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Abstract

In association studies of quantitative traits, the association of each genetic marker with the

trait of interest is typically tested using the F -test assuming an additive genetic model. In

practice, the true model is rarely known, and specifying an incorrect model can lead to a loss of

power. For case-control studies, the maximum of test statistics optimal for additive, dominant,

and recessive models has been shown to be robust to model misspecification. The approach has

later been extended to quantitative traits. However, the existing procedures assume that the

trait is normally distributed and may not maintain correct type-I error rates and can also have

reduced power when the assumption of normality is violated. Here, we introduce a maximum

(MAX3) test that is based on ranks and is therefore distribution-free. We examine the behavior

of the proposed method using a Monte-Carlo simulation with both normal and non-normal

data and compare the results to the usual parametric procedures and other nonparametric

alternatives. We show that the rank-based maximum test has favorable properties relative to

other tests, especially in the case of symmetric distributions with heavy tails. We illustrate the

method with data from a real association study of symmetric dimethylarginine (SDMA).

Keywords: model uncertainty and misspecification, rank tests for trend, maximum (MAX)

test, order-restricted inference, power, non-normal data
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1 Introduction

Genetic association studies - which test for correlation between genetic markers, such as single

nucleotide polymorphisms (SNPs), and a disease or a quantitative trait - have been a useful tool in

identifying susceptibility loci for common diseases and traits (Hindorff et al. 2009). The analysis of

such studies often requires specifying the genetic inheritance model, that is, the relationship between

genotype and disease risk or mean value of the trait (Balding, 2006). Three of the models commonly

used to describe genotype-trait relationship are additive, dominant, and recessive. When the true

underlying model is known, powerful methods are available to detect the association (Sasieni, 1997;

Zheng et al., 2003). In practice, the genetic model is rarely known a priori. For example, in genome-

wide association studies (GWAS) that screen hundreds of thousands of genetic markers, different

patterns of association could be observed at different loci. In the absence of knowledge of the true

model, most GWA studies perform the analysis under the additive model, that is, assuming mean

genotype effect is proportional to the number of copies of the variant allele (0, 1, or 2). Tests based

on the additive model, however, can be inefficient for detecting dominant or recessive effects and

could miss true-positive signals (Freidlin et al., 2002; Zheng et al., 2006). Thus, procedures that

have high power for a wide range of genetic models are desirable.

To overcome model uncertainty, one simple approach is to compare mean genotype effects using

standard statistical procedures such as the one-way analysis of variance. This method is robust in

a sense that it doesn’t assume any particular model (i.e., is model-free), but it is less powerful than

tests tailored to a specific model (Balding, 2006). Further, it can give rise to spurious associations,

detecting non-monotonic patterns that are not consistent with commonly observed inheritance

modes. Several intermediate procedures that restrict the alternative space to a range of plausible

genetic models have been developed for genetic studies, with early work focusing primarily on

dichotomous outcomes (reviewed in Joo et al., 2010; Bagos, 2013). Freidlin et al. (2002) proposed

two efficiency robust tests: one based on the linear combination (maximin efficiency robust test,

MERT), the other on the maximum (MAX3) of Cochran-Armitage trend tests (Cochran, 1954;

Armitage, 1955) optimal for different genetic models. They found that MAX3 was generally more

powerful than the MERT. Several authors applied a similar approach to case-control studies, with

significance of MAX3 assessed by permutation (Sladek et al., 2007), trivariate integration (González
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et al., 2008), or analytical approximation (Li et al., 2008). Zang et al. (2010) developed an efficient

algorithm for computing the null distribution of MAX3 and implemented their methods in the R

package Rassoc. Other authors considered the minimum of the p-values for the additive and the

general 2-df (genotype-based) model as a test criterion (Wellcome Trust Case Control Consortium,

2007; Joo et al., 2009).

So and Sham (2011) extended the robust MAX3 approach to allow for quantitative traits and

covariates. Their method is based on score tests in the framework of generalized linear models, and

is implemented in the R package RobustSNP. Score tests are computationally faster than likelihood

ratio tests; however, they do not provide the estimates of regression coefficients. Wang and Sheffield

(2005) developed the constrained likelihood ratio test (CLRT) for both continuous and binary traits,

in which the effect for the heterozygous genotype (1 variant allele) was restricted to be intermediate

between the effects for the two homozygous genotypes (0 or 2 alleles). Lettre et al. (2007) used the

maximum of F -tests optimal for different genetic models as a robust approach to quantitative trait

association, but they relied on a computationally intensive permutation procedure to determine the

significance of the test. Recently, Qu (2014) developed a robust combination approach based on

an approximate joint distribution of several transformed F -tests, which avoided the computational

burden of permutation testing and had the added advantage of allowing for covariates and the

inclusion of tests with different degrees of freedom.

One limitation of the existing methods for quantitative trait association is the assumption that

the within-genotype distributions of the trait are normal. In practice, many traits studied in ge-

netics are markedly non-normal. Furthermore, modern genetic studies often examine hundreds of

different traits simultaneously, so the exact distribution of each trait may be difficult to assess. For

instance, in studies mapping expression quantitative trait loci (eQTL), the expression levels of thou-

sands of genes, each treated as a quantitative trait, are tested for association with genetic markers.

Given the large number of traits, robust screening tools that do not assume a particular shape of

the distribution should be superior to normal theory tests. Many alternatives to the usual para-

metric procedures exist in statistical literature. For example, Kozlitina (2008) previously showed

that a classic rank test for trend, Jonckheere-Terpstra (Jonckheere, 1954; Terpstra, 1952), had

optimal properties for testing the association under an additive model. Similarly, the Fligner-Wolfe

test (Fligner and Wolfe, 1982) was optimal for testing the association under dominant/recessive
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models. In the current paper, we consider the maximum of the above rank tests to create a robust

distribution-free test for quantitative trait association. We derive the null correlations among the

three rank tests and show that those are equivalent to correlations among model-based Cochran-

Armitage and F -tests. Thus, previous results from the literature on efficiency robust tests can be

applied to construct a rank-based MAX3 test.

An alternative approach to deal with non-normal data is to apply a transformation, such as a

logarithm or a square root transformation, in order to achieve more normally distributed residuals.

