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A general theory which provides asymptotic tail expansions for density, survival, and hazard rate
functions is developed for both absolutely continuous and integer-valued distributions. The ex-
pansions make use of Tauberian theorems which apply to moment generating functions (MGFs)
with boundary singularities that are of gamma-type or log-type. Standard Tauberian theorems
from Feller (1971) can provide a limited theory but these theorems do not suffice in providing
a complete theory as they are not capable of explaining tail behaviour for compound distribu-
tions and other complicated distributions which arise in stochastic modelling settings. Obtaining
such a complete theory for absolutely continuous distributions requires introducing new “Ike-
hara” conditions based upon Tauberian theorems whose development and application have been
largely confined to analytic number theory. For integer-valued distributions, a complete theory
is developed by applying Darboux’s theorem used in analytic combinatorics. Characterizations
of asymptotic hazard rates for both absolutely continuous and integer-valued distributions are
developed in conjunction with these expansions. The main applications include the ruin distrib-
ution in the Cramér-Lundberg and Sparre Andersen models, more general classes of compound
distributions, and first-passage distributions in finite-state semi-Markov processes. Such first-
passage distributions are shown to have exponential-like/geometric-like tails which mimic the
behaviour of first-passage distributions in Markov processes even though the holding-time MGF's
involved with such semi-Markov processes are typically not rational.
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1. Introduction

Hazard rate functions, and the density/mass and survival functions used in their com-
putation, are fundamental tools used in probability, survival analysis, and reliability.
Within the context of the stochastic models commonly used in these fields, such func-
tions can be difficult to compute since the distribution under consideration may only be
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specified in terms of its moment generating function (MGF). In such cases, saddlepoint
approximations can facilitate the computations, however our aim here is to rather ex-
plore asymptotic expansions for all three of these functions. Indeed, a general asymptotic
theory for hazard functions has never been formulated in the literature and this is one
of our main goals. More generally, the goals of this paper are to formulate an asymptotic
theory for all three functions and to develop the theory so it may be applied to the com-
pound distributions and first-passage time distributions commonly dealt with in survival
analysis, risk theory, and semi-Markov processes. Our development of such an asymp-
totic theory relies on using Tauberian theorems, however the standard theorems in Feller
(1971, ch. XIIL.5) for density and mass functions using “Feller” conditions do not apply
to these more complicated compound and first-passage distributions. More inclusive con-
ditions that apply to these distributions are needed in both continuous- and integer-time
settings. For the continuous setting, we formulate new “Ikehara” conditions by introduc-
ing Tauberian theorems that have been extensively used in analytic number theory, but
which have not been previously used (to the authors knowledge) in applied probability.
Likewise, in the lattice setting, we introduce very weak Darboux conditions, based on
using Darboux’s theorem from analytic combinatorics, which apply to compound and
first-passage distributions in integer time.

Asymptotic hazard rates are characterized quite generally and are shown to exist under
the Tkehara/Darboux conditions needed for tail expansions of density /mass and survival
functions. For absolutely continuous distributions, this rate is shown to be b > 0, the right
edge of the convergence region for the associated MGF. For integer-valued distributions,
the asymptotic hazard rate is 1 — e~°.

The most compelling reason for considering Tkehara/Darboux conditions rather than
Feller conditions is that they are capable of justifying tail expansions for the infinite
mixture/convolution distributions associated with compound distributions, first-passage
distributions, and other complicated distributions that occur in stochastic modelling.
Among the compound distributions with geometric-like weights, we first consider the ruin
distribution in the Cramér-Lundberg and Sparre Andersen models and obtain new ex-
pansions for ruin densities and alternative derivations for well-known survival expansions.
Tkehara/Darboux conditions also justify expansions for more general compound distribu-
tions with negative-binomial-like weights and compound distributions with multivariate
weights associated with multiple classes of claim distributions. We show that distrib-
utions of the latter type include first-passage distributions in finite-state semi-Markov
processes, and this leads to new tail expansions for their density/mass and survival
functions which are exponential-like/geometric-like. Thus, first-passage distributions in
semi-Markov processes have the same tails as would occur in the more restrictive class
of Markov processes and this happens with holding times which are not of phase-type
and which do not have rational MGFs. Such exponential/geometric tail expansions re-
inforce the insensitivity property discussed by Tijms (2003, §5.4) in which semi-Markov
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Asymptotic expansions and hazard rates 3

processes mimic the behaviour of Markov processes asymptotically.

The remainder of the paper is organised as follows. Section 2 highlights the main results
of the paper and discusses their implications for saddlepoint methods and statistical infer-
ence. Section 3 develops expansions for absolutely continuous distributions under Tkehara
conditions, and Section 4 considers the analogous results for integer-valued mass functions
under Darboux conditions. Section 5 considers finite mixture and convolution applica-
tions, and Section 6 discusses compound distributions including the Cramér-Lundberg
and Sparre Andersen models. Expansions for first-passage times of semi-Markov processes
are in §7. Asymptotic theory when b is a logarithmic singularity is presented in §8.

2. Notation and discussion of main results

Let random variable X have the distribution of interest with MGF M(s) = E(e*X)
defined on {s € C : E(e*X) < oo}. Thus, for example, all distributions on (0, cc) have
MGF's which are defined at least on {s € C': Re(s) < 0}.

There are four interrelated goals to be achieved in this paper. The first goal is to
provide a characterization for the asymptotic hazard rate of X. For absolutely continuous
X, Theorem 1 (§3, p. 7) shows that the liminf of the average cumulative hazard rate is
b € [0,00], defined as the right edge of the convergence region of the associated MGF.
By considering the Cesaro limit rather than the actual hazard limit, this liminf holds
without any further conditions on the distribution. If the limiting hazard is known to
exist, then b is this limit (Corollary 1). For integer-valued X with hazard sequence {h,,},
Theorem 2 (§4, p. 13) shows the liminf for the average of {—In(1 — h,)} is b € [0, 00];
thus, a limiting hazard, if it exists, must be 1 —e~?.

Determining sufficient conditions for the existence of a limiting hazard rate motivates
the second goal which is to develop asymptotic expansions for the density and survival
function of X to establish such existence. These expansions and the conditions for them
depend on the nature of the singularity b for M. When singularity b > 0 is gamma-like,
so that the MGF is M(s) = O(b—s)"" as s T b for w > 0, then standard expansions for
absolutely continuous X are given by

g(b)

ft) ~ mtwileibt and  S(t) ~ %f(t) t — 00 (2.1)

where ¢(b) = lims,(b — s)”M(s) > 0. These expansions can be established subject to
“Feller” conditions (§3, p. 10) and are justified by using the Hardy-Littlewood-Karamata
Tauberian theorem and its extensions from Feller (1971, ch. XIIL5). Such Feller condi-
tions, however, only apply to simple settings and cannot be verified in the more com-

plicated stochastic modelling settings in which X is a compound distribution or a first-
passage time for a semi-Markov process. Accommodating these more complicated settings
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requires establishing (2.1) under some new more inclusive “Tkehara” conditions which we
provide in Proposition 1 (§3, p. 9). Such Ikehara conditions are justified by introduc-
ing two Tauberian theorems used exclusively in the field of analytic number theory: the
Ikehara-Wiener and Ikehara-Delange theorems, where the former theorem is the main
tool for proving the prime number theorem. Thus our two main contributions in develop-
ing expansions of the type given in (2.1) are: (i) to replace the restrictive Feller conditions
with the new more inclusive Ikehara conditions of Proposition 1, and (ii) to verify that
the Tkehara conditions are satisfied for the more complicated compound distributions in
stochastic models.

For the setting in which b is a logarithmic singularity, we also propose some Ikehara
conditions in Proposition 4 (§8, p. 29) to establish the existence of an asymptotic hazard
rate and to justify somewhat different expansions for f(t) and S(¢) as t — oo.

A similar situation occurs when developing mass and survival function expansions for
integer-valued X. In the common setting where the MGF has a gamma-like singularity
at b > 0, s0 M(s) = O(e® —e*)™™ as s T b for w > 0, then a well-known Tauberian
theorem from Feller (1971, ch. XIIL5) establishes a Negative Binomial (w,e~")-like tail
with expansions

b) bw 1

~ g(e e w—1_,—bn ~
p(n) —F(w) n*"le and  S(n) .

— p(n) n — 00 (2.2)

where g(e?) = limgpp(e” — €*)*M(s) > 0. Unfortunately, a condition for using this
Tauberian theorem is that {p(n)} is monotone in n, and verifying such a condition is
difficult when only M is known. Therefore, the expansions in (2.2) are established under
the alternative “Darboux” conditions given in Proposition 2 (§4, p. 13) and afforded by
using Darboux’s theorem derived from the field of analytic combinatorics. These minimal
conditions avoid the monotonicity assumption and apply to the more complicated settings
in which X has a compound or first-passage time distribution. Comparable results when
b > 0 is a logarithmic singularity of M are given in Proposition 5 (§8, p. 30).

In a large number of practical examples, b > 0 is a simple pole so w = 1. In such
examples, factor ¢(b) in (2.1) is the negative residue of the MGF at b in the continuous
case, while g(e?)e? is the negative residue of M at b in the discrete case. For this simple
pole setting, survival and density/mass functions of distributions have exponential-like
and geometric-like tails.

These expansions may be broaden to apply to both finite mixture distributions and
finite convolutions under either Ikehara/Darboux conditions or Feller conditions. Within
this context, our new characterization of the asymptotic hazard rate clarifies an asser-
tion by Block and Savits (2001) that the overall asymptotic hazard rate is the asymptotic
hazard rate associated with the strongest and most enduring component within the mix-
ture. This happens because the mixture convergence region is determined by the strongest
component having the smallest non-negative convergence region. The same may be said
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about convolutions of independent random variables; the strongest addend has MGF
whose non-negative convergence region is a proper subset of those for the weaker ad-
dends. The main applications for such results include sums and products of independent
random variables. For mixture and convolution distributions whose components osten-
sibly have equal strength and share a common convergence boundary b > 0 for their
MGPFs, we show that the strongest components are those for which the singularity at b
attains the highest common order. Applications include sums of i.i.d. random variables.

Our third major goal is to establish these asymptotic expansions in infinite mix-
ture/convolution distributions, such as compound distributions and first-passage distrib-
utions in semi-Markov processes, thereby succeeding under Ikehara/Darboux conditions
when Feller conditions fail. Examples include density and survival expansions for the
ruin amount R in both the Cramér-Lundberg and Sparre Andersen models in Theorem
3 (86.1, p. 19) and Theorem 4 (§6.2, p. 20). The density expansions are new and have
the form fr(t) ~ Be~%, while the survival expansions Sg(t) ~ Be~% /b are well estab-
lished and have traditionally been proven by using renewal theory as in Feller (1971,
XI1.5). Once the density expansions have been established, however, the survival expan-
sions follow directly from the smoothing of integration. The converse is not true; the
density expansion does not follow from the coarsening effect of differentiating the sur-
vival expansion. Thus, the new Ikehara conditions stipulate when both the density and
survival functions of R admit exponential expansions. Further examples include general
compound distributions with negative-binomial-like weights (Theorem 5 and Corollary
6 in §6.3, p. 21-22), where new density expansions are established to complement the
survival expansions of Embrechts et al. (1985) and Willmot (1989). Additional examples
include compound distributions determined from multiple classes of claim distributions
(Theorems 6 and 7 in §6.3.1, p. 22-24), where new expansions for density and survival
functions are established under Tkehara/Darboux conditions.

Our fourth and perhaps most important goal is to extend Cramér-Lundberg-type
expansions for density /mass and survival functions so they apply to the broad class of
first-passage distributions in general finite-state semi-Markov processes in continuous and
integer time. To do this, we first characterise such first-passage distributions as compound
distributions determined from multiple classes of claim distributions with multivariate
weights as just mentioned; see Proposition 3 (§7, p. 25). This, along with some Ikehara
conditions in continuous time, justifies new expansions for first-passage density and sur-
vival functions of the form f(t) ~ Be=% and S(t) ~ Be~% /b as given in Theorem 8 (§7,
p. 26-27). Here, b = b(M) > 0 denotes the asymptotic failure rate of the first-passage
distribution with MGF M and 8 = ((M,b) is the negative residue of M at b given
explicitly in (7.4). In integer time, first-passage times under minimal Darboux conditions
admit geometric-like mass and survival expansions as specified in Theorem 9 (§7, p. 28).
Had Feller conditions been used, justification for the p(n) expansion would have required
the assumption that {p(n)} is monotone in n. The importance of these expansions should
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not be understated because the great majority of failure time distributions in applied
probability may be formulated as such first-passage times. For example, the ruin dis-
tribution in the Cramér-Lundberg and Sparre Andersen models is such a first-passage
distribution for the semi-Markov process described in Example 9 (§7, p. 27).

2.1. Implications of results

From Theorems 8 and 9, one may conclude that first-passage time distributions in semi-
Markov processes admit the same exponential-like and geometric-like tail expansions
that are known to occur for the class of Markov processes. Furthermore, the dominant
rate is given by the asymptotic hazard rate b or 1 — e~?. These findings are the most
important results derived by using the general asymptotic theory, and obtaining such
results was the original motivation in addressing the whole subject. From the many
numerical examples in Butler (2000, 2007 ch. 13), it had already been made clear that
first-passage hazard rates approach an asymptote of height b; see the plots of hazard
rate functions computed from saddlepoint methods in Butler (2000, 2007 ch. 13). What
Theorems 8 and 9 now provide is the theoretical underpinning for the asymptotes in these
plots and an explanation for the exponential appearance of the accompanying saddlepoint
density and survival plots.

Establishing exponential /geometric tails for such first-passage distributions has im-
portant statistical implications for estimating tail probabilities from such distributions
using passage-time data. Butler and Bronson (2002, 2012) developed nonparametric boot-
strap methods for estimating such probabilities using saddlepoint methods based upon
an estimate M (s) for the first-passage MGF. Now, however, rather than estimating S(t)
nonparametrically from M(s), expansion estimate Be‘i’t / b can be used instead, where
b= b(M) and 3 = B(M,b) are estimates based on M. In the context of the Cramér-
Lundberg approximation, Chung (2010) has shown in his Ph.D. dissertation that this is
indeed better. Starting with the true MGF M, he first showed that expansion Be~%/b is
typically more accurate than the Lugananni-Rice saddlepoint approximation for S(¢) in
the upper quartile of the distribution. Through simulation, he also showed that survival
estimate Be‘i’t / b typically has smaller relative error in the upper quartile than a fully
nonparametric survival estimate based on M using the methods in Butler and Bronson
(2002, 2012).

Another important reason for creating a widely applicable theory for expanding den-
sity /mass and survival functions under Tkehara/Darboux conditions is to provide very
simple general conditions under which saddlepoint approximations for density /mass and
survival functions achieve uniform tail accuracy. Existing conditions in Jensen (1995,
§86.3-6.4) stipulate that distributions must satisfy relatively complicated conditions re-
lated to his method of proof which can be difficult to verify. The much simpler Tkehara
conditions of Proposition 1 suffice when tails are gamma-like, and the author has recently
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shown (in new unpublished work) that saddlepoint approximations for density and sur-
vival functions achieve limiting relative error given by Stirling’s approximation for I'(w).
For lattice distributions, the same results hold for saddlepoint approximations of mass
and survival functions under minimal Darboux conditions. Insofar as Ikehara/Darboux
conditions ensure that such expansions apply to compound distributions and first-passage
distributions in semi-Markov processes, then such uniform tail accuracy also carries over
when saddlepoint methods are used to approximate such distributions. Thus this work
generalises and simplifies the uniformity results derived in Jensen (1995, ch. 7) for com-
pound distributions and extends the uniformity results to first-passage distributions.

3. Absolutely continuous distributions

Suppose X is an absolutely continuous random variable with support (0,00), density
f(t), and survival function S(¢t) = 1 — F(¢). The hazard and cumulative hazard rate
functions are

h(t) = f(t)/S(t)  and H(t):/o h(z)dz = —In {S (£)}.

The associated MGF is defined as M (s) = E(e*X) and converges on the real line for
either s € (—o0,b) or (—o0,b] for b > 0. The limiting average hazard rate is now charac-
terised in terms of its MGF.

Theorem 1. If a non-negative absolutely continuous random variable X has moment
generating function M (s) converging on (—o0,b) or (—oo,b] for b >0, then

B _y,

lim inf
t—o0

The theorem can be derived from first principles (see Supplementary Materials, §A.1.1)
or by using Theorem 2.4e from Widder (1946, p. 44).

Lemma 1. (Widder). Suppose Laplace-Stieltjes transform G(s) = [;° e=*'dG(t) con-
verges on Re(s) > —b < 0 for some function G(t) of bounded variation. Then, G(c0)

exists and
—b = limsup{t ' In |G(c0) — G(t)[}.
t—o0

Proof of Theorem 1. Let G(t) = F(t) so that G(c0) = 1 and

b= —limsup{t ' InS(t)} = 1itm inf{—t"'InS(t)} = litrninf{tle(t)}.
t—00 —00 —0Q

Theorem 1 generalises to apply to any absolutely continuous random variable X with
distribution on (—o0,00). If X has a MGF which converges on (a,b) or (a,b], where
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a <0 < b, then liminf, ., H(t)/t = b as shown in §A.1.2. For example, the Cauchy
distribution has ¢ = 0 = b and lim;—, o H (t) /t = 0.

If the limiting hazard rate exists, as it does for many commonly used distributions,
then these liminfs are indeed limits.

Corollary 1. For an absolutely continuous random variable X with support on (—oo, 00),
if limy_, o0 h (t) exists, then
lim £ (t) = lim 28—y (3.1)
t—o00 t—oo
Proof. If h(t) — by then the Cesaro mean ¢t~ 1 H (t) = ¢t~! fot h(s)ds — by as t — 0.
A proof of this follows the same approach as used for sequences. By Theorem 1, this limit
must be b so by = b and (3.1) holds. O

While this is the characterization we seek, the presumption that h(¢) has a limit is
a fact that would not typically be known for a new unfamiliar distribution. Thus, the
benefit of the corollary is to eliminate the computation but only if the limit is known to
exist. Sufficient conditions are needed to guarantee such a limit and are provided below.
The following pathological example provides some guidance for determining what these
sufficient conditions need to be. The distribution has a periodic hazard rate function with
no limit and has liminf; A (¢) different from liminf; . H (¢) /t.

