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Transient semi-Markov processes have traditionally been used to describe the tran-
sitions of a patient through the various states of a multistate survival model. A survival
distribution in this context is a sojourn through the states until passage to a fatal ab-
sorbing state or certain endpoint states. Using complete sojourn data, this paper shows
how such survival distributions and associated hazard functions can be estimated non-
parametrically and also how nonparametric bootstrap pointwise confidence bands can
be constructed for them when patients are subject to independent right censoring from
each state during the sojourn. Limitations to the estimability of such survival distri-
butions that result from random censoring with bounded support are clarified. The
methods are applicable to any sort of sojourn through any finite state process of arbi-
trary complexity involving feedback into previously occupied states.

Some key words: bootstrap; censoring; cofactor rule; proportional hazards; saddlepoint
approximation; semi-Markov process; sojourn; survival analysis.
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Multistate survival models are usually transient semi-Markov processes whose states

are considered clinically meaningful in the study of some disease. Subjects move among
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the states, sometimes repeating states, until reaching either a fatal absorbing state or

some non-fatal endpoint state. Survival distributions that are of interest in such models

are sojourn time distributions from an initial state to a destination state or a subset

of such states. When complete histories of the sojourns of subjects through such sys-

tems are available, nonparametric statistical inference about such survival distributions

is possible using the methodology developed in Butler & Bronson (2002) and further

discussed in Butler (2007, Ch. 14). These references provide nonparametric function

estimates and nonparametric bootstrap pointwise confidence bands for such survival

functions and associated hazard and density functions. The basic idea is to use sad-

dlepoint methods to determine function estimates and to compute resampled function

estimates to which the BCa or percentile bootstrap methods, as described in Davison

& Hinkley (1997), can be applied to determine confidence bands.

This paper develops similar nonparametric methods to allow statistical inference

when subjects are at risk of independent right censoring from each state of the semi-

Markov process. Using complete histories about sojourns and censorings of subjects, we

show how nonparametric function estimates and BCa bootstrap pointwise confidence

bands can be computed for the survival, hazard and density functions of arbitrary so-

journs through general finite-state semi-Markov processes that may include transient

states as well as irreducible subchains. Like the previous methods in Butler & Bronson

(2002), this paper integrates transform methods, saddlepoint inversion and resampling

methods. Transform methods determine the moment generating function of the sojourn

distribution and an empirical moment generating function as its estimator. Saddlepoint

inversion is required to obtain a survival estimate from this estimator. Finally, resam-

pling methods are needed to obtain resampled survival estimates, from which confidence

bands can be computed.

To accommodate random censoring, two key assumptions are made throughout most

of the paper. First, right censoring times for subjects must be independent of all aspects

of the subjects’ sojourns through the semi-Markov process. This standard assumption
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is needed in order to use Kaplan—Meier estimators for exit-time distributions of the

semi-Markov process. Secondly, the censoring mechanism must result in consistently

estimable tails for exit-time distributions. Such estimability occurs when the distribu-

tional support of random censoring has least upper bound τ and (0, τ ) encompasses the

support of all exit-time distributions. Under such circumstances, we say the censoring

is tail-estimable. Without tail-estimability, sojourn distributions are only estimable for

t < τ ; see §4·3 for further discussion.

According to Chiang & Hsu (1976), the seminal paper to address the problem under

consideration was Fix & Neyman (1951). The left panel of Fig. 1 is a flowgraph that is

slightly more general than their multistate process and which will serve to illustrate our

methods. The goal of Fix & Neyman was to model the survival time, or first passage

from 1→ 3, of a patient under treatment for a disease such as cancer. Upon diagnosis,

the patient enters state 1, an active state, and from there is subject to four competing

risks, namely feedback into state 1, passage to recessive state 2, passage to death state

3, and right censoring, i.e. passage to state R1. States 1 and 2 are transient states from

which the patient may be censored, while state 3 is absorbing. To make the three-state

process as general as possible, transitions 1 → 1, 2 → 2 and 1 → R1 have been added

to the Fix & Neyman (1951) model and censoring may occur from all transient states.

Apart from this, the main difference between the two models is that ours is a semi-

Markov process whereas the original one is a time-homogeneous Markov process, which

is parametric and has possibly unrealistic exponential holding times.

A less restrictive approach than Fix & Neyman noted by a referee maintains the

Markov assumption for the multistate model but relaxes time-homogeneity. Nonpara-

metric estimation of passage time distributions in this context uses the Aalen—Johansen

(1978) estimator; see also Anderson, Hansen & Keiding (1991). Our approach is related

by the fact that Aalen—Johansen estimators are used for estimating individual steps of

the semi-Markov process; it differs in that these individual steps are assembled accord-

ing to semi-Markov dynamics that violate Markov assumptions over multiple steps. See
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§4·3 for further details.

Parametric approaches with semi-Markov assumptions have been considered by But-

ler & Huzurbazar (1997), when there is no censoring, and by Lô, Heritier & Hudson

(2008), under independent right censoring. Such parametric semi-Markov models can

be more realistic and useful than time-homogeneous Markov models, but inference is

based on parametric assumptions which our nonparametric methods are designed to

avoid. Apart from these references, no general methodology has been proposed for es-

timating sojourn times in semi-Markov processes, principally because the emphasis has

been on addressing such problems in the time domain. Feedback among states as in

Fig. 1 is difficult to handle in the time domain but not in the transform domain.

The nature and difficulty of our inference problem can be further clarified by con-

sidering the censoring-free semi-Markov process for the Fix & Neyman (1951) model

shown in the right panel of Fig. 1. The goal is to determine confidence bands for the

survival and hazard functions associated with first passage from 1 → 3 in this uncen-

sored flowgraph. However, data are not observed from this flowgraph but rather from

the censored flowgraph in the left panel. It will be seen that the removal of censor-

ing states from the left panel corresponds to the removal of censoring risk by using

Kaplan—Meier estimates, which in turn gives estimates for the dynamical parameters of

the semi-Markov process shown in the right panel of Fig. 1.