One method, in particular, that is increasingly being used in genetic studies, is to apply an inverse

normal transformation (INT), or a normal scores transformation, to trait values before performing

standard parametric tests of association (Scuteri et al., 2007; O’Donnell et al., 2011; Kettunen et al.,

2012; Seppälä et al., 2014). Although this approach ensures that the marginal distribution of the

trait is nearly normal, as noted by Beasley et al. (2009), the statistical properties of parametric tests

based on INT have not been explored in the context of genetic studies, especially when compared

to other nonparametric alternatives. As early as 1960, Hodges and Lehmann examined two-sample

tests based on ranks and on normal scores and showed that while the normal scores tests might

be preferable for distributions with a density that drops discontinuously to zero at one extreme,

such as the exponential distribution, rank-based procedures could be more efficient for symmetric

distributions with heavy tails, such as a normal distribution contaminated by gross outliers. Similar

results were obtained by Knoke (1991) for the analysis of covariance. Other studies have found that

the normal scores tests may not maintain correct type I error rate when the assumption of equal

variance is violated (Pratt, 1964). Here, we compare the performance of the usual rank tests to

those based on the inverse normal transformation under different distributions and in a situation

typical of a genetic association study (i.e., unequal sample sizes for the three genotype classes).

In the next sections, we first examine the correlations among test statistics optimal for the three

genetic models as a function of marker allele frequency and quantify the amount of efficiency lost

due to model misspecification. We next investigate the size and power of rank tests and normal

theory tests, applied to raw data and INTs, through a simulation study under both normal and

non-normal distributions. Finally, we demonstrate the method using the data from a real genetic

association study of symmetric dimethylarginine (SDMA).
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2 Methods

2.1 Notation and Hypothesis

Consider a genetic association study with N individuals and a biallelic marker (e.g., a SNP) having

alleles A and B with population frequencies pA = p and pB = 1− p, respectively. Assume, without

loss of generality, that A is the less common allele. There are three possible genotypes at this

marker locus: g0 = BB, g1 = BA, and g2 = AA, indexed by i = 0, 1, 2, i.e., the number of

copies of the less common allele. Denote the population frequencies of the three genotypes by

p0 = Pr(BB), p1 = Pr(BA), and p2 = Pr(AA), and let n0, n1, n2 be the observed numbers of

individuals with each genotype (n0 + n1 + n2 = N). In a population-based study, the individuals

are sampled at random, therefore the genotype counts (n0, n1, n2) follow a multinomial distribution,

Mul(N ; p0, p1, p2). Further, assuming the population is in Hardy-Weinberg equilibrium (HWE), the

genotypes will occur with binomial probabilities: p0 = (1− p)2, p1 = 2p(1− p), p2 = p2.

Let Yij , i = 0, 1, 2, j = 1, 2, . . . , ni be the measured outcome for individual j with genotype gi,

and assume that Yij have absolutely continuous distribution functions Fi(y) = F (y − µi), which

differ at most in their location parameter, µi (e.g., mean or median). When there is no association

between the genotype and the trait, the distributions, Fi, are equal; thus, the null hypothesis is

H0 : µ0 = µ1 = µ2. Under the alternative, it is natural to expect a monotonic trend in the means

(medians) against the number of copies of the A allele, that is, H1 : µ0 ≤ µ1 ≤ µ2 or µ0 ≥ µ1 ≥ µ2

with at least one strict inequality. We note that the alternative H1 is quite general and includes

the commonly assumed genetic models: dominant (µ0 < µ1 = µ2), recessive (µ0 = µ1 < µ2), or

additive (µ1 = (µ0 + µ2)/2) as special cases.

2.2 Parametric Tests of Association

2.2.1 Model-Based Statistics

When Yij are normally and independently distributed about the means µi, with common, but

unknown, variance σ2, the most general method for testing the association is the one-way analysis

of variance F -test on 2 and N − 3 degrees of freedom (df), which compares H0 to the alternative

H1 : µi 6= µ′i for some i 6= i′. If the true mode of inheritance is known, however, a more powerful
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approach can be developed by viewing the problem as one of linear regression:

E[Yij ] = µi = α+ βxi, i = 0, 1, 2,

where xi are the scores assigned to genotypes gi, and β is the allelic effect. The null and alternative

hypotheses can be stated equivalently as H0 : β = 0 versus H1 : β 6= 0, and the test, for a given set

of scores, is based on the statistic:

T =
β̂

σβ̂
=
∑

i ni(xi − x̄)(ȳi − ȳ)√∑
i ni(xi − x̄)2σ̂

, (1)

where ȳi =
∑

j yij

/
ni, ȳ =

∑
i,j yij

/∑
i ni, x̄ =

∑
i nixi

/∑
i ni, and σ̂ is the within-group

standard deviation. Under H0, T follows a t-distribution with N − 2 df, and is approximately

standard normal in large samples. Equivalently, the test can be based on the criterion T 2, which

follows an F -distribution with 1 and N − 2 df.

The choice of the scores depends on the assumed genetic inheritance model. Intuitively, for

a given model, the scores should have the same pattern as the means. In fact, the power of the

regression test is a function of the Pearson’s correlation coefficient between the scores xi and the

means µi, and is maximized when the correlation is unity (Abelson and Tukey, 1963). Therefore,

the optimal scores for the three commonly used models (dominant (DOM), recessive (REC), and

additive (ADD)) are: xDOM = (0, 1, 1), xREC = (0, 0, 1), and xADD = (0, 1, 2). Note that the

scores are invariant under linear transformations, i.e., the coding xADD = (0, 1/2, 1) is equivalent

to xADD = (0, 1, 2). Under the dominant (recessive) models, the genotypes g1 and g2 (g0 and g1)

are grouped together, so the regression test reduces to a two-sample t-test. When the scores are

specified correctly, the 1-df (regression-based) test is more powerful than the 2-df (ANOVA) F -test.

2.2.2 Correlations and Relative Efficiency of Association Test Statistics

When the true inheritance pattern is unknown and the scores are misspecified, a loss in power

can occur. To quantify the magnitude of the loss, we shall consider pairwise asymptotic relative

efficiency (ARE) of model-based tests (defined as the limit of the reciprocal of the ratio of sample

sizes required by a pair of tests to achieve the same power for the same alternative hypothesis)

(Noether, 1955). It is well known that under certain regularity conditions the ARE of a test T1
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compared to a test T2 when T2 is optimal, e(T1, T2), is equal to the square of the correlation coef-

ficient between their test statistics (van Eeden, 1963). In large samples, the correlation coefficient

under H0 between two statistics of the form (1) with model scores xi and x′i respectively is equal

to the correlation coefficient between the corresponding scores,

r =
∑

i ni(xi − x̄)(x′i − x̄′)√∑
i ni(xi − x̄)2

√∑
i ni(x

′
i − x̄′)2

, (2)

which for the three genetic models can be shown to be a function of sample sizes (Appendix A):

cor(TADD, TDOM ) =
n0(n1 + 2n2)√

n0(n1 + n2)(n0n1 + 4n0n2 + n1n2)
,

cor(TADD, TREC) =
n2(n1 + 2n0)√

n2(n1 + n0)(n0n1 + 4n0n2 + n1n2)
, (3)

cor(TDOM , TREC) =
√

n0n2

(n0 + n1)(n1 + n2)
.

