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Nonparametric Sample Size Estimation for Sensitivity and Specificity with Multiple

Observations per Subject

Summary

We propose a sample size calculation approach for the estimation of sensitivity and specificity of

diagnostic tests with multiple observations per subjects. Many diagnostic tests such as diagnostic

imaging or periodontal tests are characterized by the presence of multiple observations for each

subject. The number of observations frequently varies among subjects in diagnostic imaging ex-

periments or periodontal studies. Nonparametric statistical methods for the analysis of clustered

binary data have been recently developed by various authors. In this paper, we derive a sample

size formula for sensitivity and specificity of diagnostic tests using the sign test while accounting

for multiple observations per subjects. Application of the sample size formula for the design of a

diagnostic test is discussed. Since the sample size formula is based on large sample theory, simula-

tion studies are conducted to evaluate the finite sample performance of the proposed method. We

compare the performance of the proposed sample size formula with that of the parametric sample

size formula that assigns equal weight to each observation. Simulation studies show that the pro-

posed sample size formula generally yields empirical powers closer to the nominal level than the

parametric method. Simulation studies also show that the number of subjects required increases as

the variability in the number of observations per subject increases and the intracluster correlation

increases.

Keywords: Intracluster correlation; Diagnostic test; Empirical power.
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1 Introduction

Diagnostic tests are of particular importance in medicine since early and accurate diagnosis can de-

crease morbidity and mortality rates of disease. Some examples of diagnostic tests include positron

emission tomography (PET) scans, X-rays, and enzymatic diagnostic tests. The performance of

a diagnostic test is often summarized by its sensitivity and specificity. Sensitivity is defined as

the probability of a positive diagnostic test in a subject with the disease, and specificity as the

probability of a negative diagnostic test in a subject without the disease. In this paper we focus

on clustered binary observations, which are made from multiple observations on each subject. In

this case, observations from each subject are correlated although those from different subjects are

independent. For example in a radiologic study each subject may contribute multiple lesions to the

study and an observation is made from each lesion.

Fleiss et al. (1) discussed the estimation of sensitivity and specificity for independent obser-

vations. Ignoring the within-subject correlation may result in underestimation of the variance of

sensitivity and specificity estimates. Hujoel et al. (2) emphasized the importance of incorporating

correlation among observations citing the high priority of diagnostic tests by the National Insti-

tute of Dental Research. Hujoel et al. (2) proposed a correlated binomial model to estimate the

sensitivity and specificity of the diagnostic test with multiple observations per subject. Smith and

Hadgu (3) proposed a generalized estimating equation (GEE) approach to estimate the sensitivity

and specificity in the presence of multiple observations per subject. Ahn (4, 5) evaluated vari-

ous statistical methods for the estimation of sensitivity and specificity of diagnostic tests through

simulation, and recommended statistical methods based on the values of intracluster correlation co-

efficients. Jung and Ahn (6) proposed an optimal weight estimator for the estimation of sensitivity

and specificity, which minimizes the variance of the estimator.

In this paper we focus on sample size estimation for testing a binomial proportion producing a

desired sensitivity or specificity of a diagnostic test with multiple observations per subject. Here,

the sample size refers to the number of subjects. For the estimation of sample size under clustered

binary data, we encounter two problems that need to be accommodated. One problem is that the

number of observations within a subject may vary among subjects. The other problem is assessing

the correlation among observations with a subject. Various authors provide sample size formulae

for the design of clustered binary data. Parametric sample size formulae have been proposed by
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many authors (7-12). Semiparametric methods, such as generalized estimating equation (GEE),

have been used for the derivation of a sample size formula. Liu and Liang (13) derived the sample

size formula using the score test from GEE whereas Pan (14) derived the formula using the z−test,

a special case of the Wald test.

Nonparametric statistical methods for the analysis of clustered data have been recently devel-

oped by various authors (15-20). However, to our knowledge, there is no publication on sample size

estimation with nonparametric approaches for testing a binomial proportion with multiple observa-

tions per subject. Noether (21) discussed sample size determinations for some common traditional

nonparametric tests assuming that the observations are mutually independent. Here, we propose

a sample size calculation method for clustered binary data using a sign test, which incorporates

the intracluster correlation coefficient and variability in the number of observations per subject.

Noether’s sample size formula for a sign test is a special case of the sample size formula presented in

this paper. We apply the proposed sample size formula to the design of a dental study. Extensive

simulation studies are conducted to evaluate the performance of the sample size formula and to

investigate the effects of intracluster correlation and imbalance in the number of observations per

subject.