2. S��������
 �������
 ���
� 
����
 ��������
�

An estimate of the survival function can be simulated by using a scheme which

we refer to as walking through the network. Suppose complete data are available to

describe all sojourn details for previous patients. Independence assumptions associated

with the semi-Markov process, along with independence among patients, allow such

sojourn data to be partitioned in terms of the state exited. For each exit state the data

are summarized in terms of independent pairs consisting of holding times and associated

destination states.
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If there were no censoring, then walking through the network would consist of en-

tering state 1, randomly sampling an exit pair associated with state 1, passing to the

chosen destination state, repeating the same random sampling for the next destina-

tion state, and so on. The accumulated holding times up to absorption in state 3 are

X∗
1 , a simulated sojourn time. Repeating this M = 106 times leads to the empirical

distribution of {X∗
k : k = 1, . . . ,M} which suffices as a survival estimate.

If censored holding times may be sampled upon exit from a state, then it is necessary

to modify the simulation by using the redistribute-to-the-right method introduced in

Efron (1967) and described in Miller (1981). With this algorithm, a random exit time

is selected and used if it is a non-censored time; otherwise, the selected censored time is

not used and those holding times exceeding it are randomly sampled in order to draw

a larger non-censored time. This process is repeated until either a larger non-censored

exit time is selected or the very largest exit time is selected. In the latter case, if the

largest exit time is censored, the exit simulation from the current state is rejected and

repeated in its entirety. Such a scheme can again be used to compute an empirical

distribution of M simulated sojourn times as a survival estimate.

Bootstrap resampling of empirical survival estimates can be implemented by using

the following nested resampling scheme. The partition of the data set, determined

according to exit state, allows resampled data sets to be determined by independently

resampling the (destination, exit time) pairs from each state. If there is a total of

ni· non-censored and censored exits from state i, then, subject to some restrictions

described in §6, a random sample with replacement of ni· such data pairs creates the

resampled data for exiting from each state i in resampled network data set D∗1. This

resampling is repeated independently B times to generate network data sets D∗1, . . . ,D
∗
B

and M = 106 walks are resampled through each of these B networks. Walks in network

k give sojourn times {X∗∗
kl : l = 1, . . . ,M} that determine survival estimate Ŝ∗k(t) and

the ensemble {Ŝ∗k(t) : k = 1, . . . , B} leads to bootstrap pointwise confidence bands.

The demands for implementation of these nested resampling methods are the same
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for the double bootstrap. Indeed the authors have previously described this method as

a double bootstrap, but it may also be thought of as a single bootstrap that requires

simulation to determine the point estimate Ŝ∗k(t) in the bootstrap resampling. As noted

in Booth & Presnell (1998), the resampling demands for the double bootstrap, which

extend to our proposed nested resampling scheme, generally place its implementation

beyond the range of practical computing. While it is possible to perform such computa-

tions with small systems having sojourns that require few state transitions, multistate

models with a large number of highly interconnected states, complex feedback patterns,

or prolonged transient behaviour make such simulation not practically feasible.

Saddlepoint methods will be used in lieu of the inner resampling of {X∗∗
kl : l =

1, . . . ,M} to determine Ŝ∗k(t). The methods were first introduced in the double boot-

strap context by Hinkley & Shi (1989). Unlike simulation, the saddlepoint procedures

can deal with large systems, complex feedback patterns and prolonged transient behav-

iour. The resampling at the inner layer to determine MB values for {X∗∗
kl } is replaced

by B analytical saddlepoint inversions.

3. S���-M����� ������� ��
���

3 ·1. Cumulative incidence functions and transmittances

Semi-Markov processes have traditionally been used to describe the transitions of a

subject through the various states S = {1, . . . ,m} of a multistate survival model. The

process can be characterized through a sequence of independent competing risks that

describe the exit times and destination-state choices in S for the process. In the simplest

setting, a subject enters state j0 = 1 at time 0, and moves from state to state, remaining

in each state for a random period. Upon entering state j0 = 1, exit from state 1 is a

competing risk situation for which the m-dimensional exit distribution H1 determines

the holding time and the next state. If random vector {H11, . . . , H1m} has distribution

H1, then j1 = argminj∈S H1j is the next state and the holding time in state 1 has the

conditional distribution of H1j1 given the value of j1 = argminj∈S H1j. Upon entering
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state j1 at time H1j1 = t1, exit from state j1 becomes another competing risk with

multivariate exit distribution Hj1 that depends on the state j1 and which is otherwise

independent of the past. The sojourn of the subject through S continues in this way,

with the sojourn itself interpretable as a sequence of independent competing risk exits

from the visited states starting from a known entry state. The observed data for the

sojourn would consist of competing risk type data of the form {1, (j1, t1), (j2, t2), . . .}.

The process dynamics are completely specified by the collection of m-dimensional

exit distributions {Hi : i ∈ S}. Actually, each multivariate exit distribution Hi over-

specifies the process of exiting from state i, since only the so-called cumulative incidence

functions, or destination-specific subdistributions, associated with Hi are needed to

specify movement in S; see Klein & Moeschberger (2003, p. 52). If {Hi1, . . . , Him} has

distribution Hi, define the cumulative incident function for destination j when leaving

state i as

Gij(t) = pr (Hij = mink∈S Hik ≤ t) = pijFij(t),

where pij = pr (j = argminkHik) and Fij(t) is the conditional distribution of Hij given

j = argminkHik. Here {pij : j ∈ S} are exit probabilities out of state i and Fij(t) is the

holding time distribution in state i if destination j is assured. The m ×m matrix of

cumulative incidence functions G(t) = {Gij(t) : i, j ∈ S} characterizes the semi-Markov

process and is called the semi-Markov kernel; see Medhi (1994, §7·2).

The Laplace—Stieltjes transforms for components of G(t), i.e.,

Tij(s) =

∫
∞

0

estdGij(t) = pij

∫
∞

0

estdFij(t) = pijMij(s),

also characterize the process dynamics and prove to be most useful for computing

properties of the process through saddlepoint approximation. The function Tij(s) is

called a transmittance and the m×m matrix

T (s) = {Tij (s)} = {pijMij (s)}

is the transmittance matrix of the semi-Markov process. It is the Hadamard product

P ⊙ M (s) , where P = (pij) = T (0) is the transition probability matrix for state
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changes, and M (s) = {Mij (s)} is a matrix of 1-step moment generating functions.