Example 1. The density
f()=2/3(1+sint)e”" t>0 (3.2)

takes value 0 on the set {37/2+ 2wk : k=0,1,...} so that liminf; ., h(t) = 0. The

hazard rate is
2(1+sint)

~ 2t costtsint’

a 2m-periodic function that does not have a limit. Its MGF is

h(t)

M (s) =2/3 [(1 —8) P4 {(1-8)?+1}"']  Re(s)<1=b (3.3)
Direct computation shows that
t'H(t) =1+t (In3 — In[2cos? (£/2) + {cos (t/2) + sin (¢/2)}?]) .
The coefficient of t=! is bounded so that lim; ., H (t) /t = 1.

The lack of a limiting hazard rate in this example can be explained by M not having
a dominant pole on the boundary {s € C': Re(s) = 1} of its convergence region. From
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(3.3), we see that it has three simple poles {1,1 4 ¢}, which all vie for dominance of the
hazard rate, and this leads to the periodic behaviour of h (t). To ensure the existence
of a limiting hazard function, we exclude such MGFs by stipulating some new Ikehara
conditions J x4 N Jynp in the next result.

Proposition 1. Let X have an absolutely continuous distribution F(t) with support
(0,00) and associated moment generating function M(s) that converges on the complex
half-plane {s € C' : Re(s) < b} for b > 0. Let X also satisfy the Ikehara conditions as
given below. Then limy_, o h(t) = b,

f(t)w%t“’lebt and  S() ~ 2 £ (1) (3.4)

as t — oo, where g(b) = limg,(b — ) M(s).

Ikehara conditions: X (or F or M) satisfies Ty N Jynp where
(Jm) b is a dominant singularity in that the analytic continuation of M may be
expressed as

M(s) = g(s)(b—s)™" + h(s), (3.5)

where w > 0, g and h are analytic on {s € C : Re(s) < b}, and g(b) # 0; and
(Junp) There exists an € > 0 such that the (b+ ¢)-tilted improper density fy+e(t) :=
exp{(b+ &)t} f(t) is non-decreasing for t > A, for some A.

If w is not a positive integer, then Tkehara condition J x4 has the multi-function factor
(b—s)~" which assumes principal branch values that are real-valued for s < b and makes
use of a branch cut along [b, 0c].

These results state that gamma-like MGF's have densities with gamma-like tails. While
such conclusions are not new, the Ikehara conditions Jx¢NJyyp for making such conclu-
sions are new to the field of probability. A proof of Proposition 1 is given in §B.1.3 and
follows from two Tauberian theorems that have mostly been used in analytic number the-
ory. In the case of a simple pole (w = 1) at b, this includes the Tkehara-Wiener theorem,
given in Theorem B1 of §B.1.1, which is well-known as the primary tool for proving the
prime number theorem; see Widder (1946, pp. 233-236) for its use in the proof. Other
versions of this theorem are also described in, for example, Chandrasekharan (1968, p.
124), Doetsch (1950, p. 524), or Korevaar (2004, thm. 4.2, p. 124). For other cases in
which 0 < w # 1, the proof uses the lesser known Ikehara-Delange theorem as stated in
Theorem B2 of §B.1.2 and given in Narkiewiez (1983, thm. 3.9, p. 119).

Proposition 1 also holds if Ikehara conditions are replaced with the following Feller con-
ditions, which are those needed to use results based on the Hardy-Littlewood-Karamata
theorem in Feller (1971, §XII1.5); see §A.2.1 for a proof.
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Feller conditions: X satisfies Fam NSuns where

() For real s, M(s) ~g(s)(b—3s)"" as s b for w> 0, and g is left-continuous
at b with g (b) > 0; and

(Suar) The improper b-tilted density fi,(t) = b f(t) is ultimately monotone, i.e. it is
monotone for all t > A, for some A.

For Example 1, note that Feller condition F s fails to hold since tilted density ef f(t) =
2/3 (1 +sint) is not ultimately monotone in t as ¢ — oo. Overall, condition Fyas can
be weakened to the condition Fyae that fp(t) ~ v(t) as t — oo with v(t) ultimately
monotone as indicated in §A.2.1.

In many simple practical applications, both the Feller and Ikehara conditions apply.
For example, if X = —In{Beta (a, §)}, then both Ikehara and Feller conditions hold for
all values of a, 3 > 0; this gives asymptotic hazard rate « and tail behaviour f(t) ~
[(a+ B)/{T(@)D(3) e,

In more complicated stochastic model settings, however, this is not the case and only
the Ikehara conditions can be applied in this broader range of settings. Direct comparison
of the two sets of conditions shows why the Ikehara conditions are more practically
useful. Verifying the condition placed on density f is the main difficulty. Feller condition
Suas supposes the b-tilted density is either ultimately non-decreasing or non-increasing
with almost all applications being ultimately non-decreasing. Ikehara condition Jynp
supposes there exists some (b + €)-tilted density, with e > 0, that is ultimately non-
decreasing. Feller condition §as (applied as ultimately non-decreasing) is much stronger
and more restrictive and implies that Ikehara condition Jyyp holds for all € > 0.

The main consequence of using the more restrictive Feller condition §yas is that it is
generally not possible to show that it holds in stochastic modelling settings whereas the
more relaxed Tkehara condition Jy p is often easily shown to hold for a sufficiently large
g > 0. The classic Cramér-Lundberg example of §6 provides an example. In this model,
the ruin amount R with density fr(¢) has MGF of the form

Ma(s) = #M‘;(S) Re(s) < b. (3.6)
Here, Mp is the MGF for the excess life distribution of the claim density fx(¢) and
convergent on {Re(s) < ¢}, while b € (0, ¢) is the smallest positive zero of the denominator
in (3.6). We want to conclude that the associated ruin density fr(t) ~ cje?
for constant ¢; > 0 as stated in Theorem 3 of §6.1. Assuming the claim density fx satisfies
Feller condition §yas does not allow one to conclude that ruin density fr also satisfies
Sum since under the former assumption e fx(t) is ultimately non-decreasing whilst
under the latter assumption e fz(t) must be ultimately non-decreasing. The problem is
simply that b < ¢. Such problems are avoided by placing an Ikehara condition on fx.
As will be seen in §6, a uniform ITkehara assumption on fx, in which an ¢ > 0 exists for

ast — oo

imsart-bj ver. 2013/03/06 file: ReviseBernoullil4.tex date: December 23, 2015



Asymptotic expansions and hazard rates 11

which e(¢+9)t fx (¢) is non-decreasing for all t > 0, allows one to conclude the same uniform
TIkehara property for fg, i.e. e(cte)t fr(t) is also non-decreasing for all ¢ > 0. Thus, for
this and other stochastic models, an Ikehara condition needed for Proposition 1 to apply
to the intractable density fr can be deduced by assuming the same Ikehara condition on
the more tractable input claim density fx. This idea underlies all the asymptotic results
developed in the major applications concerning compound and first-passage densities in
866-7.

Further comparison of Ikehara and Feller conditions placed upon M reveals that the
Ikehara condition J o4 is stronger than the corresponding Feller condition §x4 thus com-
pensating for the weaker condition placed on f. However, in most all practical settings,
both conditions T and §aq tend to hold together and showing either is typically quite
straightforward when M is given.

Example 2. (Excess life distribution). Suppose absolutely continuous X satisfies all
the conditions of Proposition 1. If X is interpreted as an interarrival time, then the
excess life F associated with it has density fg(t) = S(t)/u, with p = E(X), and MGF
MEg(s) = {1 — M(s)}/(—us) which is also convergent on {Re(s) < b}. If X satisfies the
Ikehara conditions Jxq N Iy np then so does E if the singularity b for M is restricted to
being a w-pole (so w > 0 is an integer); see §B.2.1 for a proof. A comparable result can
be shown under Feller conditions; see §A.2.2.

From a measure-theoretic point of view, Proposition 1 applies only to a Radon-
Nykodym derivative f that satisfies either Jynyp or §uas- In most applications there
is no ambiguity since f is ultimately continuous with at most a finite number of step dis-
continuities. The theorem can also allow f to have an infinite number {¢,, : n > 1} of step
discontinuities that extend into the tail. Under such conditions, both Jynyp and Sy
may hold if all but a finite number are upward stepping so that ultimately f(t,,;) < f(t,});
if, however, f(t;7) > f(t;}) i.0., then neither of the conditions can hold.

Proposition 1 may be extended to absolutely continuous distributions supported on
the real line using slightly amended Ikehara conditions and Feller conditions; see Corol-
laries B1 and Al respectively in §§B.2.2 and A.2.3. As an example, consider X =
—In{Gamma (a, 5)} with MGF M(s) = 8°T'(a — s)/I'(«) which has a dominant singu-
larity at . Both Corollaries B1 and A1 apply to give tail behaviour f(t) ~ %~ /T'(«a)
which is easily verified directly.

While the expansions in (3.4) of Proposition 1 apply to gamma-like distributions,
they do not apply to heavy-tailed distributions on (0, c0), whose MGFs converge on the
non-open region (—oo,0]. Existing methods for obtaining such expansions with subex-
ponential distributions do not lead to tail approximations with the same accuracy and
hence practical importance as the current light-tailed expansions in Proposition 1; see
Tijms (2004, p. 332-333) and Rolski et al. (1999, §5.4.2) for discussion and numerical
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12 Butler

verification. Neither does Proposition 1 apply to very light-tailed distributions, such as
a Normal (u,02), for which b = co and whose MGF lacks finite singularities. Thirdly, it
does not deal with all distributions for which b is a branch point of the MGF; e.g. an
inverse Gaussian MGF, which converges on non-open region (—oo,b], as well as other
examples given in §A.4. Expansions for such distributions are considered in related un-
published work by the author. Finally it does not deal with branch points created from
the logarithm multi-function; such examples are covered in §8. Even though the theorem
does not apply to such distributions, the value for liminf;_ . H (¢)/t is still b € [0, 0], as
described in Theorem 1, and this conclusion does not depend upon the type of singularity
at b nor upon whether b = 0 or cc.

3.1. Large deviation theory and numerical accuracy of the
expansions

Large deviation theory is concerned with the decay of S(t) as t — oo and a typical
theorem would show that —b < 0 is the exponential rate of decay for S as expressed
through the equality lim;_ .. t~!In S(t) = —b. The conclusions of Proposition 1, however,
are stronger because they not only imply such results but also provide the rate of such
convergence as expressed through the leading term in the expansion of t=1In S(t) + b =
o(1). Consider, for example, the very common setting in which b is a simple pole. Then,
Proposition 1 gives

t™'InS(t) +b=1t""In{g(b)/b} +o(t™) t — 00, (3.7)

so the leading term in o(1) is t =1 In{g(b)/b} to order o(t~1).

The use of the approximation in (3.7), as opposed to t~11In S(t) ~ —b, is particularly
important when approximating tail probabilities in practical applications. Indeed, ex-
pression (3.7) can be quite accurate when b is a dominant pole even for moderately large
values of ¢. Alternatively, t ! In S(t) &~ —b is only accurate for extremely large values of t
(Barndorff-Nielsen and Cox, 1989, §6.6). As an example, Tijms (2003, §8.4, Table 8.4.1)
shows the good numerical accuracy that can be obtained when using (3.7) in the context
of the well-known Cramér-Lundberg approximation which is to be discussed in §6.1.

4. Lattice distributions

It suffices to consider a non-negative integer-valued random variable with mass function
{p(n) : » > 0} and hazard rate sequence

I () B

> e p(5) -
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Asymptotic expansions and hazard rates 13

Theorem 2. If X has a mass function on the non-negative integer lattice and moment
generating function M(s) which converges on (—o0,b) or (—o0,b], for b > 0, then

n—1
o 1
hnnilgf {E Zln(l - hk)} =0. (4.1)

k=0

Proof. The proof is either derived from first principles (see §A.1), or directly from
Lemma 1 by noting that

n—1

nS(n)=mP(X >n)=In [J(1—hs) = Sln(l — hy).
k=0 k=0

The result easily extends to arbitrary distributions on the integer lattice in which the
MGEF converges on (a,b) or (a,b] for a < 0 < b. Following the proof in the continuous
case, then liminf,, . ..{-—n"! ZZ;L)O In(1 — hg)} =b.

Sufficient conditions for the existence of a limiting hazard rate as well as asymptotic
expansions for the mass function p(n) and survival function S(n) are now given.

Proposition 2. Suppose X has non-negative integer support, and its moment gen-

erating function M(s), which converges on {s € C : Re(s) < b} with b > 0, satisfies

Darbouz condition D aq below. Then, limy,—oo hp =1 —e7?,

eb e—bw
p(n) ~ %nw_le_b”, and S(n) ~ %ﬂp(n) (4.2)
as n — oo.
(D) M has the form
M(s) = g(e®)(e® — €)™ + h(e®), (4.3)

where w > 0, g(e®) and h(e®) are analytic on {s € C : Re(s) < b} with g(e®) # 0, and
(eb — %)~ assumes principal branch values for non-integer w. (Condition D x4 ensures
that b is a dominant singularity, i.e. it is the only singularity on the boundary of the
principal convergence region defined as {s € C': —m < Im(s) < m; Re(s) = b}.)

The novelty and importance of Proposition 2 are the Darboux condition D x4 which
ensures the well-known results in (4.2). Established conditions for deriving (4.2) from
Tauberian Theorem 5 of Feller (1971, XIIL.5) require the additional assumption that
{p(n)} is ultimately non-increasing. Such an assumption is difficult to verify from M
alone and this undermines all our applications to stochastic modelling. The Darboux
condition ® rq, by comparison, does not limit such applications as it is quite weak and
can be easily verified from M.
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14 Butler

A proof of Proposition 2 is given in §A.5.2 and uses Darboux’s theorem, which may
be considered a lattice version of the Ikehara-Delange and Ikehara-Wiener theorems.
Theorem A1 of §A.5.1 is a modification of Darboux’s theorem, as given in Theorem 5.11
of Wilf (2006, p. 194), and deals with generating functions (GFs) that converge on a disc
of radius ¢ > 0 rather than the usual radius of ¢ = 1 in which the theorem is generally
stated. The proof also uses the Stolz—Cesaro theorem in Lemma Al of §A.5.1 which is a
discrete version of I’'Hépital’s rule; see Huang (1988, p. 322).

For a simple distribution such as X ~ Negative Binomial (m, p), Proposition 2 applies
with w = m and e™® = p and the asymptotic order in (4.2) is easily verified. The
expressions in (4.2) are exact for the Geometric mass function with m = 1. Our next
class of examples is less trivial.

Example 3. (Equilibrium distributions). Suppose {p(n) : n > 0} has GF P(z) and
is the equilibrium distribution for a positive recurrent queue with a countably infinite
state space. Conditions on P that ensure p (n) ~ ve~*" as n — oo are given in Theorem
C.1 of Tijms (2003, pp. 452-453) and they agree with the conditions in Proposition
2. The GF has form P(z) = N(z)/D(z) and is assumed to be analytic on {|z| < ¢}
apart from a simple pole at ¢ = e’ > 1, which results from a simple zero of D(z).
When written as in (4.3) of Proposition 2, the MGF P(e®) = g(e®)/(e® — €*) has factor
g(e®) = N(e®)(e’ — e*)/D(e*), which is analytic on {Re(s) < b}, and P(e*) admits a
negative residue at b given by

7 =g(e)e" = =N(e)/{'D (")}

A wide range of examples in Tijms (2003) result in equilibrium distributions with GF's of
this form. Examples includes a discrete-time queue (Example 3.4.1), a continuous-time
Markov process on a semi-infinite state space (§4.4), the M/G/1 queue (§§4.4 and 9.2), a
bulk M¥ /G /1 queue (§9.3), and approximations to several GI/G/m queues (§§9.5-9.7).

Proposition 2 can be extended to lattice distributions over all integers. The results are
summarised in Corollary A6 in §A.5.3 under slightly modified conditions.

5. Finite convolution and mixture distributions

A considerable broadening of the theory in §§3 and 4 results when it is applied to finite
convolutions and mixtures. Let X be an absolutely continuous or integer-valued random
variable that has an asymptotic hazard by virtue of satisfying the Ikehara or Darboux
conditions of Proposition 1 or 2. Now, convolve X with independent variable Y and
mix the resulting distribution with the distribution of independent random variable Z.
This leads to a mixture-convolution random variable W with density/mass function
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Asymptotic expansions and hazard rates 15

pfx4v(t) + qfz(t) for some p € (0,1] with ¢ = 1 — p. Conditions are given below to
ensure that the distribution of W also satisfies Proposition 1 or 2 so that its asymptotic
hazard rate exists and its tail behaviour can be characterised.

5.1. One strongest variable

Let Y and Z be strictly weaker components than X in the sense that their MGF's
have strictly larger non-negative convergence regions than that for X. Then, apart from
some additional technical conditions, the mixture-convolution distribution for W has the
same asymptotic hazard rate as that for the strongest variable X. Also, the survival
and density /mass functions for W have the same gamma-like and negative binomial-like
tails as for X and differ only by having a different value for constant g(b). The general
interpretation that may be given is that the strongest component prevails asymptotically,
and the two weaker components Y and Z only express themselves by changing the value
of the constant g(b). Block et al. (1993) and Block and Joe (1997, thm. 4.1) pointed
out the lack of influence of Z on asymptotic hazard whilst the minimal influence of Y is
new. These results are formalized in Corollary 2 under Ikehara conditions and the proof
is relegated to §B.3.1. Comparable results under Feller conditions are given in Corollary
A2 of §A.3.1. We use subscripted notation so Mx(s) denotes the MGF of X, etc.

Corollary 2. Let X,Y, and Z be absolutely continuous and non-negative variables
such that X is stronger than Y and Z; i.e. let Mx(s), My (s), and Mz(s) converge on
{Re(s) < b}, {Re(s) < b+ ny}, and {Re(s) < b+ nz} respectively for b > 0 and some
values Ny >0 < nz.