2 Statistical method

Let n be the total number of subjects in an experiment and mi be the number of observations in

the ith (i = 1, ..., n) subject. The number of observations per subject may vary at random with a

certain distribution. Let Xij be the binary random variable of the jth observation in the ith subject,

j = 1, ..., mi, which is coded as 1 for success and -1 for failure. For the estimation of sensitivity,

success is defined as the positive diagnostic test in a subject with the disease, and failure as the

negative diagnostic test in a subject with the disease. Success and failure are defined similarly

for the estimation of specificity. We use this coding scheme since we can obtain some desirable

properties. With this coding we can express the total as the difference between the total number of

successes and the total number of failures for each subject (22, 23). We assume that observations

within a subject are exchangeable in the sense that, given mi, Xi1, ..., Ximi
have a common marginal

response probability P (Xij = 1) = p(0 < p < 1) and a common pairwise intracluster correlation

4



coefficient ρ = corr(Xij, Xij′) for j 6= j ′. This correlation is assumed not to vary with the number

of observations per subject. We test the null hypothesis H0 : p = p0 versus H1 : p = p1 for p0 6= p1.

Let m+
i and m−

i denote the total number of successes and failures in the ith subject, respectively.

In this paper we consider the choice of a sequence of weights such that all observations receive the

same weight. The statistic we use in this sign test is

T =
n

∑n
i=1 Si∑n

i=1 mi
=

n
∑n

i=1

(
m+

i − m−

i

)

∑n
i=1 mi

, (1)

where Si =
∑mi

j=1 Xij.

The expected value of T under the null hypothesis is given by

µ0(T ) =
n

∑n
i=1 E(Si|H0)∑n

i=1 mi
= n(2p0 − 1). (2)

The variance of T under the null hypothesis is

σ0(T )2 =
n2 ∑n

i=1 V ar(Si|H0)

(
∑n

i=1 mi)2
= 4p0(1− p0)n

2

∑n
i=1 mi{1 + (mi − 1)ρ}

(
∑n

i=1 mi)2
, (3)

which can be consistently estimated by

̂σ0(T )2 = 4p0(1 − p0)n
2

∑n
i=1 mi{1 + (mi − 1)ρ̂}

(
∑n

i=1 mi)2
, (4)

where ρ̂ can be obtained by the ANOVA method (9,24). The ANOVA method suitable for contin-

uous variables can be adapted to estimate intracluster correlation coefficient for binary outcomes.

The intracluster correlation coefficient is estimated by (MSB − MSW )/[MSB + (m̄ − 1)MSW ],

where m̄ is the average number of observations per subject, and MSB and MSW are the mean

squares between and within clusters, respectively. Ridout et al. (25) conducted simulation stud-

ies to evaluate the performance of various estimators of ρ for clustered binary data under the

common-correlation model, ρ = corr(Xij, Xij′) for j 6= j ′. They showed that the ANOVA estima-

tor performed well in their simulation studies.

The test statistic

Z =

∑n
i=1

(
m+

i − m−

i

)
−

∑n
i=1 mi(2p0 − 1)

√
4p0(1 − p0)

∑n
i=1 mi{1 + (mi − 1)ρ̂}

(5)

is asymptotically normal with mean 0 and variance 1. Hence, we reject H0 if the absolute value of

Z is larger than z1−α/2, which is the 100(1− α/2) percentile of the standard normal distribution.
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3 Sample size calculation with equal numbers of observations per

subject

Noether (21) proposed a sample size determination for some common nonparametric tests such as

a sign test. He showed that the sample size or the power of the test can be estimated by solving

the following equation. {
µ1(T ) − µ0(T )

σ0(T )

}2

= (z1−α/2 + rz1−β)2,

where r = σ1(T )/σ0(T ).

When all subjects contribute equal number of observations, we have mi = m for i = 1, ..., n.

The expectation of T under the null hypothesis is

µ0(T ) =
n∑

i=1

1

m
E(Si|H0) = n(2p0 − 1).

Simarly, the expectation of T under the alternative hypothesis is

µ1(T ) =
n∑

i=1

1

m
E(Si|H1) = n(2p1 − 1).

The variance of T under the null hypothesis is

σ0(T )2 =
n∑

i=1

1

m2
V ar(Si|H0) = 4p0(1− p0)n{1 + (m − 1)ρ}/m.

