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EXTENDED USES OF LINEARIZED NONLINEAR REGRESSION
FOR RANDOM-NATURE SIMULATIONS

by
John E. Walsh G, J. Kelleher
Southern Methodist University*® and Institute for Defense Analyses
Dallas, Texas, U. S. A, Arlington, Virginia, U. S, A.
ABSTRACT

Linearized nonlinear regression (introduced in ref. 1) has
substantial curve-fitting capability, computational simplicity,
ability to isolate and investigate effects of interest, etc. A
probability model was developed that yields approximate median estimates
and confidence intervals for the individual regression coefficients.
This model is applicable for random-nature simulations if the
simulations are statistically independent. This approach allows the
outcomes for wide classes of combinations of values for simulation
inputs (that specify the situation simulated) to be estimated from
a moderate number of simulations. In this extension of the method,
thé probability model is slightly changed and approximate results
with greater practical utility are developed. Median estimates,
confidence intervals, and significance tests are developed for
specified linear functions of the regression coefficients that are
associated with the simulation inputs. Also, properties of
least-squares estimates for specified linear functions of the

regression coefficients are examined.

*Partially based on research supported by NASA Grant NGR 44-007-028.
Also associated with ONR Contract NOOO14-68-A-0515.



INTRODUCTION

A random-nature simulation, using a high speed computer,
can be identified by the values for a set of inputs (initial conditions,
side conditions, values of constants in functional form, etc.). Often,
the number of inputs is large and several values can be of interest
for each input. Thus, an extremely huge number of combinations of
input values can be of interest. However, time and expense permit
examination of only a very small fraction of these combinations.

One way of handling this difficulty is to develop a suitable
regression function, in terms of the inputs, to estimate the value
of the (univariate) output being considered. For example, the
output might be a measure of effectiveness for the results of the
simulation., Since little is usually known about the probability
properties for outputs of simulations, the regression function
used should have a probability model that is applicable for
virtually any situation that could occur.

The linearized nonlinear regression (LNR) method introduced
in ref.1 seems to be suitable. A probability model occurs that
is usable when the simulations are statistically independent
(virtually always the case). The LNR method is capable of
great curve-fitting flexibility and computations are simplified by
its linear form in the regression coefficients. Also, isolation of
effects is simplified by this form.

Specifically, let Xpo o o o WXy represent the inputs (values
specified and fixed) while y is the random output being estimated,
with YL=Y =Yy being the possible values., Then, y is the solution

of the implicit LNR expression



y + Algl(y) + .. .+ Asgs(y)
(1)

= A + A

S+1 S+2gs+2(xl' AR 'xk) + . . . + Atgt(xl' + o o ,Xk),

where Al' . . . ;A_are such that the lefthand side is a strictly

S

monotonic function of y for Y €Y < yge The completely specified

functions gyr - - - .9 are selected for curve-fitting flexibility and

for convenience. The completely specified functions Ogpor = = » 19

are chosen on technical grounds.
Procedures are given in ref.l for investigating each of the A's
(individual regression coefficients) separately. However, examination of

(1) indicates that, when A o o . 'At are considered, linear

s+1'
functions of the form

A + A

s+1 (xl, . .. .xk) + .. .+ Atgt(xl' . . . .xk)

s+29s42
(can be interpreted as representing effecté) are more pertinent for
investigation. That is, new "parameters" that are t - s specified
sel' ¢ v ’At' and algebraically independent,
are investigated (some of these linear functions might be individual

linear functions of A

regression coefficients). These parameters, rather than A . . . ,A

s+1' t'

are the quantities defined in terms of the probability model used.

For Al' .« . 'As' however, the individual regression coefficients

"are considered.

Sometimes, additional linear functions of A A

s+1' = * ° t
are of interest (for example, some of the individual A's). Fortunately,

any other linear function of A e e .At can be investigated using

s+1'
the statistics obtained for investigating the t - s parameters. This is

not unexpected since given values for the parameters determine



e - « » JA . In

the value for any specified linear function of AS .

+1
particular, estimates for the parameters determine an estimate for

any such linear function. Properties of such estimates are examined.
Under moderately general circumstances, they are approximate median
estimates and are approximately unbiased. Also, approximate equal-tail
confidence intervals and significance tests are obtainable for any

.. . ,A

specified linear function of A A more extensive class

o
of investigative procedures is available when n is sufficiently large.

s+1'

The definitions of Al' .. . ,A_and the t - s parameters are

s
of a slightly different type than was used in ref. 1. The change has the

advantage of yielding exact median estimates for Al' o e 'As and the
parameters. Also, determination of properties for estimates for arbitrary

linear functions of A .+ . A is simplified. However, some small

t
disadvantages occur with respect to confidence intervals and significance

s+1'

tests for Al' . . e 'As and the parameters. That is, except possibly
for equal~tail intervals and tests, the probability levels are less
accurately determined with this modified type of probability model.