Ikehara conditions: Suppose X satisfies Taq and either X or Y (or both) satis-
fies the uniform Ikehara condition denoted by Inp(o,o0) and given below. Let Z satisfy
condition Jynp if p < 1.

(InD(0,00)) X satisfies Inp(o,eey if an € > 0 exists for which 0Tt fy(t) is non-
decreasing for all t > 0.

Then, X +Y satisfies Tpm N INDo,00) and Wsatisfies Iy N Junp. Thus, W has as-
ymptotic hazard rate b > 0, density

fw (t) ~ pMy (b) fx () ~ pMy (b)gx (DT (w) "¢ e ™ ¢ — oo, (5.1)
and survival Sy (t) ~ fu(t)/b.
Example 4. (Sums and products of independent variables). Suppose Z1, ..., Z are

independent with Z; ~ Gamma («;, 5;) and $1 < min;>2 ;. The sum W = Z1+> ., Z;
is the passage time though a series connection of states in a semi-Markov process with
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16 Butler

Gamma (a4, 3;) holding times. The strongest addend of X is Z;. Ikehara conditions
require min; o; > 1, since the conditions of Corollary 2 are that at least one Z; satisfies
JIND(0,00)- The Feller conditions of Corollary A2 in §A.3.1 are more restrictive and require
a1 > 1 since they are more specific in requiring that the strongest variable satisfy the
uniform Feller condition §np(0,00)- Both sets of conditions lead to the conclusion that
W has a Gamma (a1, 8;) tail.

If Zy,...,Zy are independent with Z; ~ Beta (a;, ;) and aq < min;>2 o, then the
product [[,~, Z; arises as the posterior distribution for the probability that a series con-
nection of k independent components is working. It is also the null distribution for Wilks’
likelihood ratio test and most of the other likelihood ratio test statistics in multivariate
analysis of variance; see Anderson (2003, ch. 9-10). Variable W = —In Z; =) .., In Z; has
strongest addend — In Z; and Corollaries 2 and A2 imply that W has an exponential-like
tail of order O(e~%1!) under Ikehara condition max; 3; > 1 or Feller condition 3; > 1.

For absolutely continuous densities, the additional uniformity restriction of Jyp(0,00)
in Corollary 2 over Jy yp does not adversely restrict the range of applicability of the corol-
lary. Indeed, the only practical densities in Jynp\InD(0,00) S€€mM to be those that are
either unbounded at ¢ = 0 or have a downward stepping discontinuity, i.e. f(¢t7) > f(t1)
for some ¢ > 0. Also, only one of the two variables X and Y needs to satisfy Jnp(0,00)
while the other may have an unbounded density or may have downward stepping discon-
tinuities.

When the random variables in Corollary 2 have support on (—o0, 00), then comparable
results can be derived and are given in Corollary B2 of §B.3.2. The same results using
Feller conditions are given in Corollary A3 of §A.3.2. As an example, consider the gamma
variables in Example 4 and suppose a; < min;>2 a;. The product Hi>1 Z; describes
the distribution for the determinant of a k x k Wishart matrix based on independent
components. Taking logarithms, then W = —InZ; — )",.,InZ; has strongest addend
—1InZ; with an exponential-like tail of order O(e~*'*) under both Ikehara and Feller
conditions.

Corollary 3. Suppose integer-valued X > 0 satisfies the conditions of Proposition 2
with Mx (s) = gx(e*)(e® —e®) "W +hx(e®). Let independent integer-valued variables Y >
0 and Z > 0 be such that My (s) and Mz(s) are analytic on {s € C : Re(s) <b+ny}
and {s € C : Re(s) < b+nz} respectively for ny >0 < ngz. Then, the distribution of W
has asymptotic hazard rate 1 — e~ and mass and survival functions of asymptotic order
given in (4.2) with g(e®) replaced by pMy (b)gx (e?).

5.2. Equally strong variables

Suppose random variables X, Y, and Z are ostensibly of equal strength with MGF's that
share the common convergence region {s € C' : Re(s) < b}. Subject to some Ikehara con-
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Asymptotic expansions and hazard rates 17

ditions, convolution/mixture variable W has asymptotic hazard rate b with asymptotic
tail behaviour as given below. See §B.3.3 for a proof. Comparable results under Feller
conditions are given in Corollary A4 in §A.3.3.

Corollary 4. Suppose absolutely continuous, non-negative, and independent variables
X,Y, and Z have moment generating functions Mx (s), My (s), and Mz (s) which share
the common convergence region {s € C : Re(s) < b}.

Ikehara conditions: Let X,Y, and Z all satisfy Taq of Proposition 1, and suppose
the singularities for Mx(s), My (s), and Mz(s) at b > 0 are poles with positive inte-
ger orders wy,wy, and wy respectively. Furthermore, suppose either X or Y satisfies
JIND(0,00) and Z satisfies Jynp if p < 1.

Then, X +Y satisfies Ipm NINp(o,00) and W satisfies Ipm N TJunp. Thus, W has as-
ymptotic hazard rate b > 0, density
fw (#) ~ gw (DT (w,) "1~ te™™ ¢ — oo, (5.2)

and survival Sy (t) ~ fw(t)/b, where w, = max{wx + wy,wz} and

pgx (b)gy (b) if wx +wy >wz
gw () = ¢ pgx(b)gy(b) +qgz(b) if wx +wy =wz . (5.3)
q9z(b) if wx +wy <wgz

When variables in a finite convolution/mixture share a common convergence region,
then, according to Corollary 4, the resulting distribution still reflects the strongest com-
ponent but that component is now the one with the highest order singularity at b. If
multiple components share the highest common order, as occurs when wx +wy = wz in
(5.3), then all such components contribute to the asymptotic order through the value of
coefficient gy (b). The following result for i.i.d. variables follows directly from Corollary
4. The same result under Feller conditions is given in Corollary A5 of §A.3.4.

Corollary 5. (Convolution of i.i.d. variables). Let W = X1 + --- + X,,, where
Xq,..., X are non-negatively-valued i.i.d. variables from an absolutely continuous dis-
tribution.

Ikehara conditions: Suppose X satisfies Iy NI np(o,00) and singularity b > 0 for
Mx, is a w-pole, for integer w.

Then, W also satisfies Inpg N IND(0,00)- Proposition 1 applies to give asymptotic hazard
rate b > 0, density

fw (1) ~ g%, (O)L (maw) ™o~ te ™t — oo, (5-4)
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and survival function Sw(t) ~ fw(t)/b. If Mx,(s) takes the form gx, (s)(b—s)™" in
(8.5) with addend hx,(s) = 0, then the same conclusions hold for arbitrary w > 0 (it
need not be an integer).

Proof. We only comment on showing that W satisfies Ty p(0,00)- Apply Lemma B1
of §B.3.1 successively to the sequence Wo = X1+ Xo, Wy =W+ X3,.... W =W,,_1 +
Xm to show that {Wy,..., W, 1, W} all satisfy condition Jnp(o,00). Thus W satisfies
Tm rlijD(Qcoy ]

Example 5. (Excess life distribution). Consider an m-fold convolution W = E; +
-+ F,, of i.i.d. excess life variables F as in Example 2. Two results are shown in §B.3.4.
First, if interarrival time X satisfies Jaq with Mx convergent on {Re(s) < b} and b >0
is an w-pole, then E satisfies Jpq and b > 0 is a w-pole for Mg.

Secondly, if X satisfies Tnp(0,00), then E satisfies Ty p(o,00)- Putting the two results
together, if X satisfies Ta1 NI np(0,00) With b as an w-pole of Mx, then E satisfies the
requirements for Corollary 5, i.e. F satisfies Iy NIy p(0,00) and singularity b is a w-pole
for Mpg. Thus, W also satisfies Ja N Inp(o,00) and has density and survival function
with asymptotic orders as in (5.4).

6. Compound Distributions

A rich Tauberian theory is derived below for such infinite mixture distributions under
Ikehara conditions. Corresponding results cannot be derived under Feller conditions since
it is generally not possible to show that such distributions satisfy condition §yas.

6.1. Cramér-Lundberg approximation

Suppose the arrival of claims filed against an insurance company follows a Poisson
process {N(7) : 7 > 0} with rate A > 0. Let successive positive claim amounts be the
i.i.d. absolutely continuous values {X;} with mean p so the compound Poisson process
L(t) = Zfﬁf ) X; describes the company payout after time 7. Also, suppose the com-
pany’s premiums increase revenues at constant rate o > 0 with o > A so the premium
rate exceeds the claim rate and p = Ap/o < 1. If the company starts with initial reserve ¢,
then the probability of eventual ruin for the company is S(t) = P{L(7)—o7 >t Jr50}.
With claims filed after interarrival times {7;}, which are i.i.d. Exponential (), then the
ruin must occur at an arrival epoch of a claim so that

n

S(t)=P {S = (Xi—oTi) >t 3,L>1} = P(R > t) = Sg(t),

i=1
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where R = sup,,~; Sy, is the maximum loss that occurs with claim N = argsup,,~; Sn.

Denote the density of R as fr(t) so —S%(t) = fr(t) for a.e. t. -
Suppose the claim amount X has MGF Mx which converges on {Re(s) < ¢} with

¢ > 0. Let E have the excess life distribution for X with MGF Mg. Then, R has MGF

Mg(s) = /OO ' dFg(t) = #.MZ(S) =(1=p)+pd>_(1=p)p" M (s) (6.1)
k=0

which converges on {Re(s) < b} where b € (0,¢); see Tijms (2004, §8.4). Convergence
bound b is a simple pole and results as a simple zero of 1 — pMg(s) since Mg(s) is
strictly increasing. The rightmost expression in (6.1) reveals R as a mixture distribution
with a point mass of 1 — p at ¢ = 0 and an absolutely continuous component with mass
p on (0,00). The following result, based on Ikehara conditions, is shown in §B.4.1.

Theorem 3. Suppose absolutely continuous claim amount X is as described above
and satisfies uniform Ikehara condition Jnp(o,s0)- Then, R™ = R|R > 0, the positive
and absolutely continuous portion of maximum loss R, satisfies Ipg N IND(0,00)- Thus,

b(1 —p) o bt

Tr(t) = pfr+(t) ~ M ()0 —1

t — oo, (6.2)

so that Sg(t) = pSgr+(t) ~ fr(t)/b.

Theorem 3 is a new stronger form of the Cramér-Lundberg approximation since it
provides an expansion for the density of R in (6.2) and not just Sgr(t) as traditionally
given in, for example, Asmussen (2000, II11.5 thm. 5.3). The conclusions of Theorem 3
are stronger but they also require the stronger assumption that X satisfies Tnp(0,00)-
Theorem 3 is proved by using Tauberian theory whereas the traditional expansion for
Sg(t) is derived by using renewal theory as in Feller (1971, §§XI1.6 and XIL.5).

6.2. Sparre Andersen risk model

This model generalises the Cramér-Lundberg model so claims can arrive according to a
general renewal process rather than as a Poisson process. Assume absolutely continuous
interarrival times {7;} are i.i.d. with a MGF M (s) which converges on {Re(s) < a}
for a > 0. For all other quantities, we use the notation from the previous subsection.
Assume i.i.d. absolutely continuous claims X7, Xs,... have a MGF Mx(s) convergent
on {Re(s) < ¢} for ¢ > 0, and that E(X — oT) < 0 so the drift of random walk
{Sn = > 1(X; — oT;)} is negative. Let b € (0,c¢) be the unique (real) positive root of
Mx —o1(8) = Mx(s)Mr(—0os) = 1.
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Theorem 4. Suppose the conditions on Mp(s) and Mx(s) above. If X satisfies
uniform Ikehara condition Jnp(o,00), then R* = R|R > 0 satisfies Tpq N IND(0,00) and

fr(t) ~ ae™ t — 00, (6.3)

so that Sr(t) ~ ae™*/b. Here, a > 0 is given in (8.54) of §B.4.2 as the negative residue
of MRg(s) at b.

The expansion for density fr(t) in (6.3) is new and requires the additional assumption
that X satisfies Jnp(0,00)- Expansion (6.3) ensures that the established expansion for
survival function Sg(t) also holds as previously given, for example, in Theorem 3.1, case
(i), of Embrechts and Veraverbeke (1982). Note that the conditions on X in Theorem 4
are exactly the same as those used in Theorem 3 for the Cramér-Lundberg setting.

The rather long proof of Theorem 4 is given in §B.4.2 and demonstrates that RT
satisfies the Ikehara conditions of Proposition 1. That M r+ satisfies condition J o4 follows
from the Wiener-Hopf factorization that determines M pg. To show condition Jynp, we
use the compound geometric sum characterization of R in which R = Zfi*o L} where
{L] :4i > 1} are i.i.d. with the ascending ladder distribution of the random walk {S,,}
and LS‘ denotes a point mass at 0. From this compound geometric sum, we determine
that R satisfies JIND(0,00) if Lf satisfies I p(0,00) and this holds if X satisfies Jnp(0,00)-
The latter result follows by noting that the last convolved step amount (or Y = X — 0T
addend) in the ladder height L] is necessarily a positive step which depends on the X
contribution in the step amount X — oT.

Feller conditions do not suffice in this line of proof. Tilting parameter b must be used
to show RT satisfies §7ps whereas the assumption that X satisfies §as uses the larger
tilting parameter ¢ > b. Thus, the fact that X satisfies Fyas has no bearing on whether
R* can satisfy .

6.3. More general compound distributions

In the two previous subsections, the ruin amount R = ZQ’:O X}, assumes that NV has a
geometric mass function, and this results in an infinite mixture distribution with geo-
metric weights. We now give an expansion for the density of R when N assumes a more
general mass function with probability generating function (PGF) P(z) = Y o, p(k)z"
that converges on {|z| < r} for r > 1. Suppose X has a point mass at zero and let
{X) : k > 1} be i.i.d. absolutely continuous positive claim amounts with MGF M(s)
that converges on {Re(s) < ¢} or {Re(s) < ¢} for ¢ > 0. Now, R has a compound
distribution with MGF P{M(s)}.

The next result shows that the density of R has a gamma-like tail under two condi-
tions: M satisfies Tkehara condition Jyp(o,00), and P satisfies Darboux condition D u.
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Condition ® a4 holds if convergence bound r > 1 for P is the only singularity on the
circle {z € C' : |z| =7} and P(2) = g(2)(r — 2) ™" + h(z), where w > 0, g(z) and h(z)
are analytic on the closed disc {|z| < r}, and g(r) # 0. See §B.4.3 for a proof.

Theorem 5. Let P(z) and M(s) be as described above and suppose r < M(c) < oo.
Also suppose M satisfies uniform Ikehara condition Inp(o,00) and P satisfies Darboux
condition Dpq. Then, RT™ = R|R > 0 satisfies T N IND(0,00), R has limiting hazard
rate b € (0,c), where b is the unique root of M(s) =r in (0,c), and

g(r) w—1 bt
t)~ =t e t — o0. 6.4
IO~ Sy mye (o4
Consequently, Sg(t) ~ fr(t)/b and, for the stop-loss premium, [~ Sg(u)du ~ fr(t)/b*
as t — oo.

The density expansion is new while the expansion Sgr(t) ~ fr(t)/b replicates the
result of Embrechts et al. (1985) who assume p(k) ~ C1k¥~1r=% as k — oo so that
N has a Negative Binomial (w,1/r) tail. Note that the Darboux condition on P is
slightly stronger, and, by Proposition 2, implies that the expansion for p(k) holds with
Cy = g(r)r~"/T'(w). Thus, Theorem 5 uses a slightly stronger condition but also returns
a stronger result by giving the density expansion in (6.4). In addition, the conditions of
Theorem 5 are more useful since the easiest way to justify the expansion for p(k) is to
verify the Darboux assumption on P.

Example 6. (Negative Binomial (w,p) weights). This example is of practical im-
portance since such weights represent over-dispersed Poisson weights that result from a
gamma mixture of Poisson weights. Let N have mass function p(k) = (w+,§_1)pqu on
k > 0, with ¢ = 1 — p, so that P(z) = p*/(1 — g2)* for z < 1/q. Then, R has the
density expansion in (6.4) where g(r) = (p/q)" and b solves M(b) = 1/q. The expansion
for Sg(t) was originally derived in Sundt (1982) under the assumption that e’ Sg(t) is
ultimately monotone.

A version of Theorem 5 holds with integer-valued non-negative claim amounts {Xj :
k > 1} which are i.i.d. with MGF M(s) = Px(e®). The proof is given in §B.4.3.

Corollary 6. Suppose claim amount X 1is non-negative and integer-valued and let
P(z) and M(s) = Px(e®) have the same properties as in Theorem 5 (except now X
does mot satisfy Inp(o,00)). Then compound sum R = Zi\;o X has limiting hazard rate
1 — e where b € (0,c) is the unique root of Px(e*) =r in (0,c). Furthermore,

—bw

pr(n) ~ Ln’“’_le—b" n — 0o, (6.5)

D (w){Px (")}
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Sr(n) ~ (1—e~*)"'pr(n), and stop-loss premium, Y3~ | Sp(k) ~ (1—e*)"2pp(n+1)
as n — oo.

These expansions agree with those in Willmot (1989) who assumes that N has mass
function p(k) ~ C1k¥~1r=F as k — oo; note this is implied by the Darboux condition on

P.

6.3.1. Compound distributions with multiple claim distributions and multivariate
weights

Compound distributions are generalised to allow M distinct categories of positive claim
amounts X7i,..., Xps. Suppose {X;} are absolutely continuous and independent, and
X; has MGF M;(s) which converges on {Re(s) < ¢;} or {Re(s) < ¢} for ¢; > 0.
If {X;; : j > 1} are i.id. absolutely continuous claims from category i, then R =
Zij\il I{N; > 1} Z;\;l Xi; denotes a compound variable over the M categories of claims,

where N = (Ny,..., Njs)7T tallies counts for the various categories. Let the components
of N have a general distribution with multivariate PGF P(z), where z = (21,...,2x)7 €
RM . Suppose P converges on maximal set O D {z € RM : |z;| < 1for i =1,...,M} so

as to avoid heavy-tailed counting components. Also, let M(s) = {M(s),..., Mu(s)}7T,
with scalar s € R, be the vector of MGFs for X = (X1,...,X3)”. Then, R has MGF
P{M(s)} which converges in a neighbourhood of 0. The assumption that Ikehara con-
dition Iy p(0,00) holds for the components of M(s) can be used to show that fr(t) and
Sg(t) have Gamma tails with a limiting hazard rate. A proof is given in §B.4.3.