Perhaps, not surprisingly, these correlations are equivalent to those derived by Freidlin et al. (2002)

in the context of a logistic regression model (with observed genotype frequencies ni replaced by

their expectations, Npi). It is instructive to examine the size of these correlations and the relative

efficiency of the three tests as a function of allele frequency. For the purposes of demonstration,

we shall assume that the genotype counts are in Hardy-Weinberg proportions, i.e., (n0, n1, n2) =

N((1− p)2, 2p(1− p), p2).

Figure 1 shows pairwise asymptotic relative efficiency of association statistics for the three

genetic models as a function of minor allele frequency (MAF). As the figure illustrates, the test

statistics for the dominant and additive (DOM, ADD) models are strongly correlated over a wide

range of allele frequencies (red solid curve). Hence, assuming an additive model, while the true

effect is dominant, will not lead to a great loss in efficiency unless the allele is very common. For

example, for MAF < 33%, a regression test based on additive scores will be at least 80% as efficient

as the test based on dominant scores when the true model is dominant (and vice versa). For

common alleles (MAF = 0.5), however, a test based on additive scores is only 67% as efficient as

the optimal test when the true effect is dominant, meaning that one would need to increase sample

size by about 50% to achieve the same power as with an optimal test. On the other hand, as one

can see from the blue dotted curve (ADD, REC), assuming an additive model when a recessive

model is true, can lead to a substantial loss of efficiency. For example, the efficiency of a test
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based on additive scores to detect the recessive effects is at most 67% when MAF = 0.5 (i.e., where

the dominant model is equivalent to the recessive) and substantially lower for less common alleles.

Finally, examining the black dashed curve (REC, DOM) demonstrates that the efficiency of a test

based on recessive scores while the dominant model is true, or vice versa, does not exceed 11%.

These results suggest that compared to the common approach of assuming an additive model, we

may expect robust tests to be especially useful for detecting the dominant effects of common alleles

(MAF > 33%) and, in particular, for detecting purely recessive effects at any allele frequency.
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Figure 1: Pairwise asymptotic relative efficiency of association statistics for the three genetic models

as a function of minor allele frequency (MAF)

2.2.3 Robust Tests for Genetic Association

Since in most situations the true inheritance pattern is unknown, tests that have good power

properties across a wider range of genetic models are needed. Such procedures are in general called

efficiency robust (Gastwirth, 1985) and can often be constructed as a combination of the optimal

test statistics for a family of plausible models generating the data. Here we briefly review two

efficiency robust methods: the maximin efficiency robust test (MERT) and the maximum (MAX3)

test (Freidlin et al., 2002).

For a family of M plausible data-generating models, with corresponding optimal (asymptotically

most powerful) test statistics, Tk, k = 1, . . . ,M , the test is called maximin efficiency robust (MERT)

if it achieves higher minimum efficiency relative to the optimal test for each model in the family
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than any other test (Gastwirth, 1985; Freidlin et al., 1999). In other words, it maintains higher

power than any other test, Tk, when the model is misspecified (within a specified family of M

models). Assume that under the null hypothesis each Tk is asymptotically normally distributed -

that is, Zk = [Tk − E(Tk)]/Var1/2(Tk) converges in law to N(0, 1), where E(Tk) and Var(Tk) are

the mean and variance of Tk - and that the set of statistics {Zk} is asymptotically jointly normally

distributed with an asymptotic correlation matrix {ρkl}, ρkl ≥ 0. The MERT can often be obtained

as a linear combination of the tests for the two most divergent models in the family, i.e., models

with the least correlation coefficient between their optimal test statistics, ρ∗ = infk,l ρkl.

For the family of three genetic models (M = 3) with regression statistics {TADD, TDOM , TREC},

which are jointly asymptotically normally distributed with the null correlations given in (3), the

dominant and recessive models are the most extreme pair, i.e., ρ∗ = cor(TDOM , TREC) (Freidlin et

al. 2002), and the MERT is given by:

ZMERT =
TDOM + TREC√

2(1 + cor(TDOM , TREC))
. (4)

A necessary and sufficient condition that ZMERT is also the MERT for the entire family of models

is that

1 + cor(TDOM , TREC) ≤ cor(TADD, TDOM ) + cor(TADD, TREC).

This condition is satisfied for the family of genetic models (Freidlin et al. 2002). Since ZMERT is a

linear combination of two asymptotically normal statistics, it is asymptotically normally distributed

with mean 0 and variance 1, and achieves maximin efficiency (1 + cor(TDOM , TREC))/2.

Perhaps a more intuitive approach is to calculate the test statistics for all three models and to

use the maximum of three standardized statistics, ZMAX = max{|ZADD|, |ZDOM |, |ZREC |}, as a

test criterion. Since the direction of the association is not known a priori, the maximum is taken

over the absolute values of the model-based statistics. The significance probabilities of the MAX3

statistic can be obtained by noting that

Pr(ZMAX > z) = 1− Pr(|ZADD| ≤ z, |ZDOM | ≤ z, |ZREC | ≤ z)

= 1−
∫ z

−z

∫ z

−z

∫ z

−z
φ(z; 0,Σ)dz

where φ is a trivariate normal density with mean 0 and covariance matrix Σ. The integral can be

evaluated numerically using computer routines for multivariate normal distribution implemented
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in mvtnorm package in R.

Since the maximum test relies on numerical integration, it is more computationally burdensome

than the simpler MERT, however is often more powerful. Gastwirth (1985) noted that the relative

performance of MERT depends on the correlation between the extreme pair of statistics, ρ∗, through

its maximin efficiency (1 + ρ∗)/2. When the minimum correlation coefficient is low, MERT may

perform poorly relative to other tests. Freidlin et al. (1999) showed that when ρ∗ < 0.6, the

MAX3 test is more powerful than MERT, but when ρ∗ > 0.7 the two tests performed equivalently.

Assuming Hardy-Weinberg equilibrium holds, and setting the observed genotype counts to their

expectations,

ρ∗ = cor(TDOM , TREC) =
√

n0n2

(n1 + n2)(n1 + n0)
=

√
p(1− p)

(2− p)(1 + p)
.

The quantity on the right-hand side is monotonically increasing in p on the interval (0, 0.5], with

a maxp ρ∗ = ρ∗(0.5) = 0.33 (Figure 1). Even if HWE does not hold, however, one can show that

as long as n1 ≥ min{n0, n2} - that is, when there is no deficiency of heterozygotes - ρ∗ will not

exceed 0.7. Consequently, for the family of three genetic models, the MAX3 test should always be

preferable to MERT, and we focus on the MAX3 approach in the remainder of the paper.