The transmittance matrix T (s) characterizes the dynamic behaviour of the system in

the following manner: upon entering state i, the next state of the system is randomly

determined by the multinomial distribution given in the ith row of P. If this is state j,

then the holding time in state i, before proceeding to j, has distribution with moment

generating function Mij (s) .

3 ·2. First-passage transmittances

Suppose thatX is the first-passage time in the semi-Markov process of a sojourn that

enters state 1 at time 0 and ends upon entering state m. State m may be an absorbing

state, a transient state or one member of a irreducible subchain of the process. The

first-passage transmittance is accordingly

f1mF1m (s) = E
{
esX1(X<∞)

}
,

where f1m = pr (X <∞) is the probability of passage and F1m (s) is the conditional

moment generating function of X given X <∞. If there is at least one absorbing state

in S other than state m, then f1m < 1 and the distribution of X is defective with

pr (X =∞) = 1− f1m.

The following cofactor rule for computing f1mF1m (s) was proven in Butler (2000)

and discussed further in Butler (2007, §13·2·1). Let R ⊆ S with cardR = mR be

the relevant states to the sojourn, defined as the set of all possible intermediate states

during it. Let R = {1, i2, . . . imR−1,m} be ordered so that states 1 and m are the first

and mRth elements and let I = S\R be all irrelevant states, with card I = m −mR.

Let TRR (s) and TI I (s) denote the mR × mR and (m − mR) × (m − mR) principal

submatrices of T (s) corresponding to the ordered states in R and I.

T������ 1. The first-passage transmittance from state 1 to m �= 1 is

f1mF1m (s) =
(mR, 1)-cofactor of ImR

− TRR (s)

(mR,mR)-cofactor of ImR
− TRR (s)

=
(−1)mR+1 |ΨmR1 (s)|

|ΨmRmR
(s)|

, (1)
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where Ψij (s) is the (i, j)th minor of ImR
− TRR (s) . If all components of TRR (s) are

analytic over (−∞, ε) for some ε > 0, then the ratio (1) is analytic over a maximal

convergence neighbourhood of 0 of the form (−∞, c) , for some c > 0. Denote the

cofactor ratio in (1) by f1mF1m (s). If the cofactor rule were instead used with Im−T (s),

so all irrelevant states are included, then

(m, 1)-cofactor of Im − T (s)

(m,m)-cofactor of Im − T (s)
= f1mF1m (s)×

|Im−mR
− TII (s)|

|Im−mR
− TII (s)|

(s �= 0),

and a removable discontinuity can occur at s = 0 when |Im−mR
− TII (0)| = 0.

When the source and destination states are both state 1, or if the destination is

an arbitrary subset of states D ⊂ S, then equally simple cofactor rules f11F11 (s) and

f1DF1D (s) are given in §13·2·6 and §13·3 of Butler (2007). The T (s) matrix in those

expressions is the TRR (s) matrix used here, since Butler (2007, Ch. 13) assumes that

S has already been restricted to states relevant to the sojourn.

With all three destination types l = m, 1, orD, if f1l < 1, then absorbing states other

than m, 1, or D exist in S. These absorbing states, and perhaps some other transient

states, are irrelevant states for the first passage and not part of the computation in (1).

In such instances, the defective survival function for first-passage is f1lS1l(t) + 1− f1l,

where S1l(t) is the non-defective survival for F1l (s) , and mass 1− f1l is placed at ∞.

Computation of survival time distributions in multistate survival models entails

saddlepoint inversion of a first-passage moment generating function such as F1m (s)

in (1). Such approximate inversions are indicated throughout using tilded overscores

to distinguish them from exact expressions. Expressions for computing saddlepoint

density d̃1m (t) and survival S̃1m (t) approximations that can be used in conjunction

with a cumulant generating function logF1m (s) are provided in Butler (2007, §§1·1·2,

1·2·1). A saddlepoint hazard rate approximation is z̃1m (t) = d̃1m (t) /S̃1m (t) . These

saddlepoint computations require the first two derivatives of logF1m (s) , where F1m is

a ratio of cofactors as in (1). Such derivatives take on especially simple forms and are

given in Butler (2007, ch. 13).
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4 ·1. Saddlepoint point estimation

The survival function for first-passage time X from 1 → m is denoted through the

unknown functional S(t; θ) = pr(X > t; θ) , where the system parameter θ = T (s) is

the m×m transmittance matrix that characterizes the semi-Markov process. Even if an

estimator θ̂ = T̂ (s) is available, S(t; θ̂) is intractable since S is unknown. However, an

estimator can be determined by plugging θ̂ into the saddlepoint approximation S̃(t; θ)

for S(t; θ) so that S̃(t; θ̂) is an estimator for S(t; θ); its use presumes there is a practically

negligible difference between S̃(t; θ) and S(t; θ). This is supported by the many examples

in Butler (2000, 2007, Ch. 13).

4 ·2. Estimation without censoring

In the absence of censoring, the computation of θ̂ from sojourn data through the

network has been discussed in Butler & Bronson (2002). Pooling sojourn data for all N

subjects, suppose there are nij transitions from i→ j with holding times xij1, ..., xijnij .

Then

T̂ij(s) =
nij
ni·

1

nij

nij∑

k=1

exp(sxijk) = p̂ijM̂ij(s),

with ni· =
∑

j∈S nij, so that θ̂ = T̂ (s) = {T̂ij(s)}. From the nonparametric likelihood

of the sojourn data, it is clear that θ̂ = T̂ (s) is a sufficient statistic for θ but also the

nonparametric maximum likelihood estimator for θ when data are uncensored.

The estimator θ̂ = T̂ (s) itself indexes a semi-Markov process whose exit-time distri-

butions are discrete and whose behaviour provides estimates for the behaviour of the

semi-Markov process indexed by θ. Since saddlepoint inversions are smooth function-

als of θ = T (s), the suggested point estimator S̃(t; θ̂) is a nonparametric maximum

likelihood estimator for S̃(t; θ).