Theorem 6. Let P(z) and M(s) be as described above and suppose each component
of M(s) satisfies Inp(o,00)- Let P(z) = N(z)/D(z) have mazimal convergence region O,
where {z : || < 1for i=1,...,M} C O C{z e RM:D(z) > 0}. Take c. = min, ¢; and
suppose D{M(s)} = 0 admits a smallest positive Toot b € (0, c,) which is an m-zero. Let
N (z) and D(z) be analytic at M(b) € RM with N{M(b)} # 0. Then, Rt = R|R > 0
satisfies Ipa N IND(0,00) and

fr(t) ~ Bt e Sp(t) ~ b fR(E) = o0, (6.6)
with

()N {Mb)
I D{M(s)} /05—,

b Lo s PIME)

6.7
(ﬂl-—-l)!SAab ( )

An important feature of Theorem 6 is that it lacks the assumption that b is a dominant
pole for P{M(s)}; this emerges subject to the quite minimal conditions placed upon P.
The important applications for Theorem 6 are deferred to the next section since they
are rather involved and concern the derivation of exponential tail behaviour for the
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densities and survival functions of first-passage distributions in finite-state continuous-
time semi-Markov processes. For now, we consider two simpler examples.

Example 7. (Independent counts). Let N have independent components, so P(z) =
Hf\il Pi(zi) and R = Zf\il R; is a sum of independent compound sum variables with
R; = 1{N; > 1} Zj\;l X;; having MGF P;{M;(s)} that converges on Re(s) < b; > 0.
For simplicity, suppose b1 < min;>2b; so R; is the strongest term of R. For the setting
in which P;{M;(s)} admits a pole of order w; at by > 0, then Theorem 6 applies by
taking D(z) = 1/Py(z1) and N(z) = Hf\iz Pi(z;). In this case, M;(b1) = r1 > 1, the
radius of convergence for Pp, and

M
fr(t) ~ fr, (&) [[ P{Mi(b)} ~ Bt et — o, (6.8)

=2

where

M
g1(r1)
= Pi{M; (b

7= TGy LLPAM00)
and g1(r1) = lim,, .y, (r1 — 21)"* P1(21).

The expansion in (6.8) also holds when b; is a singularity of order w; > 0 and not a
pole. The argument for this requires expressing R as a finite mixture of 2™ terms, where
terms are determined by which components in {R;} are positive and which ones are point
masses at 0. There are 2M~1 dominant terms each convolving the dominant component
R} = Ri| Ry > 0. Expansion (6.8) results when Corollary 2 of §5.1 is applied to these
mixture terms and Theorem 5 is applied to R;. See §B.4.3 for details.

Example 8. (Multivariate Negative Binomial (m, p) weights). Consider M + 1 claim
categories with claims sampled as independent multivariate Bernoulli trials in which
category 7 has probability p;, and the components of p = (p1,...,pm,Pr+1) sum to 1.
If sampling stops on the mth occurrence of category M + 1, then N, the count totals for
the first M categories, has PGF

m A{ —m
P(z) = phri1 (1 — Zz‘:lpizi> .

Taking M(s) = {Mi(s),....Mp(s)}, then the claim over the first M categories is
R with MGF P{M(s)} and the total claim is Ry = R + Z;nzl Xnr41,; with MGF
P{M(s)} M7, (s). For simplicity, we assume that R is stronger than {X;11 ;}. Subject
to the components of M(s) satisfying Jnp(o,00), then direct application of Theorem 6
gives

m

Tae(t) ~ gt e ME (0t o, (6.9)
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where b is the smallest positive root of 1—= 3" piM;(s) = 0 and v = pas1 /{1, piM,(b)}.

%

When claim amounts X7,..., X are non-negative and integer-valued, then subject
to the same conditions as in Theorem 6, the compound distribution R has a negative
binomial tail; see §B.4.3 for a proof.

Theorem 7. Suppose all the assumptions in Theorem 6 but now let Xy,..., Xy be
non-negative and integer-valued (so components of M(s) need not satisfy Inp(o,s0))-

Then,

1

where (B is given by the rightmost expression in (6.7).

pR(n) ~ ﬁnmflefbn SR(t) ~

7. First-passage distributions for semi-Markov
processes

Consider a semi-Markov process (SMP) with M < oo states. Under relatively mild con-
ditions, we show that first-passage distributions from one state to another state have
limiting hazard rates and exponential-like or geometric-like tails. Such results are derived
by characterizing first-passage distributions as compound sums as described in Proposi-
tion 3. Then, for continuous-time processes, exponential-like tails follow from Theorem 6
under Tkehara Ty p(0,00) assumptions, and, for integer-time processes, geometric-like tails
follow from Theorem 7 under the minimal conditions afforded by Darboux’s theorem.

Let S = {1,..., M} be the states of a continuous- or integer-time SMP and consider
a sojourn from state 1 to M. The SMP is characterised by its M x M kernel matrix
K(t) = {pijGij(t) : i,j € S}, where P = {p;;} is the transition probability matrix of the
associated jump chain for state transitions, and G;j; is the holding time distribution in
state 7 given state j is certain to be the next destination. The M x M Laplace-Stieltjes
transform of K(t) also characterises the SMP and is given by

(- [ K (1) = {piy Mis(5)) = POM(s),

where M(s) = {M;;(s)} is M x M, M;;(s) is the MGF of G;;(t) and convergent on
{Re(s) < ¢i;} or {Re(s) < ¢;;}, and ©® denotes a Hadamard product. Matrix T(s) is
called the transmittance matrix since its entries consist of transmittances defined as a
probability x a MGF.

If X is the first-passage time from 1 — M, then it has a potentially defective dis-
tribution in which fip = P(X < 00) € (0,1] and Fip (s) = E{esX| X < oo} is the
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MGF given a finite sojourn. The product of these two quantities determines the first-
passage transmittance associated with the sojourn or finFins (s) = E{e**1xcoo)}-
Butler (2000) has shown that this first-passage transmittance takes the following simple
form in terms of matrix T(s) :

(M, 1) -cofactor of {In; — T(s)} (=))W (s)]

fiveFin (s) = (M, M) -cofactor of {IM _ T(s)} - [P prar (8)] (7.1)

where W;; (s) is the (4, j)th minor of I, — T(s), or the submatrix of Iy, —T(s) with the
ith row and jth column removed. In either continuous or integer time, the ratio (7.1) has
a maximal convergence region that contains 0 of the form {Res) < b} or {Res) < b} for
some b > 0 under these conditions:

(i) The system states S consist of exactly those states that are relevant to passage from
1 — M and contain no non-relevant states, i.e. states that are not accessible while
completing a sojourn from 1 — M. (Thus, all row sums for P may not be 1; see below.)

Non-relevant states include absorbing (classes of) states other than M and perhaps
some transient states that are not accessible during the sojourn. To determine S and
hence P, start with all states, both relevant and non-relevant, so transition probability
rows all sum to 1. Now, delete the rows and columns associated with all non-relevant
states; if absorbing (classes of ) states have been removed then some row i € S\{M} of P
will not sum to 1. If p;. = Zjes pij < 1, then the jump chain P may pass from 7 into an
absorbing (class of) state(s) other than M w.p. 1 — p;.. When such occurs, the sojourn
time is 0o, fiyr < 1, and the first-passage distribution is defective.

(ii) The convergence regions for the MGF's in the first M — 1 rows of T(s), which are
those used in the ratio (7.1), include an open neighbourhood of 0, i.e. 0 < ¢, = min{c;; :

i€ S\{M}; j €S}

We now show that MGF Fjjs represents a compound distribution. During a first-
passage sojourn from 1 — M, let N;; count the number of ¢ — j transitions of the jump
chain and denote N = {N;;} as M x M. Now, let P(Z|Y < o) be the conditional PGF
of N in the M x M variables of matrix Z = {z;} given Y = Z%Zl N;j < oo, where Y
counts the total number of steps required for first passage. The first-passage time MGF
is Fia (s) = P{M(s)|Y < oo} as stated below and shown in §B.5.1.

Proposition 3. Assuming (i), the conditional probability generating function for N
given Y < o0 is

1 (M,1)-cofactor of {Iy — P © Z}
P(Z|Y < o0) = fine (M, M) -cofactor of {In — P © Z} (7.2)

The convergence in (7.2) is on {Z : [M{(P © Z)\pm}| < 1} D AZ : |z5| < 1 for
i,j = 1,... M}, where M\{-} denotes the eigenvalue of largest modulus for the matriz
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argument, and (P © Z)\par is P © Z without its Mth row and Mth column. First-
passage sojourn time X, when X < 0o, is a compound distribution of the form

M-1 M Nij
X = N > 1}y - X (7:3)
i=1 j=1 k=1

where { X1, : k > 1} are i.i.d. G,;(t). Based upon this, the conditional MGF of X| X< oo
is Fiy (8) = P{M(s)|Y < oo} as given in (7.1).

In this first-passage characterization, exit from state M is counted as Nps; = 0 w.p. 1
for j > 1 and its PGF is the value 1 and degenerate. This is consistent with (7.3), which
does not involve {Ny;}, and also (7.2) whose cofactors do not depend on the Mth row
of PO Z.

Proposition 3 makes two important points. First, it provides another formal deriva-
tion of the identity in (7.1) thus confirming the initial proof in Butler (2000). Secondly,
and most crucially for our purposes, it characterises the first-passage distribution as a
compound distribution to which we can apply Theorem 6. We now make some additional
assumptions that are needed for using Theorem 6 in the continuous-time SMP setting.
These additional assumptions can be verified as holding in all the various practical ex-
amples that have been considered in Butler (2000, 2007 ch. 13) and in the additional
references therein.

(iii) Assume convergence bound b € (0, c¢,) for Fias (s) is a simple pole that results as
the smallest positive zero of |Wasar (s)| with [y (b) | # 0.

(iv) Suppose the first M — 1 rows of K(¢) consist of absolutely continuous component
distributions. Define B C § x § as a blockade of state transitions for the sojourn 1 — M
if all paths from 1 — M must incur at least one state transition in B. Assume there
exists a blockade B such that each blockade member (i, j) € B has a density g;;(¢) which
satisfies Ty p(0,00)-

Theorem 8. Suppose a continuous-time semi-Markov process satisfies conditions (i)—
(iv) above. Then the first-passage time distribution of X|X < oo from 1 — M has
asymptotic hazard rate b > 0, as given in (iii), with density and survival functions

P~ B and  S@)~ )t oo,

where
[ ()] | W (0)]

[War1 (0)] tr[adj{®asas (0)} ¥ aras ()]
adj{-} denotes the (M — 1) x (M — 1) adjoint of the matriz argument, and W prpr (b) =
d‘I’]\4M(S)/dS|5:b 8 (M— 1) X (M— 1)

B = —Res{Fim (s);b} =

; (7.4)
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Proof. Under the conditions of Theorem 8, the compound distribution for X| X < oo,
as characterised in Proposition 3, satisfies the conditions of Theorem 6; see §B.5.2 for
details. OJ

It is noteworthy that Theorem 8 lacks the full Ikehara assumption J. Assumption
(iii) stipulates that b is a simple pole for Fi s but it does not require that b be a dominant
pole as also stipulated in J 4. This latter fact emerges as a consequence of the method of
proof in which Theorem 6 is applied to the compound distribution of Fj,; as described
in Proposition 3.

Example 9. (Cramér-Lundberg and Sparre Andersen). In both of these models, the
conditional distribution for positive ruin RT = R|R > 0 can be considered as an example
of a first-passage distribution for a certain SMP. For the Cramér-Lundberg model, the
two state SMP with transmittance matrix

T(S) _ ( pMOE(S) (1 _p)(;/\/lE(S) > (7'5)

has first-passage transmittance from 1 — 2 computed from (7.1) as fiaF12(s) = (1 —
p)ME(s)/{1l — pMg(s)}, which is Mg+ (s) computed from the rightmost summation
component in (6.1). For the Sparre Andersen model, if the first row entries in (7.5) are
e BMp+(s) and (1 — e BYMyp+(s), then f1oFia (s) yields Mp+ as given in the middle
expression for M+ in (8.47) of §B.4.2. The conditions and proofs used in Theorems 3 and
4 are needed to ensure that the associated SMPs satisfy conditions (i)—(iv) of Theorem
8. In particular, the densities for excess life & and the ascending ladder variable LT must
satisfy Jnp(o,00) SO condition (iv) is satisfied. Thus, the conclusions of Theorems 3 and
4 follow as special cases of Theorem 8 applied to simple SMPs as in (7.5).

Example 10. (GI/M/1 and M/G/1 queues). The first passage time from an empty
queue (state 0) to queue length M for either of these queues is a passage time for a SMP;
see Butler (2000, §6 and 2007, §13.2.5) and Butler and Huzurbazar (2000, §7) respec-
tively. In either setting, it can be shown that all entries of the (M 4+ 1) x (M + 1) kernel
matrix K(t) satisfy Jnp(o,0c) (S0 condition (iv) is satisfied) when the interarrival dis-
tribution of the renewal process satisfies Jn p(0,00)- Three such interarrival distributions
are the particular Gamma, compound Poisson, and inverse Gaussian distributions used
as numerical examples in the references above. Indeed, these examples lead to transmit-
tance matrices with entries that also satisfy the remaining conditions (i)—(iii) so that
Theorem 8 applies. Thus, the true hazard functions approach an asymptote with value
b as suggested in the plots of saddlepoint approximations for such hazard functions in
Butler (2000, §6 and 2007, §13.2.5). Theorem 8 also proves that the survival functions for
these examples have exponential orders 3e~% /b. This is also suggested in the additional
plots of saddlepoint approximations for these survival functions.
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The analogous integer-time result follows directly from Theorem 7 and is based upon
the minimal conditions of Proposition 2. Having proven Proposition 2 by using Darboux’s
theorem rather than Theorem 5 in Feller (1971, XII1.5), we avoid the need to assume that
the sojourn mass function is ultimately non-decreasing as required in Feller’s theorem.
Making such an assumption would be rather pointless as it requires additional and mostly
unverifiable knowledge about the very function for which we are providing an asymptotic
expansion.

Theorem 9. Suppose an integer-time semi-Markov process satisfies conditions (i)—
(iii). Then the first-passage time distribution of X|X < oo from 1 — M has asymptotic
hazard rate 1 — e~%, with b given in (iii), and mass and survival functions

on 1
p(n) ~ Be™? and S(n) ~ 1o p(n) n — 00,

where B is given in (7.4).

Theorem 9 lacks the full Darboux Dy assumption since condition (iii) only assumes
that b is a simple pole for Fi,. The requirement that it also be a dominant pole emerges
as a consequence of Theorem 7.

In the Markov setting, the results of these two theorems are, of course, well-known
as they simply state the known asymptotic behaviour of the phase distributions which
represent the sojourn times. Also, for SMPs in which T(s) is composed of rational MGFs,
the results follow directly from partial fraction expansion of Fi (s) based upon (7.1).
The importance of these two theorems, however, is not that they apply to such rational
settings, but rather that they apply to non-rational settings in which the entries of
T(s) may be non-rational MGF's as occurs in the broader class of SMPs. In such non-
rational settings, the theorems show that exponential-like /geometric-like tails result quite
generally for first-passage distributions of SMPs as they do for the more restrictive class
of Markov processes. Such conclusions reinforce the insensitivity properties of SMPs
discussed by Tijms (2003, §5.4) in which, for large ¢ or n, SMPs behave much like Markov
processes and exhibit insensitivity to the actual non-exponential /non-geometric holding
time distributions used in the kernel K(t).

Exponential-like/geometric-like tails can also be shown to hold for other types of
sojourns in finite state SMPs, such as first return to a single state or first-passage from one
state to a subset of states. These results make use of other first-passage transmittances
as given in Theorems 2 and 3 of Butler (2000) or Butler (2007, §§13.2.6 and 13.3). Details
of this will be presented elsewhere.

Assumption (iii), forming part of the Ikehara J condition, is most likely unnecessary
for the conclusions of Theorems 8 and 9 to hold and can be replaced by weaker assump-
tions concerning the composition of states in S. For example, if S\{ M} consists of states
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that all communicate, then in Markov processes b € (0,¢,) is a simple pole, which is a
result that follows from the associated Perron-Frobenius theory. Similar results should
apply to SMPs and will be addressed in future work. Furthermore, assumption (iv),
used for continuous-time processes, can likely be replaced with alternative integrability
assumptions on the components of T(s). However, even with the potential for relaxing
some of these assumptions, Theorems 8 and 9 are the first formal results of their kind for
general SMPs and apply to a very broad class of SMPs used in many classical applications
of stochastic modelling and multi-state survival analysis.

8. Logarithmic singularities

Asymptotic expressions are given for distributions whose boundary singularity b is loga-
rithmic. Proofs are given in §A.6.

Proposition 4. Let X have an absolutely continuous distribution on (0,00) and mo-
ment generating function M(s) which converges on {s € C' : Re(s) < b} for b>0.If X
satisfies condition Jynp of Proposition 1 and condition £xq below, then X has limiting
hazard b with

f@) ~ gm(®m(nt)™ 't te™® and S(t) ~ f(t)/b t — oo. (8.1)

(L) b is a logarithmic singularity for M(s) of the form
M(s) =" g;(s) {=In(b— )} +h(s), (8.2)
j=1

where {g;(s)} and h(s) are analytic on {s € C': Re(s) < b} and gm(b) # 0.