2.3 Distribution-Free Tests for Genetic Association

When the within-genotype distribution of the quantitative trait is non-normal, tests that do not

assume normality can often achieve higher power than normal theory tests, while preserving the

nominal type I error rate. Here, we review the available nonparametric procedures for testing the

equality of k location parameters and then apply the principles of the previous section to develop

a robust rank-based approach to quantitative trait association.

2.3.1 Jonckheere-Terpstra and Modified Jonckheere-Terpstra Tests for Trend

As in the case of normal data, the most general method for testing the equality of k means, is the

rank-based equivalent of the one-way analysis of variance, the Kruskal-Wallis (KW) test. A more

powerful procedure can be obtained, though, when the ordering of the means is known. Perhaps the

most well-known procedure for testing a monotonic trend in k means, is the distribution-free test

proposed independently by Jonckheere (1954) and Terpstra (1952). The Jonckheere-Terpstra (JT)
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test criterion is the sum of the k(k − 1)/2 pairwise Mann-Whitney U -statistics computed among

the k samples,

J =
k−1∑
i=1

k∑
j=i+1

Wij , (5)

where

Wij =
ni∑
r=1

nj∑
s=1

φ(Yir, Yjs)

with φ(Yir, Yjs) =

 1, if Yir < Yjs

0, otherwise (i < j).

Neuhäuser et al. (1998) proposed a modification of the JT test (MJT), in which the pairwise

comparisons were weighted by the “distance” between the two samples,

J∗ =
k−1∑
i=1

k∑
j=i+1

(j − i)Wij . (6)

The two methods perform similarly in large samples, but the modified test was shown to be more

powerful than the original test in small samples and somewhat more sensitive to linear trends.

Therefore, we shall use the modified test for testing the additive genetic effects.

The mean and variance of the modified statistic under the null hypothesis can be found from

the moments of the corresponding two-sample Mann-Whitney counts (Appendix B). In the case of

k = 3 samples, these take an especially simple form:

E(J∗) =
(n0n1 + 2n0n2 + n1n2)

2
,

Var(J∗) =
(n0n1 + 4n0n2 + n1n2)(N + 1)

12
.

The significance probabilities of the modified test can be determined from the exact permutation

distribution of the test statistic when the sample size is small. In large samples, J∗ is approximately

normally distributed, and the significance probabilities can be obtained by comparing ZJ∗ = [J∗−

E(J∗)]/Var1/2(J∗) to the standard normal distribution. To be more precise, a sufficient condition

for the asymptotic normality of J (and hence J∗) is that at least two groups increase without limit

as N → ∞ (Jonckheere, 1954). If, on the other hand, only one ni tends to infinity as the total

sample size increases, the limiting distribution of J will be platykurtic, and the procedure based
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on the normal approximation will tend to be conservative. For the case of three genotype classes

in HWE, therefore, the asymptotic normality of the test should hold even for rare alleles, when the

number of rare allele homozygotes is small (n2 << n0).

2.3.2 Fligner-Wolfe Test for Simple Tree Alternatives

For comparing k treatments with a control, Fligner and Wolfe (1982) proposed a procedure that

tests H0 against a partially ordered (simple tree) alternative H ′1 : µ0 ≤ [µ1, . . . , µk]. Their test

criterion is a sum of k pairwise Mann-Whitney statistics comparing the control (i = 0) group to k

treatment groups,

FW =
k∑
i=1

W0i = W0(1,...,k). (7)

Note that FW is equivalent to a single Mann-Whitney-Wilcoxon test between the control group

and the pooled data from k treatment groups. The Fligner and Wolfe test was shown to be

more efficient than the linear trend tests for detecting concave and umbrella patterns, therefore

it can be used for testing the association under dominant and recessive models, i.e., FWDOM =

W01 + W02 = W0(1,2) and FWREC = W02 + W12 = W(0,1)2. Under the null hypothesis, ZFW =

[FW − E(FW )]/Var1/2(FW ) is asymptotically normally distributed, with the mean and variance

determined in the same way as for the corresponding Wilcoxon rank-sum test (see Appendix B).

2.3.3 Robust Rank-Based Tests for Quantitative Trait Association

Since all three statistics considered above are based on sums of pairwise Mann-Whitney counts,

they are asymptotically normally distributed. Their correlations under the null hypothesis can

be determined from the moments of the Mann-Whitney U -statistics. As shown in Appendix C,

these correlations turn out to be exactly the same as those given in (3). Hence, provided all three

sample sizes are sufficiently large, the results from the previous sections apply and we can obtain a

distribution-free maximum (MAX3) test for quantitative trait association by using the maximum

of the standardized rank tests {|ZJ∗ |, |ZWDOM
|, |ZWREC

|}.
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2.3.4 Association Tests Based on Inverse Normal Transformation

As Beasley et al. (2009) finally concluded, one should thoroughly investigate the properties of

parametric tests based on the inverse normal transformation in the context of genetic studies. This

approach entails first transforming trait values (possibly adjusted for covariates) to ranks and then

transforming the ranks to quantiles of a standard normal distribution using the formula:

Y ′ij = Φ−1

(
rij − c

N + 1− 2c

)
, (8)

where rij is the rank of Yij among all N observations, Φ−1 denotes the inverse of the cumulative

distribution function of a standard normal variable, and c is an offset needed to avoid having the

maximum observation transformed to infinity. Some commonly used values are c = 1/2, c = 3/8

(Blom, 1958) and c = 0 (van der Waerden, 1952); but a particular choice of c has little effect on

the resulting scores for sufficiently large N , and is therefore unlikely to impact the final result. A

value of c = 1/2 was used in the current study, and the transformed data Y ′ij were subsequently

analyzed using parametric association tests of Section 2.2.

3 Simulation Experiment

We performed a simulation study to investigate the behavior of the usual parametric tests and their

nonparametric alternatives based on ranks and the inverse normal transformation in the context

of genetic association studies. Data were generated using the following model:

yij = µi + εij ,

where µi is the mean trait value for genotype i and εij , i = 0, 1, 2, j = 1, . . . , ni are independently

and identically distributed errors. The error term was generated from the following distributions:

(i) normal with mean 0 and variance 1; (ii) log-normal (µ = 0, σ = 1) as an example of a positively

skewed distribution; (iii) Cauchy (median = 0, scale = 1) as an extreme example of a distribution

with heavy tails; and (iv) empirical distribution of symmetric dimethylarginine (SDMA) - a marker

of renal function measured in the Dallas Heart Study, a population-based cohort from Dallas, TX

(see next section). The latter is a typical example of a quantitative trait that shows severe de-

partures from normality and cannot be easily transformed to an approximate normal distribution
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by applying, e.g., a logarithm transformation (Figure 2). The characteristics of these distribu-

tions are summarized in Table 1. We generated the data under the null hypothesis, µ = (0, 0, 0),

and under several alternatives: µADD = (0, 0.5, 1)δ, µDOM = (0, 1, 1)δ, and µREC = (0, 0, 1)δ,

corresponding to the additive, dominant, and recessive models, respectively. We also considered

an “umbrella” alternative, µUMB = (0, 1, 0)δ. Such non-monotonic alternatives are not gener-

ally considered a plausible mode of association in studies of human disease traits, but could arise

by chance in a GWAS. Thus a good association test should have high power under monotonic

alternatives and low power under a non-monotonic alternative. The effect size, δ, and the param-

eters of the error-generating distributions were selected empirically to result in power estimates

that were bound away from 100% because the differences in the behavior of different tests are

more apparent when the power is moderate rather than close to 100%. We used a total sample

of N = 2000, and generated individual genotype counts under the assumption of HWE for MAF

= 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5. For large samples sizes (N > 200) fixing geno-

type counts at their expectation has a negligible effect on power estimates (Kozlitina et al., 2010).