4 ·3. Estimation with censoring
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The estimation procedure just described can be modified to accommodate right

censoring if each patient’s censoring time satisfies the two conditions mentioned in §1:

First, the censoring time is independent of all aspects of the patient’s sojourn through

the semi-Markov process. Secondly, the censoring mechanism is tail-estimable for exit-

time distributions. The latter condition holds if all exit-time distributions {Fij(t)} have

intervals of support that are subsets of (0, τ), where τ ≤ ∞ is the least upper bound

for the support of the censoring time distribution C(t).

Consider, for example, a subject who enters state 1 of the semi-Markov process

in Fig. 1 at time 0, proceeds to state 2 in time t1, returns to state 1 after hold-

ing for t2, and is finally censored while holding in state 1 for time t+3 . The data are

{1, (2, t1), (1, t2), (R1, t
+
3 )} and the nonparametric likelihood for this sojourn is

p12dF12(t1)p21dF21(t2)
{
1−

∑3
k=1p1kF1k(t

+
3 )
}
× dC(t1 + t2 + t+3 ). (2)

The portion of the likelihood for T (s) separates from that for C(t). When these data are

used to label transmittances in the left panel of Fig. 1, about which they are informative

as shown in Fig. 2, then t1 is assigned to transmittance 1 → 2, t2 to 2 → 1, and t+3

to 1 → R1. Once all holding times for all patients have been assigned, then exit data

from each of the transient states are those of a classical competing risk data set with

independent right censoring. Fig. 2 is an example of exit data from state 1.

Estimating transmittances {Tij(s)} for the semi-Markov process in the right panel

of Fig. 1, that are free from censoring risk, begins by first estimating the associated

cumulative incident functions {Gij(t)} using standard nonparametric maximum like-

lihood estimators as in Klein & Moeschberger (2003, eqn. 4.7.1). This is followed

by the computation of their Laplace—Stieltjes transforms and a rescaling. In Fig. 2,

for example, cumulative incident function estimators {Ĝ1j(t) : j = 1, 2, 3} are com-

puted by first estimating the overall exit distribution function G1·(t) =
∑3

j=1G1j(t)

as the ordinary Kaplan—Meier estimator Ĝ1·(t) that treats the uncensored exit times

{x1, . . . , x13, y1, . . . , y4, z1, . . . , z4} as event times and {w+1 , . . . , w
+
4 } as censored times.

In the special case with no ties, the mass points assigned to each destination-specific
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cumulative incidence function are the Kaplan—Meier masses at the holding times for

that destination; i.e., dĜ12(xi) = dĜ1·(xi) for i = 1, . . . , 13, dĜ13(yj) = dĜ1·(yj), and

dĜ11(zk) = dĜ1·(zk).

Such estimators are also Aalen—Johansen estimators (Anderson et al., 1993, Exam-

ple IV·4·1). They are applicable for estimating the semi-Markov kernel G(t) because

isolated single-step exits from the states of such a process represent time-heterogeneous

Markov processes; the Markov property breaks down when multiple steps are allowed.

Let τ̂1 be the largest holding time in state 1. The Kaplan—Meier total at τ̂1 is

Ĝ1·(τ̂1) =
∑3

k=1 Ĝ1k(τ̂1) = 1 if τ̂1 is not a censored value. If, however, τ̂1 is a cen-

soring time, Ĝ1·(τ̂1) < 1 and the unallocated probability above τ̂1 must be reallocated

to the three mixture components when estimating the kernel G(t) and transmittance

matrix T (s) so as to correctly reflect the known transience of state 1. The data provide

no guidance about such reallocation, as the nonparametric likelihood is uninformative.

However, when censoring is tail-estimable, any reallocation can be used and will be

asymptotically correct as indicated in Theorem 3. Our discussion only considers the

approach of Dinse & Larson (1986, p. 381) that reallocates this probability proportion-

ately. This leads to transmittance estimators

T̂1j(s) = {Ĝ1·(τ̂1)}
−1

∫
∞

0

exp(st)dĜ1j(t) (j = 1, 2, 3), (3)

and ensures that state 1 is transient in T̂ (s). This rescaling is also equivalent to using

the redistribute-to-the-right algorithm described in §2 wherein the exit simulation is

redone in its entirety if the algorithm stops at τ̂1 and τ̂1 is a censoring time.

Justification for the rescaling in (3) is motivated as an attempt to accurately estimate

transition probabilities P̂ = T̂ (0). This occurs with rescaling if destination probabil-

ities achieved before time τ̂1 are roughly proportional to those after time τ̂1; i.e., the

unknown vectors {G1j(τ̂1)} and {p1j − G1j(τ̂1)} are roughly proportional. Any such

presumption, however, is untestable because the data lack information about exit times

and destination probabilities above τ̂1. Misjudgment in this reallocation will bias the

estimators {T̂1j(s)} with the size of the bias proportional to the unapportioned mass
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1 − Ĝ1·(τ̂1). Fortunately, when censoring is tail-estimable, this unapportioned mass is

asymptotically negligible, as noted in Theorem 3, so any such bias is also asymptotically

negligible. In practical applications, however, these unapportioned mass sizes should

be examined to determine their potential for bias when using T̂ (s) as an estimator of

T (s), as this affects the accuracy of the overall method.

Such rescaling is unnecessary when a parametric model is used for G(t), as in Lô et

al. (2008). Such an approach, however, may introduce serious bias when models are

misspecified.

The rescaled transmittance estimator T̂ (s) indexes a semi-Markov process on S.

For this process, let R̂, perhaps different from R, denote those states that are relevant

to sojourn 1 → m. If X∗ is a sojourn time for a walk through the network using the

redistribute-to-the-right algorithm of §2, then its transmittance is the cofactor rule of

Theorem 1 applied to T̂
R̂R̂
(s), the relevant principal submatrix of T̂ (s).