Example 11. The exponential integral function E;(z) = f:o t~le~tdt defines the
density
fO) =B ()t tet t>1 (8.3)

with MGF M(s) = E1(1 — s)/E1(1) which converges on {s € C' : Re(s) < 1}. Simple
computations show that Ty p(g,0) holds for any tilting parameter exceeding 1. Condition
£ holds due to the relationship of Eq(1 — s) to —In(1 — s), given in Abramowitz and
Stegun (1972, eqn. 5.1.11, p. 229), in which M(s) = —E1(1)"!1In(1 — s) + h(s), for h
analytic on {s € C}. From Proposition 4, the asymptotic hazard is 1 and the order of
f(t) in (8.1) agrees with the exact density in (8.3) with m = 1 and g;(1) = F; (1)~ L.

If X, is a convolution of m such i.i.d. variables, then MGF M(s)™ can be expanded
using the binomial theorem to show it has form (8.2) with g,,,(s) = E1(1)~™. The density
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for X,, satisfies Jyp(0,00) as shown by repeatedly using the convolution argument of
Lemma B1 in §B.3.1 starting with X;. Thus, the asymptotic hazard is 1 and

fx, () ~ By (1) ™m(Int)™ et t — oo. (8.4)
For the case m = 2, the expansion in (8.4) is confirmed by direct computation in §A.6.

Similar expansions hold for lattice distributions with a log-singularity as in (8.6). A
proof is given in §A.6.

Proposition 5. Suppose X has non-negative integer support and moment generating
function M(s) that converges on {s € C : Re(s) < b}, for b > 0. If X satisfies condition
DL below, then X has limiting hazard 1 — e™°, with

p(n) ~ gm(e)m(Inn)m n=te=tn n — 00, (8.5)

and S(n) ~ (1 —e %) "1p(n).
(DLr) b is a singularity for M(s) which has the form

m

Zgj lne —e° } + h(e®), (8.6)

where {gj(e®)} and h(e®) are analytic on {s € C : Re(s) < b}, and gy (e’) # 0.

Example 12. The Logarithmic Series (p) distribution, with p = 1 — ¢ € (0,1), has
mass function
p(n) =n"'p"/(~Ing) n>1 (8.7)

and MGF M(s) = In(1 — pe®)/In ¢, which converges for Re(s) < b = — Inp. Proposition
5 determines the asymptotic hazard as ¢, which can be verified directly by using the
Stolz—Cesaro theorem (Lemma A2, §A.5.1). The asymptotic order for p(n) in (8.5) is
exact.

The sum of m independent Logarithmic Series (p) variables has a MGF with the form
(8.6) and Proposition 5 yields

m
! ~ 1 m—1,_—-1_n . .
Pm(n) Chg (Inn)™ " "n""'p n — 00 (8.8)

This mass function is highly intractable except when m = 2 as considered in §A.6.
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SUPPLEMENTARY MATERIALS

A complete copy of the paper with the Appendices below may be found at

www.smu.edu/Dedman/Academics/Departments/Statistics/Research / TechnicalReports

APPENDIX A: Contains proofs for asymptotic hazards, proofs using Feller condi-
tions, examples with branch-point singularities, proofs for integer-valued distributions,
and proofs with logarithmic singularities.

APPENDIX B: Contains proofs using lkehara conditions and all derivations for
compound distributions and first-passage distributions in SMPs.
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APPENDIX A: ASYMPTOTIC HAZARD RATES, RESULTS USING FELLER CONDITIONS,
EXAMPLES WITH BRANCH-POINT SINGULARITIES, PROOFS FOR INTEGER-VALUED DIS-
TRIBUTIONS, AND PROOFS WITH LOGARITHMIC SINGULARITIES.

A.1 Asymptotic hazard rates
A.1.1 Proof of Theorem 1

First consider the case in which b > 0. For 0 < s < b,
S(t) = P(e*™ > et) < e "t M (s)
by the Markov inequality. Thus,
H(t)/t>s—InM(s)/t

and hence
litm inf{H (t) /t} > s

for all s < b, so the liminf is at least b.
To show it cannot be more than b, suppose the contrary, that there is an € > 0 such
that
lig(i}gf{H t)/t} >b+e. (8.9)

Then there exists a tg sufficiently large so that for all ¢ > ¢
H@)/t>b+¢/2 or —In{S{t)}=H({) > (b+e/2)t,

which implies that
S(t) <exp{-(b+e/2)t}  t=to (8.10)

From this, we can now show that M (s) is convergent for s < b+ /2 which contradicts
the assumption of convergence bound b. To see this, use integration by parts and the
triangle inequality for ¢y < ¢; to get

t1 t1

/ e*lds (t)‘ <s / S (t) eldt + €108 (to) + e (). (8.11)
to to

As t; — oo, the right side of (8.11) converges to a finite value for s < b+¢/2 by inequality

(8.10); thus the left hand side is convergent and so also is M (s).

The b = 0 case follows from the proof given above. The first half of the proof is
unnecessary since it is already known that liminf; ,..{H (¢) /t} > 0. The second part
presupposes (8.9) with b = 0 and reaches a contradiction to the fact that the convergence
bound is 0 by using the same argument.
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A.1.2 Extension of Theorem 1 to X with support (—oo, o0)

Let X have the conditional distribution of X given X > 0. Let H (¢) be the cumulative
hazard function for X with support on (—oo, 00) and let H y+(t) be the cumulative hazard
for X*. For ¢t > 0, Sx+(t) = S(t)/S(0) so

Hx+(t)=—InSx+(t) = —InS(t) +1nS(0) = H(t) +1n.S(0).

Thus,

lim inf H() = liminf fodt) (8.12)

t—o0 t—oo

Since the MGF of X converges on (—o0,b) or (—o0, b], Theorem 1 applies to X+ so the
common liminf in (8.12) is b.

A.1.3 Proof of Theorem 2

The proof mimics that for the continuous setting of Theorem 1 so only some of the
differences are outlined. First consider the case in which b > 0 and take 0 < s < b. The
survival function

S(n)=P(X >n)= ﬁ(l — hy) = exp {nZhl(l - hk)}

k=0 k=0
satisfies a Markov inequality S(n) < e "*M(s) so that

n—1

_%Zln(l—hk) 23—%ln/\/l(s). (8.13)

k=0

Taking liminf,,_,+ of both sides, then the left side of (8.13) is > s for all s < b, or > b.
Now suppose the liminf, .., of the left side of (8.13) is greater than b + ¢ for some
e > 0. Then there is an ng such that S(n) < exp{—n(b+¢/2)} for all n > ng. Thus M(s)
must be convergent for b < s < b+ ¢/2, which is a contradiction.
The case in which b = 0 only requires the second portion of the above argument.

A.2 Proofs of basic results under Feller conditions
A.2.1 Proof of Proposition 1

Sufficiency of Feller conditions §aq N Ty as follows from Tauberian Theorem 4 of Feller
(1971, XIIL5, p. 446) which is based on the Hardy-Littlewood-Karamata theorem in
Theorem 2 (p. 445). The Laplace transform for fi,(¢) is

Fo(s) = M(b—s) ~ L(1/s)s™v s10, (8.14)
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where L(s) = g(b— 1/s) is slowly varying at co. Thus, if f,(¢) is ultimately monotone
as in condition Fyas, then it satisfies the conditions of Theorem 4 in Feller so fi,(t) ~
g(b)t*~1/T(w) and the order for f(t) in (3.4) holds. Alternatively, if f,(t) ~ v(t) and v(t)
is ultimately monotone as in §yas2, then fi,(¢) satisfies the conditions for the extended
version of Theorem 4 given in Problem 16 of Feller (1971, XIII) and the same asymptotic
order holds for f,(t).

The remainder of the arguments for the tail behaviour of S(t) and h(t) are the same
as under Ikehara conditions.

A.2.2 Exzample 2 (Excess life) under Feller conditions

If X satisfies the conditions §aq N Fy s required for Proposition 1, then it is a simple
exercise to show that E satisfies the conditions §aq N Fyase. For example, Proposition
1 applied to X gives S(t) ~ f(t)/b and since % f(t) is ultimately monotone, e® f5(t) =
e’ S(t)/u ~ b f(t)/(bp) which is an ultimately monotone function; thus §yras2 holds for
E and §pq also holds. Now Proposition 1 applies to E and gives Sg(t) ~ f(t)/(b*p).

A.2.3 Extension of Proposition 1 to X with support (—oo,0)

Corollary Al. Let X have an absolutely continuous distribution with support in
(—o00,00) and moment generating function M(s) that converges on region {s € C': a <
Re(s) < b}, for —oo < a <0 <b<oo. If X satisfies Feller conditions Fpm NSum or
Sm N Sune, then the limiting hazard rate is b and the density and survival functions
have Gamma (w,b) tails as in (3.4) of Proposition 1.

Proof. Let X (X ™) have the conditional distribution of X given X > 0 (X < 0).
The corollary follows if Proposition 1 can be applied to the distribution of X, which
means that properties for its density and MGF M™(s), as required in Proposition 1,
are inherited from the conditions of Corollary Al. Since the density for X is f*(t) =
f(t)/S(0), f*(t) inherits either property Sy or Fuasz from f(¢). To show that M™T(s)
inherits property §aq from M, note that their relationship is given by

M(s) = S(0)MT(s) + F(0)M~(s) s € (a,b), (8.15)
where M™ is convergent on (—oo, b) and M~, the MGF of X —, is convergent on (a, 00).
Equating (8.15) with the expression for M in condition F a4, then
MF(s) ~ 8(0)1g(s)(b—s)""  sTD
so that M™ satisfies §aq with S(0)~1g(s) left-continuous at s = b.
Applying Proposition 1 to the density of X+, then

A o®) 1 o
I"0=50 " s0Tw’ ¢
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which is the required order for f(¢). By following the remainder of the proof for Propo-
sition 1, an asymptotic Gamma (w, b) tail emerges as well for the survival S(t).

A.3 Convolution/mixture corollaries under Feller conditions
A.3.1 Corollary 2 using Feller conditions

Corollary A2. Let X,Y, and Z be absolutely continuous and non-negative variables
such that X is stronger than' Y and Z; i.e. let Mx(s), My (s), and Mz(s) converge on
{Re(s) < b}, {Re(s) < b+ ny}, and {Re(s) < b+ nz} respectively for b > 0 and some
values ny >0 < ng.

Feller conditions: Assume X satisfies MmMNEND(0,00), With Mx(s) ~ gx(s)(b—s)™"
as 8 Tb and Fnp(o,c) given as:

(3N D(0,00)) The tilted density € fx (t) is non-decreasing for all t > 0.

Then X +Y satisfies Feller conditions §pmNSND(0,00) and W satisfies §pmNSumz- Thus,
the asymptotic orders stated in (5.1) of Corollary 2 hold subject to the Feller conditions
given above.

Proof. We apply Proposition 1 with Feller conditions §a N Fuar2 to the distribution
of W. This distribution satisfies condition § ¢ since

My (s) ~ pMy (s)gx (8)(b— 8)™" + gMz(s) ~ pMy(s)gx(s)(b—s)™"

as s T b. The latter equivalence follows since My is convergent on (—oo,b+ nz).

To show that condition Fy a2 holds, we show that e fu (t) = fwp(t) ~ pfx+v(t)
where fxyy,,(t) is non-decreasing for all ¢ > 0. The latter result holds based upon the
following lemma.

Lemma Al. Convolution X +Y satisfies §np(0,00) With tilting parameter b if X or
Y satisfies §np(o,00) With tilting parameter b.

Proof. The b-tilted density for X +Y is

t t
Ix+vp(t) :/O Tx ot —u) fyp(u)du :/0 Ix.p(w) fyp(t — u)du.

If X or Y satisfies §np(0,00), then X + Y satisfies §np(0,00)- This follows by using the
same arguments as in Lemma B1 of §B.3.1. I

To see that €% fy(t) ~ pfx+v,p(t) so that W satisfies Fyar2, note that Mz is conver-
gent on (—o0,b+ 1) so that its density fz(t) = o(e~(*t72/2)t) and

Twa(t) = pfxivp(t) +afzp(t) ~ pfxivp(t) t — oo.
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A.3.2 Extension of Corollary A2 to X,Y, and Z with support (—oo, 00)

Corollary A3. Suppose absolutely continuous variables X,Y, and Z have distribu-
tions on (—oo,00) with X stronger than Y and Z; i.e. Mx(s) converges on (a,b) 3 0,
and My (s) and Mz(s) converge on [0,b+ ny) and [0,b+ nz) respectively for some
values ny >0 < ng.

Feller conditions: Assume X satisfies §MNE N D(—o0,00) (S€€ below) so that Mx (s) ~
gx(s)(b—8) " as s Tb.
(FND(—c0,00)) The tilted density e fx(t) is non-decreasing for all ¢ € (—00,00).

Then, the distribution of W has asymptotic hazard rate b > 0, with density and survival
as in (5.1).

Proof. The distribution of W must satisfy conditions §a¢ N Fyase of Corollary Al.
Under the assumed conditions, My (s) ~ pMy (s)gx(s)(b—s)~™ as s T b so Fa holds.
To show §y a2, we use the same arguments as used for Corollary A2 and Lemma Al to
show that e® fy (t) ~ pfxtys(t) where fxiyp(t) is non-decreasing for all ¢ € (—o0, 00).
From these arguments, we concluded that X + Y satisfies §np(—oo,00) Which allows W
to satisfy $uyae and Corollary Al to apply to W.

A.3.3 Corollary 4 using Feller conditions

Corollary A4. Suppose absolutely continuous non-negative independent variables
X, Y, and Z have moment generating functions Mx(s), My (s), and Mz(s) which share
the common convergence region {s € C : Re(s) < b}.

Feller conditions: Let X,Y, and Z all satisfy $a of Proposition 1 with singularities
at b > 0 of order wx, wy, and wy respectively; thus Mx(s) ~ gx(s)(b— s)™%=, etc.
Furthermore, suppose either X or'Y satisfies §np(o,00) and Z satisfies Sunp if p <1;
i.e. Funr holds and e® fz(t) is ultimately non-decreasing.

Then, X +Y satisfies §m NEND(0,00) and W satisfies §pm NFunp so that Proposition
1 applies. The asymptotic orders for fw (t) and Sw(t) are as given in (5.2) and (5.3).

Proof. The proof that W satisfies the Feller conditions of Proposition 1 follows along
the same lines as the proof of Corollary A2 with either X or Y satisfying §nxp(0,00)- In
particular, the proof of condition Fyyp, that e fi-(¢) is ultimately non-decreasing, is
exactly the same. Condition Faq holds with My (s) ~ gw (b)(b — )",
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A.3.4 Corollary 5 using Feller conditions

Corollary A5. (Convolution of i.i.d. variables). Consider W = X1 +---+ X,,, where
X1, ..., X are non-negatively-valued i.i.d. variables from an absolutely continuous dis-
tribution.

Feller conditions: If X; satisfies §m NS nD(0,00) with singularity b > 0 for Mx,
of order w, then W satisfies Fim N FND(0,00) C Sm NSunp and Proposition 1 applies
to give (5.4) and the same conclusions as in Corollary 5.

The proof uses the same argument as in Corollary 5.
A.4 Examples with branch-point singularities

We consider some distributions for which the existence theorems for asymptotic hazard
rates do not apply.

Example A1l. (Busy period for a random walk). Consider a continuous-time Markov
chain on § = {0, 1, ...} which is a time-homogeneous birth-death process with transition
rates from ¢ — i+1and i — i—1 as A > 0 and pu > 0 respectively. If the chain is positive
recurrent, so A < u, then the busy period for a random walk is the first-passage time
from 1 — 0 and has MGF

2u 1
M(s) = 8.17
() Adp—s1+/1—4 A +p—s)-2 (8.17)
which converges on {s € C': Re(s) < b} with b = XA + pu — 2y/Ay; see Butler (2007, eqn.
13.46). Aalen and Gjessing (2001) have shown the limiting hazard rate is b, the branch
point of M(s).

Example A2. The Borel-Tanner (m,7) mass function is

m
nnfnlflq_nfmef'rn n 2 m (818)

p(n) = (

n—m)!

with 7 € (0,1), and is the distribution for the number of customers X serviced in an
M/D/1 queue before the queue reaches length 0; see Johnson and Kotz (1969, §10.6).
The queue has a single server, starts with queue size m, and each customer has a fixed
service time of T. Additional customers arrive according to a Poisson process with rate
A > 0 and 7 = AT is the stability parameter. The MGF and its convergence bound b may
be determined from an implicit relationship for the MGF of X determined by Haight and
Breuer (1960) when 7 < 1, so the queue is stable (positive recurrent). If (s) = In M(s),
then Haight and Breuer (1960) give the relationship

K(s) = mrexp{K(s)/m} +m(s — 7). (8.19)

imsart-bj ver. 2013/03/06 file: ReviseBernoullil4.tex date: December 23, 2015



Asymptotic expansions and hazard rates 39

The implicit relationship in (8.19) may be solved for K(s) to give
K(s) =In M(s) = —m LambertW(—7e*~") + m(s — 7) s € (—o0,b)

where LambertW indicates the principal branch of the so-named function as discussed
in Corless et al. (1996). On the real line, this principal branch is defined for [—1/e, c0).
However, with the negative argument —7e*~7 € [—1/e,0), the allowable range for s is
s € (—00,b] for b =7 —InT — 1. The value —1/e is a branch point for LambertW and
accordingly b is a branch point for I(s). The Stolz—Cesaro theorem (Lemma A2, §A.5.1)
can be used to show the limiting hazard is 1 —e~® = 1 —7e!~7. However, the existence of
a limit for {h,,} does not follow from theorems in the paper. Only Theorem 2 is applicable
from which we conclude that

n—1
liminf{—n""! Zln(l —h)}=b=7—-InT—1.
k=0

A.5 Proofs in integer time
Two preliminary results are needed in order to prove Proposition 2.
A.5.1 Darboux’s theorem and the Stolz—Cesaro lemma

Theorem A1l. (Darbouz). Suppose sequence {a,} has generating function A(z) which
converges on the open disk of radius ¢ > 0 and has the form

A(z) = go(2)(c — 2)7" + ho(2) (8.20)
with w > 0, go(c) # 0, and go(z) and ho(z) are analytic on the closed disc |z| < c. Then

ap, ~ ap, = go—(c)nw_l —(n+w) n — 0. (8.21)
I'(w)

Proof. The term a,, is the dominant term in the expansion given in Theorem 5.11 of
Wilf (2006) adapted to a GF A(z) that converges on a disc of radius ¢ > 0. To show this,
rescale using a tilted mass function d,, = c¢"a,, so {d,} has GF

D(z) = Alcz) = go(ez)e (1 — 2) ™% + ho(cz)
which converges on the unit disc. Using Theorem 5.11 of Wilf (2006) applied to {d,},
ca, = d, ~ go(c)c™*n? 1 /T(w) so that (8.21) holds. O]
Lemma A2. (Stolz—Cesaro). Let {a,} and {b,} be sequences that converge to zero,
and assume that {b,} is strictly decreasing for large n. If

. a —a . . .
lim =ntl — % (finite or infinite),
n—00 bn+1 — b,
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then

A.5.2 Proof of Proposition 2

We apply Theorem Al with a, = p(n) and A(2) = g(2)(e® — 2)™% + h(z) as its
probability GF. The conditions in Proposition 2 ensure that A(z) satisfies the conditions
of Theorem A1 through the mapping z = e®. Thus, (8.21) provides the asymptotic order
for p(n) as indicated in (4.2) with ¢ = €®.