All tests were 2-sided with a nominal significance level of 0.05. Simulations were performed in R

version 3.0.2 (http://cran.r-project.org) and included 100, 000 replications. Empirical type-I error

rates and power were estimated as the proportion of times a test rejected H0 at α = 0.05.

Table 1: Distributions used for the error term in the simulation study.

Standard

Distribution deviation Skewness Kurtosis

Normal 1.0 0.0 0.0

Log-normal 2.2 6.2 110.9

Cauchya - - -

Empirical SDMA distributionb 1.0 6.4 81.3

aCauchy distribution with scale parameter 0.5 was used. The variance

and higher moments do not exist.

bDistribution was standardized to have a mean 0 and variance 1.

The differences between the observed significance levels of the proposed tests and the nominal

14
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Table 2: Deviations from a nominal α = 0.05 significance level of the normal theory and

distribution-free tests.

Tested model Tested model

MAF Test 2df ADD DOM REC MAX3 2df ADD DOM REC MAX3

Normal Log-Normal

0.05 F -test -32 37 25 -93 -6 421 -86 -69 -472 601

Rank -306 -3 -1 -299 -382 -161 10 56 -227 -318

F -test (INT) -74 42 34 -73 -7 47 40 35 7 65

0.1 F -test 103 -55 23 -12 41 123 41 22 -310 176

Rank 29 -17 32 -64 -40 -60 -66 -10 -33 -37

F -test (INT) 96 -64 32 -23 33 80 -22 -22 54 108

0.5 F -test 73 53 59 15 94 -45 -19 38 -28 -7

Rank 92 52 61 25 85 73 27 30 -44 58

F -test (INT) 60 56 76 17 114 159 -33 30 -21 49

Cauchy Empirical SDMA distribution

0.05 F -test 1922 3209 3383 -3369 2783 -764 -232 -205 -2135 -416

Rank -257 -2 -50 -230 -331 -288 -67 -99 -279 -394

F -test (INT) 29 16 3 -40 10 -15 -97 -72 -29 -34

0.1 F -test -569 219 2689 -1817 62 1161 -86 -64 265 1378

Rank -108 -87 -26 -93 -123 -175 -79 -120 -67 -169

F -test (INT) -70 -53 -27 -23 -48 -87 -69 -48 -77 -76

0.5 F -test -2587 -1631 -883 -945 -1773 -168 60 -170 37 -113

Rank 36 1 150 -97 77 -34 46 -36 83 87

F -test (INT) 101 31 145 -24 124 14 120 25 91 108

Note: The reported numbers are differences between the true significance level and the nominal level

α = 0.05 expressed in percentage points ×1000. Negative numbers indicate significance levels below

0.05; positive numbers - levels above the nominal level α = 0.05. The estimates are based on 100,000

replications. Standard error (SE) = 69 thousandths of a percentage point. The expected sample sizes

under MAF = 0.05, 0.1, and 0.5, are (n0, n1, n2) = (1805, 190, 5), (1620, 360, 20), and (500, 1000, 500),

respectively.
15
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Figure 2: Normal quantile-quantile plots of symmetric dimethylarginine (SDMA) levels in the Dallas

Heart Study. Left panel shows the distribution of the raw data; right panel shows the distribution

of the data after a logarithm transformation. Both distributions were standardized to have mean

0 and variance of 1.

level of 0.05 are summarized in Table 2. We note that with 100,000 replications, the standard error

of the estimates is 0.069% or 69 thousandths of a percentage point. As one might expect, all tests

remained valid (that is, the true type I error rate did not exceed the nominal level of 0.05) under

the normal error distribution.

In contrast, when the parent distribution was non-normal, the significance level of the usual

parametric tests could be either inflated or deflated, and the differences appeared to be greatest in

the case of heavy-tailed distributions, such as Cauchy and empirical SDMA distribution, as well

as for lower minor allele frequencies (0.05, 0.1). For the lowest MAF, some rank tests (Kruskal-

Wallis, Mann-Witney-Wilcoxon for the recessive model, and rank-based MAX3) tended to have a

smaller actual significance level than the nominal value of 0.05, as the normal approximation to

the distribution of the test statistic may not be very accurate when one of the samples is small

(n2 = 5). While such a conservative procedure maintains its validity, it may also be less powerful

than other tests. Remarkably, tests based on INT seemed to maintain their nominal significance

level in all situations: of the 60 estimates presented in Table 2, only 2 fell outside the approximate

95% two-sided confidence interval, which is in agreement with what would be expected by chance.
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Figure 3 illustrates the empirical power of the model-based and model-free rank tests under

different genetic models. (The results for parametric tests and tests based on the inverse normal

transformation are similar and are provided in Supplementary tables.) One should bear in mind

that a Monte-Carlo simulation with 100,000 replications implies that the maximum standard error

of each power estimate is 0.16%. As we would expect, for each genetic model, a test designed for

that model achieves the highest power. A test designed for an additive model (MJT) has relatively

high power to detect dominant effects for low to medium-frequency alleles (MAF < 33%), but can

perform poorly for more common alleles. On the other hand, when the true model is recessive, a

test assuming an additive model has very low efficiency relative to robust tests (MAX3 and KW),

unless the allele frequency is close to 50%. The robust MAX3 test has intermediate performance

between the model-free test (KW) and model-specific tests (MJT, FWDOM , and FWREC). At

the same time, MAX3 has substantially lower power than the general 2 df test (KW) under a

non-monotonic (umbrella) alternative.

Finally, Figure 4 displays the power of the MAX3 test based on untransformed data (U), usual

ranks (R), and a rank-based inverse-normal transformation (N) under different error distributions.