T������ 2. If X∗ is a simulated sojourn time from 1 → m as described in §2,

then

E
{
exp(sX∗)1(X∗<∞)

}
= f̂1m F̂1m (s) =

(m
R̂
, 1)-cofactor of Im

R̂
− T̂

R̂R̂
(s)

(m
R̂
,m

R̂
)-cofactor of Im

R̂
− T̂

R̂R̂
(s)

,

where m
R̂
= card R̂ and the expectation is conditional upon the data. If ŜM(t) is an

empirical survival function for M independently simulated copies of X∗, then ŜM(t)

converges weakly to S(t; θ̂) = f̂1mS1m(t; θ̂) + 1 − f̂1m as M → ∞, where S1m(t; θ̂) =

pr(X∗ > t | X∗ <∞). The saddlepoint approximation for S(t; θ̂) is

S̃(t; θ̂) = f̂1mS̃1m(t; θ̂) + 1− f̂1m, (4)

where S̃1m(t; θ̂) is the survival function obtained through saddlepoint inversion of F̂1m (s)

using the continuous Lugannani—Rice approximation (Butler, 2007, eqn. 1.21).

For settings where f̂1m < 1, there is at least one absorbing state in S\R̂ that is

irrelevant to first passage and makes pr(X∗ =∞) = 1− f̂1m > 0.

Proof of Theorem 2. In the simulation of a sojourn, each leg exiting a state is a

random generation from the appropriate row of the rescaled transmittance matrix T̂ (s).
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Thus saddlepoint inversion of F̂1m (s) , determined from T̂ (s), leads to a saddlepoint

approximation for S1m(t; θ̂), the survival function for F̂1m (s) . The weak convergence

of ŜM(t) to S(t; θ̂) follows from the law of large numbers. �

The theorem indicates that analytical computation of the saddlepoint estimator

S̃(t; θ̂) can replace the simulation estimator ŜM(t) as a substitute for the intractable

plug-in estimator S(t; θ̂).A justification for using S̃(t; θ̂) as an estimator of S(t; θ) follows

from the next result, which shows S̃(t; θ̂) is a uniformly consistent estimator of S̃(t; θ)

as the number of patients N → ∞. The proof is given in the Supplementary Material

and makes use of Theorem 1 of Suzukawa (2002) with the following assumptions:

Assumptions. (i) Right censoring is random and independent of the semi-Markov dy-

namics. (ii) The censoring distribution C(t) and all exit-time distributions {Fij(t)} are

continuous. (iii) All exit-time distributions {Fij(t)} have moment generating functions

that are convergent in a neighbourhood of zero. (iv) The censoring is tail-estimable, i.e.

all exit-time distributions {Fij(t)} have intervals of support that are subsets of (0, τ ),

where τ ≤ ∞ is the least upper bound to the support of C(t).

T������ 3. Subject to assumptions (i)—(iv) above, the saddlepoint survival in (4),

density estimator d̃1m(t; θ̂), and hazard estimator z̃1m(t; θ̂) = d̃1m(t; θ̂)/S̃1m(t; θ̂) con-

verge uniformly in probability to population counterparts S̃(t; θ), d̃1m(t; θ), and z̃1m(t; θ)

as N →∞ over compact subsets of t. Furthermore, if τ̂i is the largest holding time in

state i, censored or otherwise, then

Ĝi·(τ̂i) =

∫ τ̂i

0

dĜi·(t)→

∫
∞

0

dGi·(t) = 1, (N →∞).

This makes the rescaling used in T̂ (s) asymptotically correct and T̂ (s) converges uni-

formly in probability to T (s) over compact subsets in the convergence region of T (s).

Without tail-estimable censoring, the consistency of saddlepoint estimators is re-

stricted to 0 < t < τ.

T������ 4. Under assumptions (i)—(iii), saddlepoint survival, density, and hazard

estimators converge uniformly in probability to their population counterparts as N →∞

14



over compact subsets of t in (0, τ). The kernel G(t) is consistently estimable for t ≤ τ,

but not for t > τ, and T (s) is not estimable for any s.

The proof and details about the saddlepoint estimators are given in the Supplemen-

tary Material. Implications of Type I censoring for consistency are also given.

5. S�������
 �!�����

A numerical example is considered for our generalization of the Fix—Neyman model.

The model has been specified to satisfy the four assumptions preceding Theorem 3 so

that tail-estimability is ensured. The data consist of 100 simulated sojourns through

the system in the left panel of Fig. 1 starting in state 1 at time 0. These sojourns were

generated by simulating sojourns through the censor-free system in the right panel of

Fig. 1 and independently generating a censoring time from C(t) that competes with

the sojourn to determine the exit state in the left panel. The censor-free system had

transmittance matrix

T (s) =






0·3 ig(10·5,11·7) 0·3 r(17·7) 0·4 r(22·2)

0·5 r(13·3) 0·5 ig(11·0,8·8) 0

0 0 0






, (5)

where ig(a, b) is the inverse Gaussian moment generating function with mean a and

standard deviation b. The moment generating function r(a) is for a Rayleigh distri-

bution with mean a and can be easily derived in terms of the erf(·) error function.

Starting in state 1, the transmittance (5) admits a mean sojourn time through the un-

censored system of Fig. 1 as K′ (0) = 61·575 where K (s) = logF13 (s) . The standard

deviation of the sojourn time is K′′ (0)1/2 = 55·3 and the standardized third cumulant

K
′′′

(0) /K′′ (0)3/2 = 2·59 suggests that the sojourn distribution is highly skewed.

The independent censoring distribution C(t) is gamma with mean 62·5 and standard

deviation 28·0, so the mean is roughly the same as K′ (0) and the standard deviation is

about half that of the sojourn. The standardized third cumulant is 0·169, suggesting an

approximate normal shape. With the means roughly equal, there should be substantial
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censoring due to the severe skewness of the sojourn distribution. For this example, 40

of the 100 simulated sojourns were censored.

Kaplan—Meier estimates were computed for cumulative incidence functions in (5)

that are associated with the censor-free system in Fig. 1. Rescaling in the estimation

of T̂ (s) was not necessary for these estimates since the largest holding times τ̂1 = 51·4

and τ̂2 = 28·3 were not terminated by censoring. Laplace—Stieltjes transforms of these

cumulative incidence function estimates yield an empirical transmittance θ̂ = T̂ (s) with

R̂ = R = {1, 2, 3} that can be used in conjunction with the cofactor rule of Theorem 1

to determine the empirical first-passage moment generating function

F̂13 (s) =
{1− T̂22(s)}T̂13(s)

{1− T̂11(s)}{1− T̂22(s)} − T̂12(s)T̂21(s)

and passage probability f̂13 = 1. Saddlepoint inversion of F̂13 (s) leads to S̃(t; θ̂) =

S̃13(t; θ̂), as plotted in Fig. 3, which estimates S̃(t; θ), whose plot is also shown by

inverting F13 (s) . Bootstrap confidence bands using the BCa method are also shown

and will be discussed in §6.