Since @nt1/an — ¢t =e7? <1 asn — oo, the tail sum b, = Y, @ is convergent
and strictly decreasing to 0. Applying Lemma A2 to this tail sum with a,, = S (n), then
v=1and S(n) ~ by. Since {p(n) : n > 0} cannot be 0 infinitely often as argued below,

the limit of the inverse hazard 1/h,, = S(n)/p(n) can be found by considering

/by ~ by fan =Y (k/n)" e @ = 3 (1 4 m/n) e (8.22)
k>n m=0

The limit of the right summation, as n — oo, is given by the monotone convergence
theorem. The sequence of summands in n is monotone decreasing (increasing) for w > 1
(w < 1) and constant for w = 1. Thus, in all cases, the limiting sum is (1 — e~%)~!
the limiting hazard rate in Proposition 2 holds.

The asymptotic order of p(n) in Theorem Al prevents {p(n) : n > 0} from being 0
infinitely often. This is because if it were so, then p(n)/{n*~te~*"} could not converge
to the positive number g(e?)e=""/T'(w) > 0. O

and

A.5.3 Extension of Proposition 2 to integer support on (—oo,00)

Corollary A6. Let X have integer support and moment generating function M(s)
that converges on {s € C': a < Re(s) < b} with —00o < a <0 < b < co. Suppose b is a
dominant singularity in that M(s) has the form

M(s) = g(e®)(e” — )™ + h(e”)

where w > 0, g(e®) is analytic on {s € C : Re(s) < b} with g(e®) # 0, and h(e®) is
analytic on {s € C : a < Re(s) < b}. Then the limiting hazard is 1 — e~" and the mass
and survival functions have asymptotic orders as given in (4.2).

Proof. The argument is the same as that used to prove Corollary B1 of §B.2.2 under
conditions TJ',M NJunp. O
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A.6 Logarithmic singularities and proofs for Propositions 4 and 5

The following theorem is a special case of a Tauberian theorem given in Narkiewiez
(1983, thm. 3.10, p. 122).

Theorem A2. Suppose G(t) is a non-negative and non-decreasing function defined
on t > 0 with Laplace transform G(s), which converges on {s € C' : Re(s) > c}, and has
the form

m

ZgOJ —In(s — &)Y + ho(s), (8.23)

where gom (¢) # 0, and {goj(s)} and ho(s) are analytic on {s € C' : Re(s) > c}. Then,
G(t) ~ mgom (c) (Int)™ 1t~ 1ect t — 0.

Proof of Proposition 4. The proof follows by using the same arguments that were
used in Proposition 1 so only those arguments that differ are given. From (8.2), tilted
density fp1.(t) has Laplace transform

Fote(s) = M(b+e—5) Zgjb—l—a—s {—In(s — &)} + h(b+¢ —s),

which is convergent on {s € C': Re(s) > ¢} and which satisfies the conditions of Theorem
A2 with G(s) = Fptc(s). Therefore, foic(t) ~ mgy(b)(Int)™1t"1et so the order for
f(t) in (8.1) holds.

Proof of the asymptotic order for the survival and hazard functions follows the ap-
proach used in Proposition 1 [see (8.28), (8.29), and (8.30)]. We need to show the equiv-
alent of (8.30) or

j:”(hluyn—lu—le—budu

i ) Pl (Int)m—1¢—1le—t
o [ (1 +0/0) 1" AN
= Jim | {1+ — (1+t> e d, (8.24)

where substitution v = u — ¢t has been used. We can pass the limit through the integral
by using the dominated convergence theorem to get fooo e~"dv = 1/b. To justify using
this theorem, note that In(1+wv/t) < v/t so that the integrand in (8.24) is dominated by
the integrable function (1 + v)™e~%. Thus, the limiting hazard is b and S(t) ~ f(t)/b.

Confirm Examples 11 and 12.
We confirm (8.4) for the case m = 2. Convolve (8.3) with itself to get

Ix,(t) = Ei (1) %7t /t_l uHt —u)rdu = By (1)722In(t — 1)t te™?
1
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for t > 2 which is asymptotically equivalent to (8.4) when m = 2.
We confirm (8.8) for m = 2. The mass function in this setting is the convolution

p2(n) = (—Ing)” an_ —Ing)” %i( )

~ (=Ing) " %p"n"'21nn,

which agrees with (8.8) for m = 2.

Proof of Proposition 5. The asymptotic order in (8.5) follows from the singularity
analysis proposed in Flajolet and Odlyzko (1990). The tilted mass function e’"p(n) has
probability GF that can be written in the form

m

z) = Z gjo (2) {=In(1 = 2)} + ho(2) (8.25)

where {gjo (2)} and ho(z) are expressed in terms of {g; (2)} and h(z) and are analytic
on {z € C : |z| < 1}. In particular, equality g,mo0(2) = gm(z€®) is used to get (8.5).
Thus, P(z) is analytic on the closed unit disc {|z| < 1} apart from a single logarithmic
singularity on the boundary. Following the analysis in Flajolet and Odlyzko (1990), we
determine the overall asymptotic order for the nth Taylor coefficient of P(z) as the
dominant order from amongst the individual asymptotic orders of terms contributed
by all of the m + 1 addends in (8.25). For addend ho(z), its convergence on {|z| < 1}
combined with compactness of the unit disc ensures the existence of an € > 0 such that
ho(z) converges on {|z| < 1+ €}. Thus it contributes a term whose asymptotic order is
at best O{(1 +¢)~™} and this is not dominant. For the other addends, Theorem 3A in
Flajolet and Odlyzko (1990) can be applied accompanied by the comments in the last
paragraph of page 231. Thus, the jth addend in (8.25) contributes a term of asymptotic

order
gjo(l)%(lnn)j*1 {(1)@)% 1“(18)

Among the expressions in (8.26), the mth term is dominant so their analysis gives

b= gt mmy (3.26)
s=0

m—1

1 1 _
eb”p(n) ~ gmo(l)g(ln n) m = gm(eb)ﬁ(ln n)™ Im

as in (8.5).

The remainder of the proof uses the same line of argument as used in the proof of
Proposition 2. Following this line of argument, the inverse hazard has computational
form much like in (8.24) with the limit computed as

1/hy = i {1 + M}m_l e

In
k=0 n
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The limit is justified by the dominated convergence theorem. Since In(1+k/n) < k/n, the
sequence of summands is bounded above by sequence (1 + k)™e~**| which is summable

in k.
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APPENDIX B: PROOFS WITH IKEHARA CONDITIONS Ja¢ N Jynp, INCLUDING DERIVA-
TIONS FOR CRAMER-LUNDBERG AND SPARRE ANDERSEN MODELS, COMPOUND DISTRI-
BUTIONS, AND SEMI-MARKOV PROCESSES

B.1 Proof of Proposition 1

The proof relies on the Ikehara-Wiener theorem when w = 1 and the Ikehara-Delange
theorem when 0 < w # 1.

B.1.1 Ikehara- Wiener theorem

A version of this theorem with slightly stronger assumptions than in Chandrasekharan
(1968, p. 124), Doetsch (1950, p. 524), or Korevaar (2004, thm. 4.2, p. 124) is as follows.

Theorem B1. (Tkehara-Wiener). Suppose G(t) = 0 for t < 0, is non-decreasing,
right-continuous, and such that its Laplace transform G(s) exists for {s € C : Re(s) > 1}.
If G(s) can be extended to a function that is analytic on the boundary {s € C : Re(s) =
1}, save from a simple pole at s =1 with residue v > 0, then

G(t) ~ve! as t— oo.

The restriction of this theorem to a function G(t) whose transform G(s) is convergent
on {s € C : Re(s) > 1} is unnecessary. The convergence region may be {s € C': Re(s) >
¢} with a simple dominant pole at ¢ > 0. The theorem, however, does not allow for ¢ =0
as in Theorem 4 from Feller (1971, XIIL.5). The corresponding conclusion when ¢ # 1 is
that the original function G(t) ~ e as t — oo. To show this, rescale G(t) by defining
H(t) = G(t/c) with transform H(s) = cG(cs) which has convergence region {Re(s) > 1}
and a simple dominant pole at s = 1. Both transforms have the same residue at their
respective poles since

Res{H(s);s =1} = hni{(s —1)cG(cs)} = lim{(s — c)G(s)} = 7.
If G(t) and G(s) satisfy the remaining conditions of Theorem B1, then so do H(t) and
H(s). Thus, applying Theorem B1 to H(t) gives G(t/c) = H(t) ~ ~ve! so that G(t) ~ e
as required.
B.1.2 Ikehara-Delange theorem

The theorem below has been given in Narkiewiez (1983, thm. 3.9, p. 119).

Theorem B2. (Ikehara-Delange). Suppose G(t) is a non-negative and non-decreasing
function defined on t > 0 with Laplace transform G(s) that converges on the half-plane
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{s € C: Re(s) > c}. If G(s) has the form
G(s)=g0(s)(s—¢)™™ + ho(s) (8.27)

with w > 0, go (¢) # 0, and functions go(s) and ho(s) are analytic on the closure {s €
C : Re(s) > ¢}, then

G(t) ~ go (¢) T(w) v —1e t — 0.

The Ikehara-Wiener theorem is essentially the special case of this theorem with w =1
and with some alternative assumptions that are implied by the slightly stronger assump-
tions in Theorem B2. The Ikehara-Wiener theorem also makes some additional (unnec-
essary) assumptions which include that G(t) is right-continuous, ¢ = 1, and g (¢) > 0;
see Theorem B1 above.

When w is not integer-valued, the Laplace transform G(s) in (8.27) is specified in
terms of a multi-function of the form (s — ¢)~". Principal branch values are assumed
which are real-valued for s > ¢ and are based on using a branch cut along [—oo, ¢].

B.1.3 Proof of Proposition 1

Condition Jynp is needed to use the Ikehara-Delange theorem with G(t) = fp1c(t)
non-decreasing. This function does not need to be non-decreasing on (0, A), for some
A > 0, because it can be replaced with the non-decreasing function G(t) = fy4(t)114> 43
whose Laplace transform has the same singularities as fp4.(t) and whose form in (8.27)
shares the same first term go (s) (s — ¢)™* but with a different hg(s) function (that is
also analytic on the closure). Therefore, as a matter of convenience, the proof assumes
A = 0 without any loss in generality.

Denoting the Laplace transforms of fi1.(t) and f(t) as Fpic(s) and F(s) respectively,
then

Fore(s)=F(s—b—e)=M(b+ec—5s)

is analytic on Re(s) > ¢ > 0. By assumption from (3.5), Fp+-(s) may be written as
Fiore(s) =glb+e—8)(s—e) ™ +h(b+e—3s)
where g(b+e—s) and h(b+ec—s) are analyticon {s € C': Re(s) > €}. The Ikehara-Delange
theorem applies to fpi(t) so
Fore(t) ~ g(b)t“ ™ e /T (w)

and the left side of (3.4) holds. ) )
To compute the tail behaviour of S(t), define S and f such that
3(t) = / Flu)du = / (BT ()~ u Loy (8.28)
t t
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The asymptotic order for f(t) as t — oo says that, for any ¢ > 0, |f(u)/f(u) —1| < e for
u > Tp. Therefore,

w _ Qrp\—1 > 7  Grm—1 o0 (u) B -
'S(t) 1‘ <S(t) /t )f(u) f(u)) du = S(t) /t '_f(u) 1' flu)du <& (8.29)

for t > Ty. Thus, S(t) ~ S(t) and therefore

lim A(t) = lim 28 = m L8 _y (8.30)
t—00 t—oo S(t)  t—oo S(t)
the known asymptotic hazard rate for the Gamma (w,b) distribution. This proves the

limiting hazard rate and also gives S(t) ~ f(t)/b.
B.2 Example 2 and extension of Proposition 1 to X with support (—oo, o)

B.2.1 Example 2. (Excess life distribution). We show that F with the excess life dis-
tribution satisfies I N IJynp. To show Ty, note that

1= M(s) _ 1-gs)(b= )" = h(s)

ME(S) Y i

Using the fact that
1= M(0) = g(0)b™" + h(0),

then
Meg(s) = [{g(0)07 + h(0)} — g(s)(b— )7 = h(s)] /(—sp)
=9e(s)(b—s)"" + hp(s)

where 0)b="(b w h(0) —h
Y —-s5)" —g(s — h(s
ey SOD =9 —gls) L hO) <)
—Si —Si
Since w is a positive integer, both gg(s) and hg(s) are analytic on {Re(s) < b} with
removable singularities at s = 0. Also gg(b) = g(b)/(bu) # 0 so T holds.
To show Jynp holds, note that

fopre(t) = e fp(t) = TS () (8.31)
and, for any 6 > 0,

Fopeey —obte) —{H{E48) — H)}. (8.32)
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To get a lower bound on the latter term, note that, since h(t) — b,
t+6
H(t+6)— H(t) :/ h(u)du < (b+1)6 t > Tp. (8.33)
t

Thus,
fEbre(t+0)

fEp+e(t)
Choosing € > 1 makes fg p1(t) ultimately non-decreasing for ¢t > Tj.

In >6{(b+e)—(b+ Dl =6c—1) t>Tp

B.2.2 Extension of Proposition 1 to X with support (—oo,00)

Corollary B1. Let X have an absolutely continuous distribution with support in
(—00,00) and moment generating function M(s) that converges on region {s € C': a <
Re(s) < b}, for —oo < a <0 < b < oo. If X satisfies Ikehara conditions 3\, N TJunp
(see T’y below), then the limiting hazard rate is b and the density and survival functions
have Gamma (w,b) tails as in (3.4) of Proposition 1.

(I'4) Singularity b > 0 is dominant in that M(s) may be expressed as
M(s) =g(s)(b—5)"" + h(s), (8.34)

where w > 0, g(s) is analytic on {s € C : Re(s) < b} with g(b) # 0, and h(s) is analytic
on {s € C:a < Re(s) < b}.

Proof. Let XT (X ) have the conditional distribution of X given X > 0 (X < 0).
The corollary follows if Proposition 1 can be applied to the distribution of X, which
means that properties for its density and MGF M™(s), as required in Proposition 1,
are inherited from the conditions of Corollary B1. The only inherited property that isn’t
obvious is that M™ inherits property J ¢ from M when it satisfies 7'y ;. The relationship
of these two functions is given by

M(s) = S(0O)MF(s) + F(O)M~(s)  Re(s) € (a,b), (8.35)

where M™ is analytic on {Re(s) < b} and M~, the MGF of X, is analytic on {a <
Re(s)}. Equating (8.35) with the expression for M in condition ¥, then M™(s) =
gt (s)(b—8)~" + hi (s) where

g (s) =8(0)"'g(s) and Ay (s) = S(0)" {h(s) = F(O)M™(s)}.

Factor g% inherits its analyticity on {Re(s) < b} directly from g. For h{, the analytic
assumption on h ensures that h] is analytic on {a < Re(s) < b}. Since hi(s) also
agrees with M™(s) — g*(s)(b— s)~" on this region and the latter difference is analytic
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on {Re(s) < b}, then hi (s) has an analytic continuation onto {Re(s) < b}, denoted as
h*(s), that satisfies the equality M™*(s) = g*(s)(b — s)™" + h*(s); thus M™T satisfies
Jm with the same dominant singularity as M within {Re(s) < b}.
Applying Proposition 1 to the density of X, then
f(t)  gt(b) w1, =bt _ g(b) w1 ,-bt

S(0) " T(w) ° SOT(w) ¢

which is the required order for f(¢). An asymptotic Gamma (w, b) tail emerges as well
for survival S(t).

B.3 Proofs for convolution/mixture corollaries

B.3.1 Proof of Corollary 2. We show that the distribution of W satisfies conditions
Im NJIynp of Proposition 1. For Jaq, write the MGF of W as

My (s) = {pgx (s) My (s)}(b = 8)7* + {phx (s) My (s) + ¢Mz(s)}, (8.36)

which has the form (3.5) in condition J 4.
To show that W satisfies Jynp, we first determine that X + Y satisfies Iy p(0,00) if
X or Y satisfies Tnp(0,00)-

Lemma B1. Convolution X +Y satisfies Iy p(o,00) with tilting parameter bt =b+e
if X or'Y satisfies Inp(o,00) With tilting parameter bt.