To achieve a power of 1− β, the required sample size (n) to test H0 : p = p0 against H1 : p = p1 is

given by

n =
(z1−α/2 + rz1−β)2

(p1 − p0)2

{
1 + (m − 1)ρ

m

}
p0(1 − p0), (6)

where r = σ1(T )/σ0(T ) =

√
p1(1−p1)
p0(1−p0)

. Throughout this paper, the sample size refers to the number

of clusters.

4 Sample size determination with varying numbers of observa-

tions per subject

We assume that the number of observations (mi) is small relative to the number of subjects (n),

so that asymptotic results can be obtained with respect to n. The expectation of T under the null
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and alternative hypotheses are

µ0(T ) =
n

∑n
i=1 E(Si|H0)∑n

i=1 mi
= n(2p0 − 1)

and

µ1(T ) =
n

∑n
i=1 E(Si|H1)∑n

i=1 mi
= n(2p1 − 1),

respectively.

The variance of T under the null distribution is

σ0(T )2 =
n2 ∑n

i=1 V ar(Si|H0)

(
∑n

i=1 mi)2
= 4p0(1− p0)n

2

∑n
i=1 mi{1 + (mi − 1)ρ}

(
∑n

i=1 mi)2
.

One can model the mi’s as independent and identically distributed random variables. From Equa-

tion (3)
1

n
σ0(T )2 → 4p0(1− p0){(1− ρ)E(M) + E(M2)ρ}/E(M)2

as n → ∞, where M is the random variable associated with the number of observations per subject

and E(.) is the expectation with respect to the distribution of the number of observations per

subject. With E(M) = θ, V ar(M) = τ2, and γ = τ/θ, σ0(T )2 converges to

4np0(1 − p0)

{
1 − ρ

θ
+ ρ + γ2ρ

}
,

as n → ∞.

With a power of 1 − β, the sample size estimate (n) to test H0 : p = p0 versus H1 : p = p1 is

n =
(z1−α/2 + rz1−β)2

(p1 − p0)2

{
1− ρ

θ
+ ρ + γ2ρ

}
p0(1− p0), (7)

where r = σ1(T )/σ0(T ) =

√
p1(1−p1)
p0(1−p0)

. When the number of observations is constant across all

subjects, the sample size formula (7) reduces to (6). For a given level of power, the required

number of subjects with variable number of observations is always larger than that with equal

number of observations across all subjects.

5 An Example

Here we provide, as an example, the sample size estimate for the sensitivity of an enzymatic

diagnostic test (2). An enzymatic diagnostic test was employed to decide whether a site was
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infected by at least one of two organisms, treponema denticola and bacteroides gingivalis. Each

subject contributed a different number of infected sites which were determined by the gold standard

(an antibody assay against the two organisms). Table 1 shows the data of Hujoel et al. (2) that

contains 29 subjects of which the number of true positive test results (m+
i ) and the number of

infected sites (mi). The distribution of the number of sites can be estimated from the observed

distribution of the number of sites. Table 2 gives the observed and the estimated distribution of

the number of sites (m).

Suppose we want to use the above data as pilot data to design a similar experiment to test the

hypothesis H0 : p = 0.7 versus H1 : p = 0.8. From Table 1, we obtain the intracluster correlation

coefficient estimate ρ̂ = 0.2 from the data using the ANOVA method. From Table 2, we calculate

E(M) = 4.90, var(M) = 1.20, and γ = 0.23. From Equation (7), the estimated sample sizes

required for the experiment are 58 and 75 subjects for 80% and 90% power, respectively. Hujoel et

al. (2) provided specificity data in the same format as the sensitivity data in Table 1. The sample

size estimate for the specificity of an enzymatic diagnostic test can be conducted in the same way

as we did for the sensitivity data.

6 Simulation study

We investigated the performance of the sample size formula, Equation (7), for the proportion test

through simulation. Since the number of observations per subject is frequently unbalanced in

medical studies, we generated the number of observations per subject using the truncated negative

binomial distribution below 1 (26), which has probability mass function (27)

f(k) =
(s + k − 1)!ps(1− p)k

(s − 1)!k!(1− ps)
, (8)

which has mean

µ =
s(1 − p)

p(1− ps)

and variance

σ2 =
µ[1− s(1 − p)ps]

p(1− ps)
.