A least-squares procedure for estimating most of the regression

coefficients (including all of A . . . 'At) was given in ref.1. This

s+1°'
procedure is examined for the situation of estimating the parameters

instead of A A It is easily seen that the estimates for

s+1' . . . to
A . e .At directly provide estimates for the parameters, That is,

s+1°'

a parameter is a specified linear function of these A's, and direct
substitution of the estimates for the A's into this linear function yields
a least-squares estimate of the parameter. This is a direct consequence
of the fact that the minimum of a function over a specified coordinate
system is the same as the minimum over any other equivalent coordinate

system, Moreover, the minimizing values for a coordinate system can be

obtained by direct solution from those for any other coordinate system,



Here, A,, . . . .At constitute one coordinate system and Al' . . . A

1’ s
plus the t - s parameters another coordinate system.

The least-squares estimation is considered only on a curve-fitting
basis in ref.1. Here, some probability properties are examined.
Since, Al' e . .AS and the parameters are not defined with an
expectation basis, the expected value of the lefthand side of
(1) is not necessarily equal to the righthand side. Thus, the
least-squares estimates are not necessarily unbiased (as they would
be, irrespective of the covariance matrix for the observations, if
the error term always had zero expectation; for example, see ref. 2).
However, if the expectation of the lefthand side minus the righthand
side is small compared to its variance, the least-squares estimates
should be approximately unbiased in a practical sense,

The next section provides an outline of the least-squares
method. The following section contains statements of the new and
old probability models; also, exact median estimates, and approximate

confidence intervals, are obtained for Al' . . . ,A_ and the parameters.

s
The final section outlines the justification for, and presents, estimates
and confidence intervals for. arbitrarily specified linear functions of

Ajv o o 'At‘

LEAST-SQUARES APPROACH

This is essentially the same as in ref.l and is outlined for
convenience of the reader. The data are n statistically independent

observations (y;ix Xpi)e (=1, . . . ,n). The problem is

1i* -
to estimate As+1' . e . .At and a maximum number r - 1 of unrestricted
constants of the set Al' e e . 'As' which are considered to be



Ar' . e . 'As' The basis is substitution of each (yi;xli. e 'xki)

into (1), yielding n relations in terms of these observations,
First, these relations are combined so that n new relations are
obtained which are linear in Ar' e e . ,At and do not contain

Al' . o . 'Ar—l’ This can be done by forming n overlapping groups of

relations, with each group containing, say, r relations (the extra
relation covers the possibility of a degenerate set of linear equations).

For each group, a linear combination is taken wherein Al' . e . 'Ar—l

are eliminated. The resulting relations are

K .+ KriAr + .. .+ K_.A

oi si'’s ~ K(s+1)iAs+1 T e e 7 KtiAt =0,

and Ar' e e e .At are determined as the values that minimize the sum

of the squares of these quantities. Given estimates for Ar. . e ,At,

determination of estimates for Al' . « . LA is a specialized problem

r-1
that depends on gl(y) Ve e e .gs(y). The parameters are estimated

by first estimating A « .o . .At and then substituting these

s+1°'
estimates into the linear expressions for the parameters.

PROBABILITY MODELS AND SOME RESULTS

The output i has a probability distribution but X14r » 0 0 X4

are fixed. The y; are independent and can have arbitrarily different
distributions. The key feature, which allows useful results to be
developed for such heterogeneous cases, is the way of defining each

of Bl' . .. 'Bt' where B1 = Al' .. . JBg= As and B . . . ,B

t
e . ,At that are called

s+1'

are the specified linear functions of As+1'
the parameters,
A few dummy observations are constructed that are statistically

independent and of the form

Y(u;v) = Bv + e(u;v), Cu

1
—
.c
~



Where U is odd and, ordinarily, 5 < U < 15, For fixed v, let

YM(v) be the median of the Y(u;v), and define F&(x) by

U
U u U-u—-
) F (x)'[1 -F (x)] = P[Yy(v) < x].
u=(u+1)/2(u> v v M

Then, YM(v) can be considered the median of a random sample

of size U from the population with cumulative distribution function
(cdf) Fv(x). The constant B is defined to be a median of

Fv(x), and is virtually always unique.

This definition differs only slightly from that used previously.
Let Gv(x) be the arithmetic average of cdf's for the individual
Y(u;v)., In ref.l, Av is defined to be a median of Gv(x). However,
as shown by use of the expansion in ref.3, Fv(x) * Gv(x). where the
approximation is quite close when there is small variation among the
cdfs for the individual Y(u;v). As indicated by the way the
Y(u;v) are constructed, this variation should be small.

The first construction step consists in dividing the n relations
(see the preceding section) into mutually exclusive groups of size
t (some may be of size t + 1). To avoid bias and encourage uniformity,
but not as part of the probability model, the subdivisions are made
by randomization (all possible subdivisions equally likely).