Proof. Convolution X + Y has tilted density
+ by +
Fxavpr () =€ " fx iy (t) :/ e ) fx(t = u)e” ™ fy (u)du
0

t t
= / Fxpt (t—u) fyp+ (u)du = / Ixpr () fypr (t — u)du. (8.37)
0 0

If X satisfies Tnp(0,00) With tilting parameter bt = b+e, then we work with the leftmost
convolution in (8.37). With ¢ > 0 and ¢ > 0, the convolution gives the difference

t+6 t
Ixsvpr (E+0) = fxqvpt(t) = /0 Fxpt (E+0 —u) fyp+ (u)du — /0 Fxpt (t —u) fyp+ (u)du

t+6 t
= fX’b+ (t + 6 — U)fy’b+ (u)du + /0 {fX’b+ (t + 6 — U) - fX,b+ (t — u)}fy,lﬁ (u)du

(8.38)

The first term in (8.38) is non-negative, and, since fx j+(t) satisfies Iy p(0,00), the latter
term is also non-negative so that X + Y satisfies Jyp(0,00)- If instead, fy;+ satisfies
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JIND(0,00), then the same argument holds with the roles of X and Y interchanged and
using the rightmost convolution in (8.37).

For the setting in which p = 1, the distribution of W = X 4+ Y now satisfies all
conditions of Proposition 1. For the case in which p < 1, suppose the (b + &1)-tilted
density for Z is ultimately non-decreasing and €5 = max(e, e1). Then the (b + e2)-tilted
density for W is ultimately non-decreasing since both terms of

pe™ ) fre iy (1) + et 4 (t) (8.39)

are ultimately non-decreasing. The (b+e2)-tilted density for W now satisfies the remain-
ing condition Jyxp of Proposition 1. [J

B.3.2 Extension of Corollary 2 to X,Y, and Z with support (—oo,o0)

Corollary B2. Suppose absolutely continuous variables X,Y, and Z have distribu-
tions on (—oo,00) with X stronger than Y and Z; i.e. Mx(s) converges on (a,b) 3 0,
and My (s) and Mz(s) converge on [0,b+ ny) and [0,b+ nz) respectively for some
values ny >0 < ng.

Ikehara conditions: Assume X satisfies 3’y of Corollary B1, either X or Y (or
both) satisfies TN p(—oo,00) With InD(—oo,00) given below, Z satisfies Junp, and My (s)
also converges on the range s € (—00,0).

(IND(—00,00)) X satisfies Inp(—oo,00) if there exists an e > 0 for which et £ (1)
is non-decreasing for all t € (—00,00).

Then, the distribution of W has asymptotic hazard rate b > 0, with density and survival
as in (5.1).

Proof. We need to show that the distribution of W satisfies conditions ¥y, N Junp
of Corollary B1. Under the assumed conditions, My is given in (8.36) and has the form
(8.34) so condition ¥’y holds with a = 0. To show Jynp, we use the same arguments
as used in §B.3.1 for proving Corollary 2 and Lemma B1. These arguments imply that
X +Y satisfies Ty p(—co,00) With tilting parameter b + ¢ when either X or Y satisfies
JIND(—o00,00) With tilting parameter b+¢. Since we assume that e(bFes)t £,(1) is ultimately
non-decreasing, then e(’te)t fi1,(¢) is ultimately non-decreasing with ¢4 = max(e,e3).
Corollary B1 applies to give the results.

B.3.3 Proof of Corollary 4. The conclusions of the corollary hold if W satisfies
conditions Jaq N Ty p of Proposition 1. Condition J g follows from the fact that X, Y,
and Z satisfy Jaq with wx,wy, and wy as positive integers. Write My (s) in the form
gw (8)(b—8) " +hw(s). lf wx,wy, and wy are positive integers, then gy (s) is analytic
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on {Re(s) < b}; otherwise b may be a branch point for gy when (b — s)~*~ is factored
out to determine gy (s).

To show Jynp, we use Lemma B1 of §B.3.1 to conclude that X +Y satisfies Ty p(0,00)
with tilting parameter b+¢ if X or Y satisfies Iy p(0,00) With the same tilting parameter.
Since by assumption, Z satisfies Jyyp for some g1 > 0, then the mixture density for W
must satisfy Jyyp for o = max{e, e} so Jynp holds for W.

B.3.4 Proof of Example 5. First, based on Example 2, the conditions on M x ensure
that E satisfies Jaq (see the proof in §B.2.1) and that singularity b for Mg is a w-pole.

We now show that E satisfies Ty p(0,00)- Since X satisfies Ty p(o,00), there is an € > 0
such that

| < IxbreH0) _ sy fx(E19) t>0;6>0.

fxpe(t) fx(t)
Thus, e®®+) fx(t + 6) > fx(t) and

O Sy (t 4 6) = 56+ / fx(s+6)ds > / fx(s)ds = Sx(t).
t t
The implication for fg pe is

fEpie(t +0) _ Slbte) Sx(t+0)
TEb+e(t) Sx(t)

so that F satisfies Jyp(0,00) With the same tilting parameter b + €.

Putting the two results together, then E satisfies Iy N Iy p(o,00) and the conditions
for Corollary 5 are met.

>1 t>0;6>0,

B.4 Derivations for compound distributions
B.4.1 Cramér-Lundberg — Proof of Theorem 3

We show that RT satisfies Iy N Inp(0,00)- The MGF for RY is

M (s) = MEg(s) ; (1-p) _ (1 : Z.)A//\l/lEE("(S‘j) = gp+(s)(b— S)_l, (8.40)

where
po(s) = L= DM(s)
{1 —pMg(s)}/(b—s)
is analytic on {Re(s) < b}. This follows since the apparent singularity of gr+ at b
is removable and since 1 — pMpg(s) cannot have a zero in an open neighbourhood of
{Re(s) < b} apart from at s = b. To show the latter result, note that |[Mg(b+ iy)| <
[Mg(D)| = 1/p for all y # 0; see Daniels (1954, p. 632) for a proof. Thus, there is a
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sufficiently small neighbourhood N, of b+ iy on which |[Mg(s)| < 1/p for s € N,,.
Consequently, 1 — pMg(s) can have no zeros on the open cover Uy.oN, for {b+ iy :
y # 0}. On {Re(s) < b}, IMg(z +iy)| < Mg(x) < Mg(b) = 1/p when z < b. Thus,
1 —pMg(s) cannot be zero on the open cover {Re(s) < b} Uy N, for {Re(s) < b}\{b}.
The singularity for gr+ at b is removable and the version of gr+ that is analytic on
{Re(s) < b} uses ’'Hépital’s rule to define

(1 —p)MEg(b) 1—p

9O =00 ol Mp(s)) Jdsly] (841)

Expression (8.41) is positive since the cumulant generating function In Mg(s) of F is
strictly increasing at b < c¢. Thus, gg+(b) > 0 and R* satisfies T .

To show that R satisfies Jy D(0,00), We first determine a mixture expansion for the
density of RT using

[ee]
Mg (s) = (1= p)p" M (s).
k=0
Doetsch (1974, thm. 30.1) allows for a formal proof that the associated density has
mixture form -
fr+ (t) = Z(l - p)pkak+1 (t) a.e. t>0, (8'42)
k=0
where Wiy = E1 4+ -+ + Egy1 is a sum of i.i.d. excess life variables and (8.42) holds for
a.e. t > 0. The right-hand side of (8.42) is actually a continuous version of density fr+(t)
for t > 0 as we now show. Since fg(t) < 1/pu, it is easy to show that fiy, ., (t) < 1/u for
all £ > 0 and all k. Thus,

[ee}

(1= )" fwien (8) <D (1= p)p*/u=1/p

k k=0

so (8.42) converges uniformly on [0, 00) by the Weierstrass M-test (Apostol, 1957, thm.
13.7). Since fg(t) is continuous on [0,00), then f,,(t) is also continuous on [0, co) for
all k; thus, the version of fr+(¢) given in (8.42) is continuous on [0, 00) (Apostol, 1957,
thm. 13.8).

We now show that this continuous version of fr+(t) satisfies Iy p(o,00). Using the
assumptions of Theorem 3 along with the results in Example 5, we conclude that E
satisfies Ty p(0,00); hence, each Wiy also satisfies Iyp(o,00). In fact, in showing that
W41 satisfies Iy p(0,00) With Lemma B1, the tilting parameter required for I p(9,00) to
hold does not depend upon k and is the same tilting parameter as required for W, = Fj.
Thus, there exists an € > 0 such that e+ fy, . (¢) is non-decreasing for all ¢ > 0 and
k > 0. Using this and the expansion in (8.42), we conclude that the continuous version
of e(c+e)t fr. (t) given by (8.42) is non-decreasing for all + > 0 and satisfies Jy D(0,00)"
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Applying Proposition 1 to RT, then fr+(t) ~ gr+(b)e™" where gr+(b) is given in
(8.41). We can rewrite this expression in terms of Mx by differentiating In Mg(s) =
In{l — Mx(s)} —In(—pus) at s = b to get

dnMg(s)|  Mk(b)
ds s=b 1 *Mx(b)

1
.- (8.43)

Now, using the fact that b is a root of 1 — pMpg(s) =1 — p{1 — Mx(s)}/(—ps), we can
rewrite the right side of (8.43) as b= {AM/(b)/o — 1} so that (8.41) becomes

_ (L—p)b
91+ (0) = M (B))o — 1)

This gives

—bt _ (1—p)b —bt
fR*(t)NgR+(b)e ’ _p{)\MIX(b)/Ufl}e ’

and Sg+(t) ~ fr+(t)/b. Since also Sr(t) = pSg+(t), then

(1-p) o bt

) M1

which agrees with the traditional Cramér-Lundberg approximation; see Asmussen (2000,
ITL.5 thm. 5.3).

B.4.2 Sparre Andersen — Proof of Theorem 4

RT satisfies condition Jpq. The MGF Mg is determined through Wiener-Hopf fac-
torization, as described in Feller (1971, XVIII, §§3-5), Prabhu (1980, ch. 2, §1), and Em-
brechts and Veraverbeke (1982, §2). When recast in terms of the MGF of Y = X — oT
rather than its characteristic function, it states that

1—My(s)={1 -0 (s)}{1 - U (s)} —afo < Re(s) <ec.

The factorization is unique among functions ¥+ and ¥~ for which ¥* is analytic on
{Re(s) < 0} and ¥~ is analytic on {Re(s) > 0}. Functions U and U~ are MGFs

W+@):1AK?“dF+@) w-@)::/ﬂ etdF= (1)

+ —0o0

for the defective right and left Wiener-Hopf distributions, F'(¢) and F~(t), whose sup-
port is on (0,00) and (—o0,0] respectively. Negative drift of the random walk {S,}
ensures that

B= i P(S,, > 0)/n < oo, (8.44)
n=1
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1—-9U*(0)=e B <1,and ¥~ (0) = 1. Under such conditions, the MGF of R is
Mp(s) = e B /{1 — U (s)} (8.45)

and is analytic on at least Re(s) < 0. We now show that M g(s) is analytic on {Re(s} < b}
apart from a simple dominant pole at b > 0.

First note that there are two real zeros of 1 — My (s) within s € (—a/0,¢) which are
0 and b > 0. Since M} (0) < 0 < M4, (b), both zeros are simple zeros. Since 0 is a zero
of 1 — U (s) and 1 — U~ (s) is strictly increasing in s, the value b cannot also be its
zero, hence 0 < 1 — ¥~ (b) < oo. Thus, b must be a simple zero of 1 — UT(s) and hence
it is a simple pole for Mpr(s). Now, if there is any other singularity for Mg(s) within
an open neighbourhood of {0 < Re(s) < b}, then it has to be a zero of 1 — ¥*(s) and
hence also a zero of 1 — My (s). We now show no such zeros can be found for 1 — My (s)
within such an open neighbourhood apart from the zeros at 0 and b. First, along the
lines {Re(s) = b} and {Re(s) = 0}, there can be no zeros for 1 — My (s) apart from b
and 0 since

My (b+iy)] < My(b)=1  y#0
My (iy)| < My (0) =1  y#0;

see Daniels (1954, p. 632). Also, ¥ (0) < 1 so 0 cannot be a zero of 1 —U*(s). As argued
in the Cramér-Lundberg case, there exists an open covering of {b+iy : y #0}U{iy: y €
(—00,00)} on which 1 — U (s) has no zeros. Also, there are no zeros within the region
{0 < Re(s) < b} for the same reason:

My (x+iy)| < My () < My (b) =1 x € (0,b);y € (—o0,00).

Thus, apart from a simple pole at b > 0, Mg(s) is analytic over {0 < Re(s) < b}.
The MGF of R is determined by taking a geometric expansion of the MGF of R in
(8.45) which is

o oo k+1
Mpg(s)=eP Z(\I/+)7(s) =e Pr(1-e P Z e B(1—eBY { gig;; } , (8.46)
§=0 k

=0
where UF(0) =1 — e~ 5. The MGF for R is the rightmost summation which is

Ut (s)
v (0)”

e BMp+(s)

Ma(s) = = (1—eB)Mpi(s) Me(s)
where U (s)/U*(0) = Mp+(s) is the MGF of the ascending ladder distribution or the
normalised right Wiener-Hopf distribution. The rightmost identity reveals that M+ and
Mg, have the same analyticity on {Re(s) < b}\{b} since ¥ (s) is analytic on {Re(s) < b}.
Thus RT satisfies T .

(8.47)
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R™ satisfies condition Jy np. The geometric expansion in (8.46) demonstrates that R
has a compound geometric sum characterization R = ZiG:O L}, where {L} :i > 1} are
i.i.d. with the ascending ladder distribution of the random walk {S,,}, G has a Geometric
(e=P) distribution on {0, 1,...}, and Lar places point mass e~ P at 0; see also Embrechts
and Veraverbeke (1982, eqn. 10). Thus, the proof that R satisfies Jynyp can follow the
same derivation as used for Cramér-Lundberg. Doetsch (1974, thm. 30.1) allows for a
formal proof that the associated density has mixture form

fre(t Ze (L—eB)Yf e (&) aet>0, (8.48)

(k+1)

where Lz?f) = L{ +---+ L} is a k-fold convolution. We use the right-hand side of (8.48)
as the version of fr+(t) that we shall show satisfies Iy p(0,00). This condition is satisfied
if we show e(ct9)t fr. (1), as determined from (8.48), satisfies JIND(0,00) for some & > 0.
We show this holds if e(c+5)th1+ (t) satisfies Ty p(0,00)- We show the latter result in two

steps. (a) First we show that the tilted ladder density e(c+5)th1+ (t) satisfies Ty p(0,00) if
e(eF9)t fy(t) satisfies Ty p(o,00)- (b) Secondly, we show that e(“+o)t fy (¢) satisfies T p(0,00)
if the claim amount X satisfies Ty p(0,00) s assumed in Theorem 4.

(a) Let N =inf{n > 0:S5,, > 0} be the ladder epoch for the ascending latter height
with N = oo if sup,,»; S, < 0. With Sp = 0, if N = n then the last step amount
Sn — Sn—1 = Y, is a positive increment that takes a negative S,_; to a positive S,.
Thus, if

G (t)f P(Slgt) if t<0,n=
YT P81 <0, 800 < 0,801 <1) if t<0, n>3

then the joint density/mass function of L and N given N < oo is

fy(®) if >0, n=1

(1 _ —By-1
fryn(tn)=(1—e7) {fi)oon(t_u)dGnl(u) £ £50 n>2 " (8.49)

For example, if n > 4 then

0 0
= / fri(s1)dsq - / [y o(8n—2 — $n—3)Fy, _, (4 — Sp—2)dsn—2

can be derived through the transformation (Y7,...,Y,_1) — (S1,...,Sn—1). The mar-
ginal density of L] given N < oo is

frr (@) ZfL+Ntn (1- {fy +Z/ fy(t —u)dG,_1(u )}. (8.50)
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Tilting both sides of (8.50), then

00 40
Frtere(®) (1€B)l{fY,c+g(t)+Z / fy,c+g(tu)e(c+€)“dG,L_1(u)}. (8.51)

n=2v"
Take 6 > 0 and assume that fy .4(¢) is non-decreasing for all ¢ > 0 as a result of fy
satisfying Jnp(0,00)- Then,
fY,chs(t + (5) 2 fY,c+s(t)
for all ¢ > 0. Using (8.51), this inequality implies
fL;r,chs(t + 5) Z fLT,c%»s (t)

for all ¢ > 0 hence le+ satisfies Jnp(0,00)-

(b) We first write fy (t) as a convolution in fx and f_,7 so that

0
fr(t) = [ fx(t —u)f_or(u)du t>0. (8.52)

Thus, .
fY,c+g (t) = / fX’C+€(t — u)f,UT’c+€ (u)du t>0. (853)

Following the same proof as in part (a), then fy 4. is non-decreasing for all t > 0 (fy
satisfies Jnp(0,00)) if fx,cte is non-decreasing for all £ > 0 (fx satisfies Ty p(0,00))-

Parts (a) and (b) together prove that L] satisfies JIND(0,00)- Hence, by Lemma B1,
L&) satisfies Ty p(0,00) With tilting parameter ¢ + ¢ for all £ > 2. Since each term in the
expansion (8.48) satisfies Ty p(0,00) With the same tilting parameter ¢ + ¢, RT satisfies
condition Jnp(o,00) With tilting parameter c + .

Remaining proof of Theorem 4.

Since R satisfies Proposition 1,

fre (1) ~ age ™ ~ bSgi (1) t — oo,
vhere Ma(s) = e B [Mal(s):b}
_ r(s)—e™® 1 —Res Rr(8);b} «a
G+ = Res{ 1—e B ’b} 1—e B  1—eB
and
P 8.54
=T 859
From this,

fr(r) =1 —=e P)fre(r) ~ae™™  Sg(r) ~ fr(r)/b  t— oc.
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B.4.3 More general compound distributions

Proof of Theorem 5. The proof uses much of the same arguments used to prove
Theorem 3. Following that approach, we remove the point mass of R at 0 and consider
the distribution of RT = R|R > 0 with MGF [P{M(s)} — p(0)]/{1 — p(0)}.