The imbalance in the number of observations per subject is measured by the quantity κ = 1/(1 +

σ2/µ2). The smaller κ, the larger the variation in the number of observations per subject. The
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number of observations is the same across all subjects when κ = 1. The number of observations for

each subject is generated from the truncated negative binomial distribution with mean of µ = 5,

10, and 20, and the imbalance parameter of κ = 0.6, 0.8, and 1.0, which corresponds to severe

variability, moderate variability, and no variability in the number of observations per subject. We

used ρ values of 0.05, 0.1, 0.3, and 0.5. Here, we test the null hypothesis H0 : p = p0 against the

alternative hypothesis H1 : p = p1 with α = 0.05, 1 − β = 0.9 and (p0, p1)=(0.6, 0.7), (0.8, 0.9),

or (0.7,0.9). The required number of subjects is estimated by Equation (7) for given values of p0,

p1, ρ, κ, µ, α, and β. The correlated binary data are generated by the method of Lunn and Davies

(28) conditional on the number of observations per subject and the estimated number of subjects.

The sample size formula, Equation (7), was derived using the weighting method that assigns equal

weight to each observation. We compared the performance of the proposed sample size formula

with that of the parametric sample size formula assigning equal weight to each observation (10).

We conducted 5,000 experiments for each parameter combination. Empirical power was computed

as the proportion of 5,000 samples in which the null hypothesis was rejected by the the test statistic

(Equation (5)).

Table 3 reports the estimated sample sizes and the corresponding empirical powers for testing

H0 : p = 0.6 versus H1 : p = 0.7 at significance level of 0.05 and with a power of 90%. In

general, empirical powers are close to the nominal power of 90% for both the proposed method

and the parametric method. Table 4 and Table 5 present empirical powers for testing H0 : p = 0.8

versus H1 : p = 0.9 and for testing H0 : p = 0.7 versus H1 : p = 0.9, in which empirical powers

using the proposed method are generally closer to the nominal power than the parametric method.

It is noticeable that the nonparametric test yields greater power than the parametric test at a

cost of more subjects with the exception in one entry in Table 3 and four entries in Table 5. As

κ decreases, the number of observations varies more and more severely, the required number of

subjects increases. The sample size estimates increase as the intracluster correlation ρ increases.

When the mean number of observations µ increases, the required number of subjects decreases. As

the specified probability of success p1 gets closer to p0, the estimated number of subjects becomes

larger.
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7 Discussion

We proposed a nonparametric sample size calculation approach for the control of sensitivity and

specificity of diagnostic tests with multiple observations per subject. Since the sample size formula

is based on the asymptotic theory, simulation studies are conducted to evaluate finite sample

performances of the proposed sample size formula. We compared the performance of the proposed

sample size formula with that of the parametric sample size formula of Jung et al. (10) that

assigns equal weight to each observation for the proportion test. Simulation studies show that the

proposed sample size formula generally yields empirical powers closer to the nominal level than the

parametric method. Simulation studies also show that the number of subjects required increases

as the variability in the number of observations increases and the intracluster correlation increases.

The test statistic, Equation (5), belongs to the family of cluster-weighted multivariate sign statistics

considered by Larocque et. al. (16). In calculation of the test statistic all observations receive equal

weights. The effects of different weighting schemes, such as equal weights to subjects and optimal

weights, on sample size estimates need to be investigated.
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Table 1: Pilot data for sensitivity m+
i /mi from n = 29 subjects.

3/6, 2/6, 2/4, 5/6, 4/5, 5/5, 4/6, 3/4, 2/4, 3/4, 5/5, 4/4, 6/6, 3/3, 5/6, 1/2, 4/6,

0/4, 5/6, 4/5, 4/6, 0/6, 4/5, 3/5, 0/2, 2/6, 2/4, 5/5, 4/6

Table 2: Distribution of cluster sizes (mi).

mi

2 3 4 5 6

Observed distribution 2/29 1/29 7/29 7/29 12/29

Projected distribution 0.05 0.05 0.25 0.25 0.4
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Table 3: Empirical powers (%) and sample size estimates in parentheses for testing H0 : p = 0.6

vs. H1 : p = 0.7 with α = 0.05 and β = 0.10 from 5,000 simulations. The sample size refers to the

number of clusters.
Method

κ ρ
a

µ
b STc PT ud

0.6 0.05 5 92(66) 91(61)

10 89(43) 88(40)

20 89(32) 87(29)

0.1 5 91(84) 90(77)

10 89(62) 88(57)

20 89(51) 87(47)

0.3 5 90(154) 89(142)

10 90(137) 89(126)

20 89(129) 88(119)

