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Several authors have proposed nonparametric semivariogram estimators. Shapiro and
Botha (1991) did so by application of Bochner’s theorem and Cherry et al. (1996) further
investigated this technique where it performed favorably against parametric estimators
even when data were generated under the parametric model. While the former makes
allowances for a prescribed nugget and the latter outlines a possible approach, neither of
these demonstrate nugget estimation in practice, which is essential to spatial modeling
and proper statistical inference. We propose a modified form of this method, which admits
practical nugget estimation and broadens the basis. This is achieved by a simple change
to the basis and an appropriate restriction of the node space as dictated by the first root
of the Bessel function of the first kind of order v. The efficacy of this new unsupervised
semiparametric method is demonstrated via application and simulation, where it is
shown to be comparable with correctly specified parametric models while outperforming
misspecified ones. We conclude with remarks about selecting the appropriate basis and
node space definition.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let

r={r(s):1<i<n,s eDCR

be a sample from a k-dimensional spatial
r(si) = (si) +3(si),
where 1 (-) is the mean function and § (-)

process with

is the spatial error process. Provided that E [ (s)] = 0, Var[§ (s)] = 02 < oo, and

Cov [8(si), 8 (s;)] = C (hy), where C () is a positive definite covariance function (i.e., >\, >, a;g;C(hy) > 0,V a;, hy,

and n), and h; = ||si — s;!

, the spatial err

or process is said to be isotropic. That is, the variance of the process is finite, and

the covariance between any two spatial locations only depends on the distance between them.
Commonly, spatial modeling uses semivariance,

Var [§ (s;) — & (s;
() = o =3 6)]
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Fig. 1. Plots of semivariogram basis elements for various values of ¥ and «. The dashed horizontal line shows the unit sill, while the dashed vertical line
indicates the first lag. All of the basis functions pass through the unit sill for the first time at the first lag. As « increases, the oscillatory behavior about the
unit sill quickly dampens beyond the first lag. The influence of & toward the origin is comparable in all four plots.

between spatial locations instead of covariance, since this represents a richer class of models. A more rigorous treatment of
spatial modeling can be found in Journel and Huijbregts (1978), Isaaks and Srivastava (1989) and Cressie (1993). When the
spatial error process is isotropic, semivariance can be expressed in terms of covariance simply as y (h) = C (0) — C (h). Un-
der these conditions, the nugget can be defined as lim,_, ¢+ ¥ (h) = lim;_, ¢+ C (0) — C (h). Hence, the nugget represents the
semivariance between locations close in space. If C (-) is right continuous at the origin, the nugget will be identically zero,
meaning the spatial error process is smooth. On the other hand, a non-zero limit implies a rough spatial error process, pos-
sibly from multiple sources of variation. This could be due to a combination of measurement error and small scale variation.
In practice, the attribution to these two sources is generally unknown, so the nugget is usually attributed to measurement
error. At large distances, the semivariance between locations usually becomes constant and is known as the sill.

Typically, a parametric function, which ensures conditional negative definiteness, is fit to the empirical semivariogram
using a non-linear algorithm. A function is said to be conditionally negative definite if Z?:l Zj'f':] aiajy (h,-j) < 0,V a, hj,
and n such that Z,’;l a; = 0.1t can be shown that for any positive definite function C (-), y (h) = C (0) — C (h) is necessarily
conditionally negative definite. Several nonparametric semivariogram fitting procedures guaranteeing this property have
been put forth in Shapiro and Botha (1991), Sampson and Guttorp (1992), Lele (1995) and Genton and Gorsich (2002).
We shall focus our efforts on presenting and improving upon Shapiro and Botha’s approach, which was generalized by
Fernandez-Casal et al. (2003). Invoking Bochner’s Theorem, C (-) can be represented as a spectral integral

C(h)=/OO.QK (ht) dF (1),
0

where 2, (x) = (%)(K_Z)/2 I (5)Jw—2)2 ®), T (-) is the gamma function, J, (-) is the Bessel function of the first kind of
order v = (k — 2) /2, and F (-) is a non-decreasing bounded function for t > 0. It is worth noting that £2; (x) = cos (x),
£25 (x) = Jo (%), and £25 (x) = sin (x) /x, which appear as interpolators with certain optimal properties in various fields
and applications. Also, ¥ may take on non-integer values and, if set to any value higher than the dimension of the spatial
process (i.e.,, k > k), will still yield a valid covariance function for the dimension in question. Finally, as x — oo,

2, («/ 2Kh) — exp (—hz), which corresponds to a Gaussian spatial error process and will be of importance in modifying
the method. Some plots of 1 — £2, (-) for selected values of k are shown in Fig. 1.
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Solving for the unknown F (-) involves a Fredholm equation of the first kind, which can be found in linear integral
equation texts such as Kythe and Puri (2002). Solutions to such equations are generally unstable, but assuming that F (-)
is a step function transforms the integral into a finite sum for which nonnegative least squares (Lawson and Hanson, 1974)
can be employed to obtain a nonparametric semivariogram estimate by solving

y () =C0)—C(h

= /Oo [$2¢ (0) — £2, (ht)] dF (t)
0

=Y 11— 2 (h)]ps

i=1

for jumps p; > 0 by minimizing

[ () = 7 ()]’