We now show that the convergence region for MGF P{M(s)} is {Re(s) < b} where
b is a dominant singularity of P{M(s)}. First, there is a unique value b € (0, ¢) solving
M(s) = r since M(s) is strictly increasing for s € (0,¢) and 1 = M(0) < r < M(c). To
show b is a dominant singularity, we make use of the Darboux condition on P so that

PAM(s)} = g{M(s){r — M(s)} ™ + h{M(s)}

= g{M(s)}R(s)7 (b — s)7" + h{M(s)}, (8.55)
where MB) — M
R(s) = 2O M)

and principal branch values have been assumed for the multi-function (r —s)~" to allow
for factorization. We now show that g{M(s)} and h{M(s)}, are analytic on {Re(s) < b}
and defer the proof that R(s)~" is analytic to the next paragraph. For any s = x +1iy €
{Re(s) <0},

IM(s)] < M(z) < M(b) =7

so that g{M(s)} and h{M(s)} are analytic on {Re(s) < b}. By compactness of the
closed disc {|]z| < r}, g(2) and h(z) are analytic on {|z| < r + ¢} for a sufficiently small
e > 0. For each boundary point s, = b+ 7y including y = 0, let IV, be a sufficiently
small neighbourhood of s, so that |[M(s)| < r+¢/2 for any s € N,,. Then, g{M(s)} and
h{M(s)} are analytic on the open cover U, N, U {Re(s) < b} for {Re(s) < b}.

To show R(s)™™ is analytic on {Re(s) < b}, it suffices to show that R maps {Re(s) <
b} into a subset of C' which does not overlap the branch cut from —oo to 0 used for the
multifunction z~". Figure 1 shows images of the mapping R for vertical lines {x+iy : y €
(—00,00)} for selected values of x < b increasing from = —2,0, to b = 1. For increasing
x, the images form expanding elliptically-looking closed curves that run counter clockwise
from lim,_,_ o R(z+14y) = 0+0i to lim, . R(x+iy) = 040i. The image of {Re(s) < b}
under R is therefore the closure of the dotted curve less 0 which is a set that avoids the
branch cut of the multifunction. We now provide a more formal proof of this. Suppose
the contrary, that the image of one of these curves crosses the branch cut at —e for ¢ > 0.
Then, there exists x < b and y such that

M(b) — M(z +iy)

—e=R(z+1iy) = T—
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The value of y cannot be 0 since R(z) = {M(b) — M(z)}/(b—z) > 0 for < b and
R(b) = M'(b) > 0 since b is a removable singularity for R. Thus, there must exist © < b
and y # 0 such that

Mz +iy) = M(b) + (b — x) —icy.

This implies

Mz +iy)| = VIMO) + (b~ 2)}2 + (ey)? > M(b),

which is a contradiction. Therefore R(s)™" is analytic on {Re(s) < b}. From the form
(8.55), P{M(s)} satisfies Trq in Proposition 1 with
lim (b — )" P{M(s)} = g{M(B)H{M'(0)} (8.56)

Since X satisfies Ty p(0,00) for some tilting parameter ¢ + ¢, each term in the tilted
density

1 o0
fR+aC+€(t) = 1 —p(O) ;p(k)fx1+---+X;¢,c+s(t>
is also non-decreasing on (0,00) so fr+ () satisfies Iy p(o,00). Thus, using (8.56),

Falt)~ (1= pO) f (0~ Attt e (sa)

An asymptotic expansion for the stop-loss premium Lg () = ftoo Sr(u)du, follows
from I’Hopital’s rule. Denote

ER(t):/toogR( dU_/ du/ Fr(v

where fr(v) is the gamma-like expansion for fr(v). Since Sg(u) and Sg(u) are continu-
ous,
L
o Lr@® _ SR
t—o00 LR (t) t—00 SR (t)
as determined in (8.29). Since fr(t) and Sg (t) are continuous, then, using ’'Hopital’s
rule again,

o SR Tr(t) _
t—»ooLR() tﬂooSR()

so that Ly (t) ~ Lg (t) ~ Sr(t)/b ~ fr(t)/b* as t — cc.

Proof of Corollary 6. The proof follows the same approach as Theorem 5 so we provide
only those details that differ. Using the Darboux conditions on P and Px (e’) = r, then

P{M(s)} = g{M(s)H{Px (") = Px (€M)} + h{M(s)} (8.58)
= g{M(s)}Ra(s) (" — )™ + h{M(s)}, (8.59)
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where
Px(e’) — Px(e®)

eb — es

Ri(s) =

and principal branch values are used for the multi-function (e? — e*)~". The same argu-

ment as in Theorem 5 shows that Ry maps {Re(s) < b} into a subset of C' that excludes
the branch cut from —oo to 0. The remaining arguments as in Theorem 5 show that
(8.59) satisfies Darboux condition D a4 in Proposition 2. This justifies the expansions for
pr(n) in (6.5) and for Sg(n).

The expansion for the stop-loss premium follows from the Stolz—Cesaro theorem
(Lemma A2, §A.5.1). Let a,, = 3 ,.»,, Sr(k) and b, = 3,o, Sr(k) = (1—e= ") "1, .. pr(k),
where pr(k) is the asymptotic expansion for pg(k) in (6.5). Then N

lim Gnil 7 An _ lim ‘S:R(n) =

n—00 bn+1 bn "4*”;SR(n)

)

80 ap ~ by. Now >, o pr(k) ~ (1 — e ®)"1pr(n), as determined in the proof of Propo-
sition 2, so that

n~vbp=(1—e? ZPR (1—e")?pr(n).
k>n

Thus, the stop-loss premium is a, 1 ~ (1 — e ?)~2pg(n + 1) and agrees with the result
in Willmot (1989, thm. 2).

Proof of Theorem 6. We first show that P{M(s)} is analytic on {Re(s) < b} C C
apart from an m-pole at b. For any z € CM such that Re(z) € O C RM | note that

P(2)] = ‘E <ﬁlzfv > t (:-Wl

where |z| = (|21] . |zm])T € RM. Generating function P(z) is strictly increasing in each
component of z for real z € O N (0,00)™. Thus, {M(s) : 0 < s < b} traces a one-
dimensional path through O N [1,00)™ with tangent directions {M’(s) : 0 < s < b}
such that M'(s) = {M/(s),... M},(s)} > 0 componentwise for each s € [0,b). The
path crosses the boundary of set O N (0,00)™ at M(b) € (1,00)M so that P must be
convergent on the open M-dimensional rectangle (0, M (b)) C (0,00)M. Take s = z+iy €
{Re(s) < b}. Since [M;(s)| < M;(x) for each j,

= P(|z]), (8.60)

[P{M(s)} < P{IM(s)[} < P{M(2)} < o0,

since M(z) € (0, M(b)) C (0,00)™. Thus, P{M(s)} is analytic on {Re(s) < b}. For the
boundary, if s, = b+ iy with y # 0, then |M;(s,)| < M,(b) for each j so that

[PAM(sy)}| < P{IM(sy)[} < o0
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since |[M(s,)| € (0, M (b)) C (0,00)™. We now construct an open neighbourhood of the
boundary {s, : y # 0} C C on which P{M(s)} is analytic. Let N, C C be an open neigh-
bourhood of s, sufficiently small so that |[M(s)| < {M(b) + |M(sy)|}/2 componentwise
for all s € N,,. Then,

[P{M(s)}| < P{M(s)[} < PEM(D) + [M(sy)[}/2] < P{M(b)} = o0

on s € Ny, so P{M(s)} is analytic on N,. Thus, P{M(s)} is analytic on U,-oN, U
{Re(s) < b} which is an open cover of {Re(s) < b}\{b}. Now, the function g(s) =
P{M(s)}(b — s)™ can be analytically extended to also include the point b since, based
upon the assumptions of Theorem 6, it has a removable singularity at s = b. For this
analytic extension, define

N{M(s)} N{M(B) pml (=)™

90) = BTG}~ DM} /oy (8.61)

where the right-hand side results from using I’Hopital’s rule in the denominator m times.
The use of I"'Hopital’s rule is justified by the assumption that D is analytic at M(b).
Thus, ¢(s) is analytic on {Re(s) < b} and P{M(s)} = g(s)(b— s)~™ so that R satisfies
Im.-

To show R with MGF [P{M(s)} — P(0)]/{1 — P(0)} satisfies Inp(0,00), take a
Taylor expansion of P(z) about z = 0 and evaluate it at z = M(s). Each term in
the Taylor expansion for P{M(s)} — P(0) contains at least one factor M;(s) and the
resulting summation is an infinite mixture of convolutions whose probability weights sum
to 1—"P(0). If M;(s) satisfies Ty p(0,00) With tilting parameter c; +¢;, then each addend
in this mixture satisfies Ty p(0,00) With tilting parameter (c+¢). = max;{c; +¢;}. Hence,
R satisfies Ty p(0,00)-

Now RT satisfies Ikehara conditions T N T D(0,00) and also Proposition 1, so that

fr(t) ~Bt" et — oo

with
1 _ . _g(b)
8= Gy (b= )" PAM()} =

and ¢(b) given in (8.61). Thus ( is given in (6.7).

Example 7. (Independent counts). A more general expansion, when b; is a singularity of
non-integer order, results by expanding fz(t) as a finite mixture of 2 terms, where terms
are determined by which components in {R;} are positively valued and which ones are
point masses at 0. The 2" ~! terms with component R; dominate with R; as an addend
in each. Expansions for all these dominant terms follow if R} satisfies Iy N Ty D(0,50)-
This can be shown by using Theorem 5 if P; and M; satisfy its conditions so that MGF
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P1{M;(s)} has a singularity of order w; at by > 0 in which M;(b;) = r; > 1. Adding
up all the dominant expansion contributions leads to

Fr() ~ {1 =PrO} Y | frrirs @) [T =P} [T Pi(0) (8.62)
S

€S j¢S

as t — oo, where R =3~ R and S ranges over all subsets of {2,..., M}. Corollary

2 provides the expansion

fR,1++R+ fR+ HMRf (b1)
€S

={1-Pu0)} " (O[]

i€S

JES

{MR{(EI;Di((z)Di(O) } _

Substituting into (8.62) leads to

fr@) ~ fr®)> | ] Mz (01) = P:(0)} [T P5(0)

S |ies jgS
M

= fr. () [T M, (01) = Pi(0)} + P (0)]

=2

= fr, () [[ M, (ba). (8.63)

=2

g

Theorem 5 provides an expansion for fg, (t) which, when substituted into (8.63), leads
to the expansion for fr(t) in (6.8).

Proof of Theorem 7. The proof is almost identical to that of Theorem 6 so only
differences are noted. The main difference is that the weaker assumptions for Proposition
2 must hold rather than those for Proposition 1.

When showing that P{M(s)} is analytic on {Re(s) < b} apart from an m-pole at b,
the argument that it is analytic on the boundary {Re(s) = b} apart from s = b needs
modification. The part of the argument given in Theorem 6 that needs modification
with integer-valued {X,} is that given for justifying that |[M,(b+ iy)| < M,(b) with
strict inequality for each j when y € (—m, w|\{0}. This justification holds for absolutely
continuous distributions, as shown by Daniels (1954, p. 632), but it remains to be shown
for an integer-valued mass function p;(n). Let b+ iy be on the boundary of the principal
convergence region of P{M(s)} with y € (—m,7]\{0}. The proof is by contradiction so
assume equality which means that M; (b + iy) = M;(b)e'® for some o € (—, 7). Since
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M is analytic at b+ ¢y and b, then

040t =M;(b+1y) — Z e""p;i(n) [{cos(yn) — cosa’} +i{sin(yn) — sina}]|
n>0
=A+iB.
Thus,
0=Acosa+ Bsina = Z e’ pj(n){cos(yn — a) — 1} (8.64)
n>0

which is a contradiction since cos(yn — ) — 1 must be negative for some n > 0 for which
pj(n) > 0. To see this, note that for (8.64) to hold, we require that cos(yn —a) =1
for a.e. n > 0. This can only happen when a.e. value yn — a € {0, £2m,...}. Thus the
values of yn — « must be either identically —a (so y = 0), or they must be spaced 27k
apart for integer k£ which makes y = +27k. In either case, this cannot be and we reach
a contradiction.

We now show that P{M(s)} satisfies Darboux condition ® o4 in (4.3) of Proposition
2. Since b is an m-zero of D{M(s)}, we can use 'Hopital’s rule m times to show that

i DM} _ 9" DIM()} /05,

Ss—b (eb _ es)m m!(_l)mebm

Thus, we may analytically continue g(e®) = P{M(s)}(e* — e*)™ to b by defining

g (eb) = lim N{M(s)} ~ NA{M(b)}m!(— 1)m bm
s—b D{M(s)}/(eb —es)m — OmD{M(s)}/ds™|

Thus, g(e®) is analytic on {Re(s) < b} and the compound sum R satisfies the conditions
of Proposition 2.
From (4.2), the value § is determined as

g(eh)e™™ _  N{M@G}m(-1)"
(m—1)! — 0mD{M(s)}/0s™|,_,

B.5 Proofs for first-passage distributions in semi-Markov processes

6=

B.5.1 Proof of Proposition 3

The jump chain for the SMP of relevant states concerned with passage 1 — M has a
transition probability matrix P and we can modify it to make state M absorbing. Let P
denote P with all Mth row entries set to 0. Let {1 (1 0,...,0)T and &y = (0,...0,1)T
be M x 1 indicator vectors. Denote by ¥ = ZL j=1Vij = n =1 the total number of steps

required for first-passage to state M so that éJP"&y; = P(Y = n) and
- n Nij
P o2) e = E{IINILL 2 e (5.65)

imsart-bj ver. 2013/03/06 file: ReviseBernoullil4.tex date: December 23, 2015



62 Butler

In this expression, since state M is absorbing, Nys; = 0 w.p. 1 for j > 1 so that (8.65)
does not depend on {zp7; : j € S}. Summing over n > 1, then

Ty -PoZ) = {Iu-PoZ)  ~Iyju=FE {Hiﬂilnjﬂilzgu 1{Y<oo}}
(8.66)
on {Z € RV M (P ®Z)| < 1}, where A;(-) denotes the eigenvalue with the largest
modulus for the matrix argument. The leftmost side of (8.66) is the (1, M) component
of the inverse of I; — PoZso

(M, 1) -cofactor of {I; — P ® Z} _
Iy — PO Z|

M M _Nij
E{Hi:lnjzlzij 1{Y<oo}}' (8.67)

Since the last row of matrix Iy — P ® Z is €1, then [I; — P ® Z| = (M, M)-cofactor
of Iy — P ® Z. Furthermore, the (M, 1)- and (M, M)-cofactors of I; — P ® Z do not
depend on the Mth row of P ® Z; thus they agree with the (M, 1)- and (M, M)-cofactors
of Iy — P ® Z. Therefore, substituting into the left side of (8.67), it becomes

(M, 1)-cofactor of {In; — P © Z} M oM N
= . , 71 .
(M, M) -cofactor of {I,; — P ® Z} {H’Lzlnjzlz” {Y<°°}}

Up to this point, the equality in both (8.67) and (8.68) holds on

(8.68)

O={Ze®™ NP o2Z) <1} ={Z: [M{(POZ)\mu}| <1}

The right-hand side of (8.68) is convergent on R = {Z: |z;;| < 1fori,j=1,... M} and
values are dominated above by the value P(Y < o0) achieved at Z = 1, a matrix of ones.
Thus, we conclude that O D R and this dominating value is

(=DM W4 (0)] (M, 1)-cofactor of {Iny — P}
[ ¥ arar (0) (M, M)-cofactor of {In; — P}

Since the left-hand side of (8.69) is fip = P(X < 00), our derivation has proved that
P(X < o0) = P(Y < 0), however, it is also worth clarifying this. First, if the jump
chain of the SMP arrives at state M in a finite number of steps, then the sojourn time
must also be finite, so P(Y < 00) < P(X < 00). Also, since the state space S is finite, the
SMP is non-explosive (Heyman and Sobel, 1982, p. 323); hence any sojourn from 1 — M
which is achieved in finite time X must use only a finite number of state transitions so
that P(X < 00) < P(Y < 00). Thus, P(Y < 00) = P(X < o) = fin. Dividing (8.68)
by (8.69) confirms that (7.2) is the conditional PGF of N given Y < cc.

P(Y < o0). (8.69)

B.5.2 Proof of Theorem 8

We confirm that assumptions (i)—(iv) in §7 ensure that the conditions of Theorem 6
hold for the compound distribution of passage time X|X < oo with MGF Fip (s) =
P{M(s)|Y < o0}
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Under assumption (i), P(Z|Y < o0o) is convergent on {Z : |z;;| <1 fori,j=1,... M}
as required by Theorem 6. Conditions (ii) and (iii) ensure all other conditions of Theorem
6 apart from the assumption that all densities {g;;(¢)} from the first M — 1 rows of
K(t) satisfy Jnp(0,00)- This can be weakened to assumption (iv) which assumes that all
members of a blockade B satisfy Jn p(0,0)- To see why, expand P(Z|Y < oo) in a Taylor
series about Z = 0 and then substitute Z =M(s). The leading term is P(IN =0|Y <
o0) = 0 and all other addends represent mutually exclusive transmittance pathways for
the sojourn from 1 — M. In particular, if B is the set of all distinct ordered pathways
from 1 — M, this expansion yields

Fint (5) = PLM(s)| Y < o0} = f%M S ppMy(s), (8.70)
peP

where p, denotes the probability the sojourn takes path p and M,(s) is the product of
MGFs for the sequence of ordered state transitions that characterise path p. Each term
M, (s) has at least one factor which is a member of the blockade B; thus, the density
corresponding to M, (s) satisfies Iy p(0,00)- All terms on the right of (8.70) have densities
that satisfy Jnp(0,00) With a common tilting parameter so the density of Fias (s) also

satisfies Ty p(0,00) by the same arguments used previously for such infinite expansions.
To find 3, note that

(=)™ [ a1 (0)]

flM - flellw(O) = |‘IJMM (0)|

Therefore, from (6.7),
e s G
Jiae O ®arns (s)] /0sl

Now, use matrix calculus to compute |® s (s)] /ds = trladj{®nrar (s)} @ aras (s)]
which gives 3 in (7.4).

B=(
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Figure 1. Images of the vertical lines {x + iy : y € (-30,30)} for x = -2 (solid), x = 0 (dashed) and
x = 1 (dotted) under the mapping R : C - C when M(s) = (1 —s/2)' and b = 1.