An estimate of the survival density d̃13(t; θ̂), using saddlepoint inversion of F̂13 (s) ,

and the true saddlepoint density d̃13 (t; θ) are plotted in Fig. 4.

The hazard function estimate z̃13(t; θ̂) is plotted in Fig. 3 along with z̃13(t; θ),

the true saddlepoint hazard function. BCa confidence bands are also shown. The

stabilization of the hazard rate plot as t → ∞ was also noted in Butler & Bronson

(2002). In unpublished research, this limit has been characterized as the right-edge of

the convergence strip of its associated moment generating function. This occurs at c =

0·0167, the smallest real positive singularity of F13 (s) . The comparable singularity for

F̂13 (s) is ĉ = 0·0163. Such accuracy in estimating a tail characteristic results from using

the entire structure of the semi-Markov process when computing F̂13 (s) from T̂ (s). This

stabilization of hazard provides an important new observation about sojourns in the

general theory of semi-Markov processes. This observation, confirmed more rigorously

in unpublished research, is that passage time distributions in semi-Markov processes
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have exponential tails with rate parameter c when c > 0. Thus, they behave like passage

times of Markov processes.

6. B����������
� �
 ��� ���
����� 
����


The BCa confidence bands for survival and hazard functions shown in Fig. 3 are the

result of implementing the bootstrap but using saddlepoint approximations to compute

each of the resampled estimates. Bootstrap resampling provides an ensemble of survival

and hazard function estimates which lead to pointwise confidence bands to accompany

the point estimates. The idea is to implement resampling to construct B resampled val-

ues of the empirical system parameter denoted by {θ̂∗k = T̂ ∗k (s) : k = 1, . . . , B}. These

B transmittances determine B first-passage transmittances {f̂∗k F̂
∗
k (s) : k = 1, . . . , B}

whose saddlepoint inversions form an ensemble of survival function estimates {S̃(t; θ̂∗k) :

k = 1, . . . , B}. Pointwise confidence bands using the bootstrap percentile or BCa meth-

ods can be determined by using a sufficiently fine grid of time points that assures

smooth-looking curves.

Each θ̂∗k = T̂ ∗k (s) is obtained by extending Efron’s (1981) scheme to the various

competing risks. For each k, a resample of transitions out of each state i proceeds by

randomly sampling ni· (destination, holding-time) pairs with replacement from the ni·

exiting data pairs from state i. One caveat in using these resampled exits is that all

possible uncensored state transitions out of state i must be represented in the resample,

otherwise the entire resample from state i should be drawn again. If such resamples

were not discarded, they would alter the system structure by creating irrelevant states

in the resampled system θ̂∗k = T̂ ∗k (s) that are relevant states in the original data system

θ̂ = T̂ (s) and therefore relevant to the true underlying system θ = T (s). This rejection

scheme ensures that R̂∗
k ≡ R̂ ⊆ R for all k, where R̂∗

k are the relevant states of T̂
∗
k (s).

T������ 5. If X∗∗ is a sojourn time through the resampled system θ̂∗ = T̂ ∗(s),

then its first-passage transmittance is

E
{
exp(sX∗∗)1(X∗∗<∞)

}
= f̂∗1m F̂

∗

1m (s) =
(m

R̂
, 1) -cofactor of Im

R̂
− T̂ ∗

R̂R̂
(s)

(m
R̂
,m

R̂
) -cofactor of Im

R̂
− T̂ ∗

R̂R̂
(s)

.
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If Ŝ∗∗M (t) is an empirical survival function for M independently simulated copies of X∗∗,

then Ŝ∗∗M (t) converges weakly to S(t; θ̂∗) = f̂ ∗1mS
∗
1m(t; θ̂) + 1 − f̂ ∗1m as M → ∞, where

S∗1m(t; θ̂) = pr(X∗∗ > t | X∗∗ < ∞). A saddlepoint approximation for the intractable

resampled survival function S(t; θ̂∗) is S̃(t; θ̂∗) = f̂∗1mS̃
∗
1m(t; θ̂)+1− f̂ ∗1m, where S̃∗1m(t; θ̂)

is the Lugannani—Rice saddlepoint inversion of F̂∗1m (s) . If the data are such that f̂1m =

1, then f̂ ∗1m = 1.

Proof. The rejection scheme for resampling ensures that transition probabilities in T̂ (0)

for system θ̂ that are non-zero remain non-zero in T̂ ∗(0) for θ̂∗. This ensures the same

pattern of communicating states so that if f̂1m = 1, then f̂∗1m = 1. �

The values of X∗∗ are the MB resampled sojourns on the inner layer of resam-

pling described in §2. Theorem 5 emphasizes that the inner layer of resampling is

unnecessary for determining an ensemble of survival functions to compute bootstrap

confidence bands. Moreover, each saddlepoint survival function S̃(t; θ̂∗k) is equivalent to

an empirical survival function Ŝ∗∗M (t) computed with a very large simulation size M.

In some sojourn settings that have rare transitions without much data, the require-

ment that R̂∗
k ≡ R̂ for each bootstrap sample k may need to be relaxed in order to

obtain reasonable bootstrap coverage accuracy.

7. S�������
 �!����� ��������


Figure 3 shows 90% BCa confidence bands for the survival and hazard functions

of sojourn time X based on an ensemble of B = 1000 resampled estimates of the

appropriate functions.

To assess coverage accuracy of the method, 90% bootstrap confidence intervals were

constructed for selected percentiles of the sojourn distribution displayed in Table 1.