We focus here on the performance of the MAX3 test because it was shown to have relatively high

power regardless of the genetic model. The results for model-based and 2 df tests are similar (see

Supplementary tables). Not surprisingly, MAX3 based on the usual parametric F -tests and on

the inverse normal transformation (normal scores) have almost identical power, when the error

distribution is normal (Figure 4A). Notably, rank-based MAX3 is only slightly less powerful than

the parametric MAX3 under normality - a consequence of the well-known asymptotic performance

results for the Mann-Whitney-Wilcoxon test relative to the two-samlpe t-test (Lehmann, 1975).

Under empirical SDMA distribution, both nonparametric approaches (based on ranks and the

inverse normal scores) have higher power than parametric MAX3. The performance of tests based

on ranks and INT is almost indistinguishable, with the rank test having a slight advantage over

the normal scores test (see Supplementary tables for numerical estimates).

Nonparametric tests exhibit an even larger increase in power over the normal theory test under

the two distributions with the greatest departures from normality, the log-normal and the Cauchy.

The test based on INT is preferable to the rank test under the log-normal distribution (which

is positively skewed and has zero density for observations less than zero), while the rank test is
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Figure 3: Power of rank-based association tests under normal error distribution and different genetic

models. The parameters of data generating model are shown in the upper left corner. KW - Kruskal-

Wallis test; MJT - modified Jonckheere-Terpstra test; FW - Fligner-Wolfe test for the dominant

(DOM) and recessive (REC) models; MAX3 - rank-based maximum test.
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Figure 4: Power of the maximum (MAX3) test under the additive genetic model and different error

distributions. The alternative hypotheses are indicated in the upper left corner of each panel.
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more efficient under Cauchy distribution (which has extremely heavy tails and gross errors). These

observations are consistent with the theoretical result of Hodges and Lehmann (1960).

4 Application to an Association Study of Symmetrical Dimethy-

larginine (SDMA)

To illustrate the utility of the proposed method we applied the tests discussed in this paper to

an association study of SDMA levels in African American participants of the Dallas Heart Study

(DHS) - a multiethnic population-based sample of Dallas County (Victor et al., 2004). Symmetrical

dimethylarginine is a marker of renal function and has been shown to be an independent risk

factor for adverse cardiovascular events (Bode-Böger et al., 2006; Wang et al, 2009). We focus

on African Americans in this paper - the largest ethnic group represented in the DHS that has

the highest prevalence of both chronic kidney and cardiovascular disease. Genotypes for more

than 9000 SNPs across the genome and plasma levels of SDMA were obtained for 1,760 African

American subjects. After removing SNPs that were monomorphic in the study population, a total

of 8,994 SNPs were tested for association with SDMA, including 7,141 SNPs for which all three

genotypes were observed. We used age and gender adjusted SDMA levels as a quantitative trait.

Even after applying a logarithm or a Box-Cox transformation (Box and Cox, 1964), the residual

SDMA distribution had longer tails and showed other deviations from normality (Figure 2). The

analysis was performed using 4 different approaches: (1) raw (i.e., untransformed) trait values were

adjusted for gender and age and the residuals tested for association with SNPs using parametric

tests; (2) trait values were adjusted for gender and age after first applying a Box-Cox transformation

(λ = 0.1) and the residuals were analyzed using parametric association tests; (3) the residuals from

(2) were further transformed using an inverse normal transformation before applying parametric

association tests; (4) the residuals from (2) were analyzed using rank tests.

Figure 5 summarizes the p-values from the association analysis using rank-based MAX3 test

and parametric MAX3 applied to residual SDMA values after no transformation (untransformed),

Box-Cox transformation and an inverse-normal transformation. The strongest association with

SDMA was observed for a SNP in the gene AGXT2 (rs37369), recently shown to be associated

with SDMA in a genome-wide association study of the methylarginine traits that included 5,110
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individuals of European descent (Seppälä et al., 2014). Notably, this SNP was not ranked as the

top association by the usual parametric analysis applied to raw data, as illustrated in the top right

panel of Figure 5. Although the remaining three methods identified this SNP at a genome-wide

significance level (p < 10−8), the p-values for the two nonparametric tests (MAX3 Rank and MAX3

INT) were several orders of magnitude lower than the p-value for the MAX3 test based on Box-Cox

transformed data. Finally, MAX3 based on ranks was slightly more significant than the test based

on INT (Figure 5 and Table 3).

At the same time, parametric MAX3 test applied to raw data - and to a lesser degree Box-Cox

transformed data - produced several other results with p < 0.0001 that did not reach the same

level of significance using nonparametric methods (Figure 5). Table 4 reports the proportion of

tests reaching the nominal significance levels of 0.01 and 0.05, and demonstrates that parametric

tests applied to raw and Box-Cox transformed data (especially the test optimal for the recessive

model and MAX3) generated an excess of p-values below these levels of significance compared

to what would be expected under the complete null hypothesis. Given that most SNPs tested

in a genetic association study are expected to have no effect on the trait, these results likely

represent false positive associations. A closer inspection of the data revealed that most of the

SNPs with discordant p-values for the parametric and rank-based MAX3 tests were low-frequency

alleles (MAF< 0.05) with the smallest p-value under a recessive model (data not shown). When

the number of homozygotes is small (n < 5) and the assumption of normally distributed residuals

is violated, asymptotic results may not apply and the F -test comparing the means may be sensitive

to the effect of outliers. Nonparametric tests are robust to outliers and produce more conservative

results in this situation.

5 Discussion

In this paper we have described a robust distribution-free method for quantitative trait association.

The proposed method uses the maximum of three rank tests (MAX3) optimal for different genetic

models as its test criterion and adjusts the significance level to account for the correlation among

the corresponding tests. We find that the rank-based MAX3 test maintains good power and validity

(correct type I error rate) across a wide range of distributions and genetic models. Specifically,
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Figure 5: Summary of significance results from association analysis of symmetric dimethylarginine

(SDMA) levels in the Dallas Heart Study. Top left panel: quantile-quantile plot of -log10 p-values.

The strongest association result refers to the rs37369 SNP in AGXT2. Top right - bottom right

panels: scatters plot of p-values for the MAX3 test based on ranks against parametric MAX3

applied to raw data (MAX3 F , top right), to Box-Cox transformed data (bottom left, MAX3 BC),

and to inverse-normal transformed data (bottom right, MAX3 INT).
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Table 3: Comparison of significance levels for AGXT2 rs37369 by the described tests.

Tested model

Test ADD DOM REC MAX3

F -test Untransformed 2.1E-05 0.000573 0.000437 5.9E-05

F -test Box-Cox 7.6E-11 1.5E-07 7.2E-08 1.1E-10

F -test (INT) 9.2E-14 2.6E-09 5.3E-10 1.1E-13

Rank 2.0E-14 1.1E-09 1.4E-10 4.5E-14

Table 4: Proportion of tests meeting specified significance levels.