0.5 5 89(224) 89(206)

10 90(212) 89(195)

20 89(206) 89(190)

0.8 0.05 5 89(61) 88(56)

10 89(38) 88(35)

20 89(27) 87(25)

0.1 5 90(74) 88(68)

10 89(52) 89(48)

20 89(41) 87(38)

0.3 5 90(124) 89(114)

10 90(107) 89(99)

20 89(99) 88(91)

0.5 5 90(174) 88(160)

10 88(162) 89(149)

20 90(156) 89(144)

1 0.05 5 89(58) 88(53)

10 90(35) 87(32)

20 89(24) 88(22)

0.1 5 90(68) 88(62)

10 89(46) 87(42)

20 89(35) 87(32)

0.3 5 90(106) 89(98)

10 90(89) 89(82)

20 90(81) 88(74)

0.5 5 90(144) 88(133)

10 90(132) 89(122)

20 90(126) 88(116)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1

c: Sign test for clustered binary data

d: Parametric test assigning equal weight to each site from Jung et al. (2001)
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Table 4: Empirical powers (%) and sample size estimates in parentheses for testing H0 : p = 0.8

vs. H1 : p = 0.9 with α = 0.05 and β = 0.10 from 5,000 simulations. The sample size refers to the

number of clusters.
Method

κ ρ
a

µ
b STc PT ud

0.6 0.05 5 90(38) 85(26)

10 85(25) 83(17)

20 84(18) 83(13)

0.1 5 88(48) 85(33)

10 86(36) 83(25)

20 84(29) 82(21)

0.3 5 88(88) 84(61)

10 88(78) 83(54)

20 88(74) 83(51)

0.5 5 89(128) 84(89)

10 88(121) 84(84)

20 88(118) 83(82)

0.8 0.05 5 89(35) 83(24)

10 87(22) 83(15)

20 85(16) 83(11)

0.1 5 88(42) 83(29)

10 85(30) 82(21)

20 84(24) 81(17)

0.3 5 88(71) 84(49)

10 87(61) 83(43)

20 85(56) 82(39)

0.5 5 88(99) 82(69)

10 88(93) 83(64)

20 88(89) 85(62)

1 0.05 5 88(33) 83(23)

10 87(20) 83(14)

20 86(14) 83(10)

0.1 5 87(39) 84(27)

10 85(26) 82(18)

20 83(20) 81(14)

0.3 5 88(61) 84(42)

10 87(51) 82(35)

20 86(46) 84(32)

0.5 5 88(82) 84(57)

10 89(76) 84(53)

20 88(72) 83(50)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1

c: Sign test for clustered binary data

d: Parametric test assigning equal weight to each site from Jung et al. (2001)
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Table 5: Empirical powers (%) and sample size estimates in parentheses for testing H0 : p = 0.7

vs. H1 : p = 0.9 with α = 0.05 and β = 0.10 from 5,000 simulations. The sample size refers to the

number of clusters.
Method

κ ρ
a

µ
b STc PT ud

0.6 0.05 5 84(12) 78(7)

10 84(8) 81(5)

20 83(6) 84(4)

0.1 5 86(15) 82(9)

10 85(11) 83(7)

20 82(9) 84(6)

0.3 5 87(27) 81(16)

10 85(24) 81(14)

20 86(23) 80(13)

0.5 5 88(39) 82(23)

10 87(37) 81(21)

20 87(36) 81(21)

0.8 0.05 5 85(11) 73(6)

10 85(7) 79(4)

20 84(5) 82(3)

0.1 5 85(13) 79(8)

10 83(9) 82(6)

20 80(7) 82(5)

0.3 5 87(22) 80(13)

10 85(19) 80(11)

20 84(17) 80(10)

0.5 5 87(30) 81(18)

10 88(28) 79(16)

20 86(27) 80(16)

1 0.05 5 83(10) 73(6)

10 85(6) 79(4)

20 87(5) 84(3)

0.1 5 85(12) 76(7)

10 84(8) 80(5)

20 78(6) 80(4)

0.3 5 88(19) 79(11)

10 85(16) 78(9)

20 83(14) 79(8)

0.5 5 87(25) 78(15)

10 87(23) 81(14)

20 86(22) 82(13)

a: ρ is an intracluster correlation coefficient

b: µ is the mean cluster size of a truncated negative binomial distribution below 1

c: Sign test for clustered binary data

d: Parametric test assigning equal weight to each site from Jung et al. (2001)
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