Next, separately for each set, a value is determined for each of
Bl' . . 'Bt (by solving t linear equations in t unknowns).

Then, for each B , its "estimates™ are grouped into U
nonoverlapping classes, where the class sizes are approximately the
same (some classes may contain one more "estimate" than others).

The grouping into classes is the same for all the Bv’ To avoid bias

and encourage uniformity, this grouping is determined by randomization.



Then, Y(u:v) is the arithmetic average of the "estimates" for B,
that occur in the u-th class.

The statistic YM(v) is an exact median estimate of Bv' Let
Yv(l) <. . .5 YV(U) be the order statistics of the Y(u;v). Then,
the equal-tail confidence interval [Yv(u'), YV(U +1=-u")) for B,

should have a confidence coefficient of approximately

U+ 1-u'
(1/2)Y > ) (3)

u=u'
where u' < U/2 and the accuracy tends to increase as u' decreases
(based on ref.4). Significancé tests for the null hypothesis
Bv = BV(O), completely specified, are obtained from these confidence
intervals in the usual manner,

Since Fv(x) only approximately equals Gv(x). a confidence interval

of the form [Yv(ul); Yv("2))' where u; < p/2; uy > u/2, YV(O) = - w,

Yv(n+1) = o, only approximately has the lower bound
U %2
(1/2)2 (ﬁ) (2)
u= u1 '
for its confidence coefficient. When n is large, the distributions
of the Y(u;v) are approximately continuous and should be very nearly
the same. Then, the confidence coefficient for any interval of this
form should have a value near (2), since Fv(x) nearly equals Gv(x)
in the important range for x values and results for,Gv(x) imply
nearness (ref.3 and 5).

.B_ are

Here too, a complication arises because B s

IR
restricted. The procedure is to first obtain estimates for a
maximum unrestricted set and then consider modification of the

estimates obtained for the B's in the restricted set.



Also, for n large, confidence interval results that are applicable
to independent symmetrical observations with a central median can be
used. As outlined in the next section, the distributions of
Y(1:v), . . . ,Y(n;v) tend to symmetry about Bv as n increases.

Thus, many of results for investigating the common mean of symmetrical

populations (ref.6) are approximately usable.

MATERIAL FOR ARBITRARY LINEAR FUNCTIONS

Consider use of the Y(u;v), (u=1, ... ,U;v=1, .. . ,t), for
investigating an arbitrary but specified linear function of Al' .« e . 'At'
which is also a (determined) linear function of Bl' . e . 'Bt'

Let us examine a Y(u;v). This is a sum of independent quantities.
The Central Limit Theorem indicates that Y(u;v) should have a
distribution that is at least roughly symmetfical, especially in the
central part. Also, due to symmetrical influence of the randomizations
used in their construction, Y(1l;v), . . . ,Y(U;v) should have approximately
the same expectations (virtually always exist) and at least roughly the
same distribution,

The distribution of YM(V) should be noticeably more symmetrical
than that of any Y(u;v). That is, the important range of x values is
concentrated much nearer the central parts of the distributions for the
Y(u;v). Also, given that they have a common central value, symmetry
of the distributions for the Y(u;v) implies a symmetrical distribution
for Yy(v). The small differences in expectations for the Y(u;v) should
not have much effect on the approximate symmetry of YM(V). Use of the

randomizations tends to symmetrize these differences in Gv(x). which

approximately equals Fv(x) for the important range of x values.
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Thus, in most cases (virtually all cases when n is sufficiently large),
the expectation of YM(V) approximately equals Bv' This implies that

the expectation of any specified linear function

clYNél) +, . .+ ctYmﬁt) (3)

approximately equals

(v} c
1B1 + .. .+ tBt, (4)

so that (3) is an approximately unbiased estimate of (4). Also,

since (3) is a sum of independent quantities with approximately
symmetrical distributions, its distribution is approximately symmetrical.
Hence, (3) is also an approximate median estimate of (4). The

B

case of linear functions in B occurs when C; =+ . . = Cc = 0.

s+1°' t
The situation is not so attractive in developing confidence
intervals for (4). However, consider the independent statistics

Z(u) = clY(u;l) + . . .+ ctY(u:t). (u = 1, . .. U

On the basis of the above discussion, the Z(u) should have expectations
that roughly equal (4). Also, from the Central Limit Theorem, their
distributions should be approximately symmetrical. Thus, the equal-tail
confidence interval results in ref.4 (also see ref.6) should be

usable with, say, P[Z(u) s (1)] not differing from 1/2 by more than

.05 and approximate continuity for the distributions of the Z(u).

For n large, none of these probabilities should differ much from 1/2,
since the distributions of the Y(u;v) tend to symmetry. Then,
confidence intervals like those given in the preceding section, using

Z(u) in place of Y(u;v), are applicable.
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