For example, 82·7 is the exact 75th saddlepoint percentile that solves 0·25 = S̃(82·7; θ)

and percentile estimate 89·2 solves 0·25 = S̃(89·2; θ̂). A 90% BCa confidence interval for

this percentile is (74·6, 110·5). This interval was constructed from resampled percentiles

determined by solving {0·25 = S̃(q∗i ; θ̂
∗
i ) : i = 1 . . . , B} so that {q∗i : i = 1 . . . , B} are

resampled 75th percentiles that determine the 90% interval (74·6, 110·5).
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Also listed are the right boundaries for guaranteed coverage tolerance intervals of X

that provide coverage 1− Right Perc. with a 90% guarantee; see Aitchison & Dunsmore

(1975). For example, the tolerance interval (0, 107·4) gives coverage for 75% of the

smallest values of X with a 90% guarantee.

Coverage percentages for the 90% BCa confidence intervals of the right-tail per-

centiles were estimated by computing BCa intervals for the percentiles using 1000 ad-

ditional simulated data sets. From the median up to the 99th percentile, all coverages

are reported in Table 1 as 90% when rounded to the nearest percentage.

The same 1000 data sets were used to assess coverage versus time for 90% BCa

confidence bands of S̃(t; θ). The right panel of Fig. 4 plots the resulting percentage

relative error versus time or 100% × {empirical coverage(t)− 0·9}/0·1 versus t from

the 50th to the 99·5 percentiles of the sojourn distribution. Note the very high de-

gree of accuracy for all values of t shown. Perhaps even more striking is the relative

accuracy that is maintained at and above t = 300 which, for the distribution of X,

is 4·3 standard deviations above the mean sojourn time of 62·5. We conjecture that

such high coverage accuracy is maintained well into the tail of the sojourn distribution

because the bootstrap is working at the simple poles ĉ∗, ĉ, and c that define the edges

of convergence strips for F̂∗1m (s) , F̂1m (s) , and F1m (s) . The structure of these poles is

similar since they are defined by the simple zeros of the denominators |Im
R̂
− T̂ ∗

R̂R̂
(s) |,

|Im
R̂
− T̂

R̂R̂
(s) |, and |ImR

− TRR (s) |.

The rescaling in (3), while not needed in computing T̂ (s), inevitably occurred when

computing {T̂ ∗k (s) : k = 1, ..., B}. It also occurred in computing T̂ (s) and {T̂ ∗k (s) : k =

1, ..., B} when generating the 1000 data sets used to determine the coverage percentages

in Table 1 and the error plot in Fig. 4. The accuracy of coverages displayed in the table

and plot reflect the success of the rescaling method in (3).

8. P��������
�� ��&��
 �!��
���
�

For data possessing time-dependent covariates x(t), there are no conceptual difficul-

ties to extending these methods if the additional structure of the Cox-model is assumed
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for the competing risk settings when exiting each state i. The associated destination-

specific hazards are

λij(t; x) = λij0(t)e
βTijx(t) (j = 1, . . . ,m),

and the methods for semiparametric estimation described in Kalbfleisch and Pren-

tice (2002, §8.2.3) and Lawless (2003, §9.4) are applicable for plug-in estimation of

destination-specific cumulative incidence functions. For confidence intervals however,

nontrivial computational issues are likely to arise in bootstrap resampling of (destination-

state, holding-time, time-indexed covariate) triples from individual states, due to sam-

pling unbalanced designs.

A��
�(��
���
��

We thank James Booth for clarifying distinctions between double and single boot-

strap interpretations of this work. We also thank two referees, the editor, and an

associate editor whose comments substantially improved the presentation. The work

was supported by the U.S. National Science Foundation.

S�������
���� ��������

Supplementary material available at Biometrika online includes proofs of Theorems

3 and 4, discussion of consistency with censoring that is not tail-estimable, and consid-

eration of Type I censoring.
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Table 1. Estimates for the distribution of first-passage time X from 1→ 3 as shown in

the right panel of Fig. 1. Percentiles of X in column 2, associated with the right-tail

probabilities in column 1, have 90% BCa confidence intervals given in columns 4 and 5

when computed from a single data set. The right boundaries of 90% guaranteed cover-

age tolerance intervals are in column 6. Coverage percentages for the BCa confidence

intervals resulting from 1000 simulated data sets and rounded to the nearest integer are

in column 7.

Right BCa BCa Guar. Coverage
Probs. Exact Estimate Lower Upper Tol. I. %age

0·50 42·0 47·7 41·0 58·4 54·9 90·

0·25 82·7 89·2 74·6 110·5 107·4 90·

0·10 137·7 145·4 119·9 179·7 173·6 90·

0·05 179·4 188·1 153·5 233·7 225·3 90·

0·01 276·3 287·4 231·9 358·6 346·1 90·

Probs., Tail Probabilities; Guar. Tol. I., Guaranteed Tolerance Interval; %age,
percentage.
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Fig. 1. (Left) The observed flowgraph for the generalized Fix & Neyman model

allowing censoring from each transient state. (Right) The unobserved generalized Fix

& Neyman flowgraph with censoring risk factors removed.
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Fig. 2. Example of exit data from state 1 with censoring
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Fig. 3. (Left) Saddlepoint survival function S̃(t; θ) = S̃13(t; θ) (solid), its saddlepoint

estimate S̃(t; θ̂) (dotted), and 90% BCa pointwise confidence bands (dashed). (Right)

Saddlepoint hazard function z̃13(t; θ) (solid), its saddlepoint estimate z̃13(t; θ̂) (dotted),

and 90% BCa pointwise confidence bands (dashed).

Fig. 4. (Left) Saddlepoint density function d̃13(t; θ) (solid) and its saddlepoint estimate

d̃13(t; θ̂) (dotted). (Right) The percentage relative error (dashed) of coverage from

nominal 90% coverage in survival function estimation. The relative error computation

compares coverage error to 0·1.
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Supplementary Material for
Bootstrap confidence bands for sojourn distributions in multistate

semi-Markov models with right censoring

R. W. Butler and D. A. Bronson (2012)

P���� �� T������ 3

Standard renewal theory modifications to the proof in Suzukawa (2002) suffice to

show consistency. Suzukawa (2002) shows consistency for integral estimates, such as

the first row of T̂ (s), but in an isolated competing risk setting consisting of a single step.