Tested model

α Test ADD DOM REC MAX3

0.01 F -test Untransformed 0.0123 0.0092 0.0230 0.0192

F -test Box-Cox 0.0111 0.0092 0.0139 0.0122

F -test INT 0.0093 0.0085 0.0108 0.0094

Rank 0.0098 0.0097 0.0101 0.0091

0.05 F -test Untransformed 0.0490 0.0497 0.0548 0.0588

F -test Box-Cox 0.0536 0.0513 0.0542 0.0555

F -test INT 0.0497 0.0489 0.0515 0.0489

Rank 0.0483 0.0469 0.0510 0.0457
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the test is only slightly less powerful than its parametric counterpart when the data are normally

distributed, but is far superior to the parametric test when there are outliers or other deviations from

normality. The proposed method is computationally efficient and is easy to implement. Therefore,

it can serve as a fast screening tool for large-scale (e.g., genome-wide) association studies of complex

traits with non-normal distributions.

The method described here is based on the principles of efficiency robustness, used by Freidlin

et al. (2002) to develop robust tests for case-control studies. By showing that the null correlations

among rank tests optimal for different genetic models are identical to those derived for binary

and normal data, we were able to apply the results from previous studies to develop a robust

test for quantitative traits with non-normal distributions. In addition, we have examined the null

correlations among test statistics optimal for different genetic models as a function of minor allele

frequency and quantified the loss of efficiency due to model misspecification. Although previous

studies provided some examples of the relative performance of different tests under selected allele

frequencies, our analysis generalizes these results and provides an additional insight about the

behavior of robust and model-based tests. Both our simulations and analytical results (Figure 1)

suggest that, compared to the conventional approach of assuming an additive model, robust tests

offer the greatest gain in power for detecting dominant effects of common alleles (MAF > 0.33)

and recessive effects at any allele frequency.

Many traits examined in genetic studies have distinctly non-normal distributions. Consequently,

the assumption of normally distributed residuals is often violated and standard statistical tests that

rely on normal theory may not maintain any good properties. The most common approach to deal

with non-normal data is to perform a transformation, such as a logarithm transformation, prior

to analysis to achieve more normally distributed residuals. Many genetic studies have used this

approach, however few report whether the assumption of normally distributed residuals is satisfied

after the transformation (see, e.g., Illig et al. 2010; Suhre et al., 2011). Here we show that even a

modest residual departure from normality can lead to reduced power and an inflated type-I error

rate, especially for low-frequency alleles. The MAX3 approach described in this paper is based

on ranks and is not sensitive to outliers or other departures from normality. The method could

be especially useful for large-scale association studies that look at multiple traits, such as eQTL

mapping or metabolomic studies (Illig et al. 2010; Suhre et al., 2011). In such situations, it may be
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difficult to assess the distribution of each trait and find a suitable transformation, therefore tests

that do not rely on a particular shape of a distribution are desirable.

An alternative approach to analyze non-normal traits, that has recently gained acceptance

in genetic research, is to perform an inverse normal transformation of the data before applying

standard parametric tests of association (Scuteri et al., 2007; O’Donnell et al., 2011; Kettunen et al.,

2012; Seppälä et al., 2014). This approach ensures that the data resemble the normal distribution

as closely as possible, and has the desirable property of being at least as efficient as the normal

theory tests (ARE ≥ 1) for all distributions (Chernoff and Savage, 1958). Despite the widespread

use of INTs and their desirable theoretical properties, no large simulation study has investigated the

performance of parametric tests based on the INT in the context of genetic studies, as Beasley et al.

(2009) point out. Here we have examined the performance of the tests based on INT relative to the

usual parametric tests and rank tests using a simulation study with different distributions, genetic

models, and minor allele frequencies. We demonstrate that the method maintains its favorable

properties in a variety of situations and therefore presents an attractive alternative for quantitative

trait association. One additional advantage of the method is that existing software packages, such

as PLINK (Purcell et al., 2007), can be readily applied once the transformation of the data has been

performed. Relative to the rank tests, the method may have an advantage when the underlying

distribution is skewed or has a density that drops discontinuously to zero at one extreme, such as

the log-normal or exponential distribution (Hodges and Lehmann, 1960). On the other hand, rank

tests may be preferable in the case of approximately symmetric heavy-tailed distributions, with

outliers at both ends of the distribution.

Instead of taking a maximum over three specified genetic models, a more general approach is to

maximize the trend test over all possible monotonic alternatives consistent with a genotype-trait

relationship. Wang and Sheffield (2005) considered such an approach and developed a constrained

likelihood ratio test (CLRT) under non-overdominance constraint. They mentioned that CLRT

could be viewed as a two-sided version of a test for order-restricted alternatives (Barlow et al.,

1972). A rank-based analog of the order-restricted test has been described in statistical literature

(Chacko, 1963; Shorack, 1964) and could be applied to genetic association studies. Based on the

results of Wang and Sheffield (2005) and Zheng and Chen (2005), however, we expect that CLRT

and MAX3 would have similar performance. At the same time, MAX3 is conceptually simpler
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and does not require special software to implement. Therefore, we focus on the maximum of three

rank-based association tests in the current study.

GWAS have successfully identified hundreds of loci that contribute to common disease traits,

yet all of the variants discovered to date explain only a small proportion of interindividual variation

in these traits (Maher, 2008; Manolio et al., 2009). The remaining “missing heritability” has been

attributed in part to the effects of rare genetic variants that were not screened by the typical

GWAS. Yet, it is also possible that genetic variants with non-additive effects account for part of

the unexplained variability. While there are a few examples of studies that have used a robust

combination approach similar to the one described in this paper (WTCCC, 2007; Sladek et al.,

2007), the vast majority of GWAS rely on the conventional approach or testing the association

under an additive genetic model, and thus could miss variants with non-additive effects. Adopting

robust association tests as part of the routine analysis of GWAS could help uncover additional

variants that influence complex traits non-additively.

In summary, we have described a robust method for quantitative trait association that is not

affected by deviations from both an assumed genetic model and an assumed distribution. The

proposed method could be a useful screening tool for large-scale association studies when neither

the inheritance mode, nor the distribution of the trait is known in advance.
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Appendix A

We note that the unstandardized association statistics are in the form T =
∑2

i=0 niciȳi, where ci =

(xi−x̄),
∑2

i=0 nici = 0 are known constants. Hence, underH0, E(T ) = 0, Var(T ) = σ2
∑

i ni(xi−x̄)2
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and Cov(T, T ′) = σ2
∑

i ni(xi − x̄)(x′i − x̄′). Therefore, the correlation coefficient under H0 of two

test statistics with scores xi and x′i is given by (2). Further, since σ̂2 is a consistent estimator of

σ2, the correlation coefficient between two regression statistics of the form (1) is asymptotically

equivalent to (2). For the three test statistics based on scores xADD = (0, 1, 2), xDOM = (0, 1, 1),

and xREC = (0, 0, 1), the correlation coefficients are derived as follows.

x̄ADD =
n1 + 2n2

N
; x̄DOM =

n1 + n2

N
; x̄REC =

n2

N
.

