)] ,
=r2N+1
r2N+s

22 Kipo(ei) Z.Uz(r2N+s) - Uz(rlN) .
=r1N+1

Kipo(es) z_Ul(r2N+s) - Uz(rlN) ,

17



UNCERTAIN PRESENCE OF ANY OBJECT

The policies considered here have a maximum of m steps. When an
- acceptance occurs on or before the mth step, the presence of an object is
declared at the location of the acceptance and search stops. If rejections
~occur for all of the first m steps, the decision is that no object is
gpresent at any location.

The probability of deciding that no object is present equals (1-a)™

% hen this is the situation. That is, the locations are equivalent, so that

“the same probability is obtained for all search policies. The probability

e

0of a correct decision for this situation is large when a and m are such

i
i

hat (1-a)™ is large. For fixed m, this occurs as « decreases. For fixed a,
he value of (1-a)™ increases as m decreases but never exceeds 1-a.
When an object is present, the probability of deciding on object
curs and also correctly locating it equals Pm. The value of~Pm increases
m increases and, for fixed m, increases as o decreases. However, Pm
so depends on B and decreases as B increases. For m large and g<l, a
fficiently small o will make Pm as near unity as desired. However, for
to be at least a stated value, the largest allowable o increases as 8
Creases, so that having 8 small is desirable.

Suppose that g is given and that a combination of o and m such that
)m > P and Pm > P is desired, where Py and p, are specified values.
can be determined on an iteration basis by selecting a small value for a
trying to choose m so that both inequalities hold. If more than one
le of m accomplishes this, increase o and try again. If no value of m
ces, decrease o and try again. The iteration stops when an a value is

d such that the inequalities are satisfied for exactly one value of m.

18
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