As such, his value of n1· is fixed and not random as with our data. He lets n1· →∞ in

the asymptotics but in our context n1· is random and driven to∞ with probability one

as N →∞.

Denote random variable n1· as N1 and let event AN1 = {|T̂11(s) − T11(s)| > η} for

some η > 0. For any ε > 0, we must show that N0 exists such that pr(AN1) < ε for

N > N0. The conditions of Theorem 3 allow Theorem 1 of Suzukawa (2002) to be

applied conditional on N1 so there exists M(ε) such that the conditional probability

pr(AN1 |N1) < ε/2 for N1 > M(ε). Define event Bε = {N1 < M(ε)} and let N0 = N0(ε)

be such that pr(Bε) < ε/2 when N > N0. Then

pr(AN1) = pr(AN1∩Bε)+pr(AN1∩B
C
ε ) ≤ ε/2+

∞∑

k=M(ε)

pr(AN1 | N1 = k) pr(N1 = k) < ε.

Thus all entries of T̂ (s) are pointwise consistent for T (s). Since each component is

strictly increasing in s, pointwise consistency can be easily shown to extend to uniform

consistency over compact sets. Uniform consistency for components of T̂ ′(s) and T̂ ′′(s),

the first two derivatives of T̂ (s), is shown by using the same arguments.

In Theorem 2, since pr(R̂ = R) → 1 as N → ∞, its (mR̂,mR̂)-cofactor of ImR̂
−

T̂R̂R̂ (s) converges to |ΨmRmR
(s)| in probability as N →∞ uniformly in s. This ensures

that its root ĉ is consistent for c, the convergence strip boundary for F1m (s) . On

compact subsets of (−∞, c), uniform consistency of T̂ (s), T̂ ′(s), and T̂ ′′(s) ensure the
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same for ∂kF̂1m (s) /∂s
k, i.e. ∂kF̂1m (s) /∂s

k → ∂kF1m (s) /∂s
k in probability uniformly

on compact sets with k = 0, 1, and 2. Such uniformity for k = 0, 1 is needed to ensure

consistency of the saddlepoint sequence ŝt → st as the roots of {log F̂1m (ŝt)}
′ = t. This,

together with the uniform consistency of {∂kF̂1m (s) /∂sk : k = 0, 1, 2}, ensure that

saddlepoint estimates are uniformly consistent and that, for example, S̃(t; θ̂)→ S̃(t; θ)

in probability uniformly over a corresponding range of t in the time domain.

C�����
�� 
� ��� ��
�-���
�����

Suppose condition (iv) of Theorem 3 does not hold, and let Ei = {j ∈ S : Fij(τ ) <

1} �= ∅ for at least one i. The consistency properties of Theorem 3 continue to hold for

some modified saddlepoint estimators, but only for t < τ.

Proof of Theorem 4. There are three steps for determining the saddlepoint estimators.

Consistency of these estimators then follows the same approach as used in Theorem 3.

The first step proposes estimators for the rows of G(t). If Ei = ∅, then the rescaled

estimators in transmittance estimator (3), suffice for row i and are denoted as {Ĝ†ij(t) :

j ∈ S}. If Ei �= ∅, then use the following estimator

Ĝ†ij(t) = Ĝij(t)1{t≤τ̂i} +

[

Ĝij(τ̂i) +
Ĝij(τ̂i)

Ĝi·(τ̂i)
{1− Ĝi·(τ̂i)}H(t− τ̂i)

]

1{t>τ̂i} (j ∈ S),

that proportionately reallocates the unallocated mass {1 − Ĝi·(τ̂i)} to all destinations

in S but placing the mass over (τ̂i,∞). Here, H is any distribution function, such

as an Exponential (1), that has a convergent Laplace-Stieltjes transform in an open

neighbourhood of 0.

Step 2 is concerned with showing the resulting semi-Markov kernel Ĝ†(t) = {Ĝ†ij(t)}

and its Laplace-Stieltjes transform θ̂† = T̂ †(s) are consistent estimators of some popu-

lation kernel G†(t) and its transform θ† = T †(s), which differ from G(t) and T (s), but

have the property that G†(t) ≡ G(t) for t < τ. If Ei = ∅, then, from Theorem 3, rescaled

estimator

Ĝ†ij(t)→ Gij(t)
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as N →∞ for all t > 0 and j ∈ S. If Ei �= ∅, then

Ĝ†ij(t)→ Gij(t)1{t≤τ} +

[
Gij(τ) +

Gij(τ)

Gi·(τ )
{1−Gi·(τ )}H(t− τ)

]
1{t>τ}

= G†ij(t).

Note that {G†ij(t)} is a semi-Markov kernel, since each G
†
ij(t) is a cumulative incidence

function, and

∑

j∈S

G†ij(∞) =
∑

j∈S

[
Gij(τ) +

Gij(τ)

Gi·(τ)
{1−Gi·(τ )}

]

= Gi·(τ ) + {1−Gi·(τ)} = 1.

Note that

G†ij(t) = Gij(t) (t < τ ; i, j ∈ S).

Thus the initial transitional dynamics of the daggered and undaggered processes are

the same during time interval (0, τ ).

For the final step, if G†(t) = G(t) for t < τ, then their respective first-passage

distributions are identical during the same period but not afterwards. Thus, saddlepoint

estimator S̃(t; θ̂†), based on the daggered process, consistently estimates S̃(t; θ†) ≃

S(t; θ†) = S(t; θ) for t < τ . �

T��� I ������
��

Whether or not the consistency Theorems 3 and 4 are applicable with Type I censor-

ing depends largely on how censoring distribution C(t) is viewed, as either a continuous

or discontinuous distribution. In the latter case, if C(t) = H0(t − τ ) where H0 is

the Heaviside function, then condition (ii) does not hold and both theorems are not

applicable.

If, however, C(t) is viewed as continuous with support on [τ − ε, τ + ε] for suffi-

ciently small ε > 0, then condition (ii), as it applies to C(t), holds. Thus, with such

an interpretation of Type I censoring, both theorems are applicable if the remaining

conditions hold.
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