Using the shortcut formulas for the variance, Var(T ) = σ2
(∑

i nix
2
i −Nx̄2

)
, and covariance,

Cov(T, T ′) = σ2 (
∑

i nixix
′
i −Nx̄x̄′), we calculate:

Var(TADD) = σ2

[
n1 · 12 + n2 · 22 −N

(
n1 + 2n2

N

)2
]

= σ2

[
n1 + 4n2 −

(n1 + 2n2)2

N

]
=

=
σ2

N

[
n1(N − n1) + 4n2(N − n1 − n2)

]
=

(n0n1 + n1n2 + 4n0n2)σ2

N
,

Var(TDOM ) = σ2

[
(n1 + n2) · 12 −N

(
n1 + n2

N

)2
]

= σ2(n1 + n2)
(

1− n1 + n2

N

)
=

=
n0(n1 + n2)σ2

N
,

Var(TREC) = σ2

[
n2 · 12 −N

(n2

N

)2
]

= σ2(n2)
(

1− n2

N

)
=
n2(n0 + n1)σ2

N

and
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Cov(TADD, TDOM ) = σ2

[
n0 · 0 · 0 + n1 · 1 · 1 + n2 · 1 · 2−N

(
n1 + 2n2

N

)(
n1 + n2

N

)]
=

= σ2(n1 + 2n2)
(

1− n1 + n2

N

)
=
n0(n1 + 2n2)σ2

N
,

Cov(TADD, TREC) = σ2

[
n0 · 0 · 0 + n1 · 1 · 0 + n2 · 2 · 1−N

(
n1 + 2n2

N

)(n2

N

)]
=

= σ2(n2)
(

2− n1 + 2n2

N

)
=
n2(n1 + 2n0)σ2

N
,

Cov(TDOM , TREC) = σ2

[
n0 · 0 · 0 + n1 · 1 · 0 + n2 · 1 · 1−N

(
n1 + n2

N

)(n2

N

)]
=

= σ2(n2)
(

2− n1 + n2

N

)
=
n0n2σ

2

N
.

Finally, dividing covariances by the variance terms, we obtain the correlations:

cor(TADD, TDOM ) =
n0(n1 + 2n2)√

n0(n1 + n2)(n0n1 + 4n0n2 + n1n2)
,

cor(TADD, TREC) =
n2(n1 + 2n0)√

n2(n1 + n0)(n0n1 + 4n0n2 + n1n2)
,

cor(TDOM , TREC) =
n0n2√

n2(n0 + n1)n0(n1 + n2)
=
√

n0n2

(n0 + n1)(n1 + n2)
.

Appendix B

The means and (co-)variances of the rank-based k-sample trend tests under the null hypothesis can

be calculated from the moments of two-sample Mann-Whitney statistics (see Tryon, 1972):

E(Wij) =
ninj

2
, i 6= j,

Var(Wij) =
ninj(ni + nj + 1)

12
, i 6= j,

Cov(Wij ,Wil) = Cov(Wji,Wli) =
ninjnl

12
, if ijl are all different,

Cov(Wij ,Wli) = Cov(Wji,Wil) = −ninjnl
12

, if ijl are all different,

Cov(Wij ,Wlm) = 0, if ijlm are all different.
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Also, recalling that Wij is the number of times an observation from the jth sample exceeds one from

the ith sample, it follows that Wij + Wil = Wi(j+l), where Wi(j+l) is the Mann-Whitney statistic

comparing the combined data from the jth and lth samples to the ith sample.

The mean and variance of the modified Jonckheere statistic J∗ =
∑k−1

i=1

∑k
j=i+1(j − i)Wij are

given by:

E(J∗) =
∑
i<j

(j − i)E(Wij) =
∑
i<j

(j − i)ninj
2

.

and

Var(J∗) = Var
(∑
i<j

(j − i)Wij

)
=

∑
i<j

(j − i)2Var(Wij) +
∑
i<j

∑
i′<j′

(j − i)(j′ − i′)Cov(WijWi′j′)

In the case of k = 3, the above expressions reduce to:

J∗ =
k−2∑
i=0

k−1∑
j=i+1

(j − i)Wij = W01 + 2W02 +W12.

E(J∗) =
n01 + 2n02 + n12

2
.

Var(J∗) = Var(W01 + 2W02 +W12) =

= Var(W01) + 4Var(W02) + Var(W12) + 2(22 − 1(1))Cov(W01,W02) =

=
n0n1(n0 + n1 + 1)

12
+ 4

n0n2(n0 + n2 + 1)
12

+
n1n2(n1 + n2 + 1)

12
+ 6

n0n1n2

12
=

=
n0n1(N + 1)

12
+ 4

n0n2(N + 1)
12

+
n1n2(N + 1)

12

=
(n0n1 + 4n0n2 + n1n2)(N + 1)

12
.

Appendix C

The robust association test is based on the standardized versions of

J∗ = W01 + 2W02 +W12,

FWDOM = W0(1+2),

FWREC = W(0+1)2.
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Note that MJT can be alternatively expressed as

J∗ = W0(1+2) +W(0+1)2 = FWDOM + FWREC .

Hence,

Cov(TMJT , FWDOM ) = Cov(FWDOM + FWREC , FWDOM ) =

= Var(FWDOM ) + Cov(FWDOM , FWREC) =

=
n0(n1 + n2)(N + 1)

12
+
n0n2(N + 1)

12
=
n0(n1 + 2n2)(N + 1)

12
,

Similarly

Cov(J∗, FWREC) =
n2(n1 + 2n0)(N + 1)

12
,

and

Cov(FWDOM , FWREC) = Cov(W0(1+2),W(0+1)2) =

= Cov(W01 +W02,W02 +W12) =

= Cov(W01,W02) + Cov(W01,W12) + Cov(W02,W12) + Var(W02) =

=
n0n1n2

12
+
n0n2(n0 + n2 + 1)

12
=
n0n2(N + 1)

12
.

Now, we can obtain the correlations,

cor(J∗, FWDOM ) =
n0(n1 + 2n2)√

(n0n1 + 4n0n2 + n1n2)n0(n1 + n2)
,

cor(J∗, FWREC) =
n2(n1 + 2n0)√

(n0n1 + 4n0n2 + n1n2)n2(n1 + n0)
,

cor(FWDOM , FWREC) =
√

n0n2

(n1 + n2)(n1 + n0)
.

The above correlation coefficients are equivalent to those derived for regression based statistics.
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