3
=1

J

with respect top" = [p1, ..., pm], Where 7 (h) = Z||s,~7sj||=h % is the usual empirical semivariogram estimate at

distance h with N (h) pairs satisfying ”si —§; H = h, and £ is the number of unique distances in the empirical semivariogram.
Thg} nodes, t;, and their number, m, are user defined. This formulation readily yields a sill estimate as lim;_. o, 7 (h) =
> is1 Pie

As pointed out by others, 1 — §2, () results in a rich semivariogram basis that compares favorably with parametric
semivariogram estimators. In their article, Cherry et al. (1996) outlined a potential iterative nugget estimation method,
which we found to yield degenerate estimates in practice. As will be shown, this problem is intimately connected with the
selection of the nodes; however, even careful node selection fails to completely address nugget estimation. We propose key
modifications to the approach, which will admit nugget estimates and broaden this class of nonparametric semivariogram
estimators.

2. Theoretical motivation

A certain class of parametric isotropic semivariogram models can be represented as:

h 2a
Va(h)=91+92i1—exp|:—<) :H,
03

where y, (-) is the semivariance function, h is the Euclidean distance between two points in space, 6 is the nugget, 9, is the
partial sill, 65 is the range parameter, and « € [0, 1]. When o = 0, this results in a white noise spatial error process,« = 1/2
is an exponential spatial error process, and ¢ = 1 corresponds to a Gaussian spatial error process.

Recalling that £2, («/ZI(h) — exp (—h?), one can generalize this to £2, («/ 2Kh"’> — exp (—h**) as k — oco. Thus, this
class of parametric semivariograms is the limiting case of a more general class of semivariograms given by:

ya(h>=91+ez{1—gk[ﬁ<h>a]}.

03

In the spectral integral representation, this would correspond to dF (-) being defined as dF (\/ 2k /65 ) = 0,,dF (c0) = 64,
and zero otherwise. Returning to the more general step function definition for F (-) in the spectral integral,

Ve () = / (2, (0) — 2, (O] dF (6)
0
=Y 11— (ht)]pi.
i=1

We have dispensed with the +/2k since that can be absorbed into the nodes, t;. Thus, the only modification that has been
introduced is substituting h* for h in the original formulation. This would seem unimportant given the original basis does an
excellent job fitting semivariograms from a variety of nugget-free parametrically generated data, including non-Gaussian
spatial error processes; however, it is a key ingredient when considering nugget estimation. This subtle change controls how
the basis behaves between the origin and the first observable empirical semivariogram value as shown in Fig. 1.
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3. Methodology

3.1. Node space definition

Cherry et al. (1996) used an arbitrary node space spanning from 0.04 to 16.16 with 0.04 spacing for the nodes between
0.04 and 4.00 and then 0.16 spacing for nodes above 4.00-16.16 resulting in a total of 200 nodes. They further noted that
saturating this space only increased computation time and had little impact on the final fit. We propose that in addition to
the change in the argument to £2, (), the definition of the node space is crucial for obtaining nugget estimates and stable
sill estimates.

Our initial interest in nonparametric semivariogram estimation was to have a method that could operate in unsupervised
brain-imaging applications. In our experience implementing the method, non-degenerate nugget estimates were not
possible, as acknowledged in their paper with some possible approaches outlined in their closing remarks. Another difficulty
using this method are the instances where the sill estimate, ZL pi, far exceeds the maximum value in the empirical
semivariogram, as addressed in Cherry (1997). Our investigations found these always corresponded to very low spatial
frequency nodes which caused the sill of the nonparametric semivariogram estimate to occur well beyond the maximum
distance included in the fitting process.

An inspection of the 1 — £2, (-) basis reveals why both phenomena occur. The first root of §2, (-) corresponds to the
distance at which 1 — £, (-) will first cross 1, after which that basis element will proceed to oscillate about 1. Thus, very
high frequency nodes start oscillating about 1 before the first lag in the empirical semivariogram and become highly aliased
with the nugget. With this insight, the nugget can be thought of as the jump associated with the node at infinity. Similarly,
extremely low frequency nodes will not start oscillating about 1 until well beyond the hull of the empirical semivariogram.
The locations of these crossings coincide with the roots of the Bessel function of the first kind of order v = "7’2 for which
numeric approximations are given in Ball (2000).

Using the first root of the Bessel function of order v, t,, define the node space as follows:

ti:tfk, i=2,...,¢,
h

where h; is the ith ordered distance in the empirical semivariogram (i.e., h; < h; fori < j). t; is defined to be the node at
infinity (i.e., t; = limy_ o+ t, /h® = 00; limy, .0 1 — $2, (h*t;) = 1, Vh > 0) with its respective jump, p1, being the nugget
estimate. This definition of the node space has several advantages over the previous approach. With the exception of t1, none
of the basis elements obtain and start oscillating about 1 before the second unique distance in the empirical semivariogram
since ht; < t;, which implies 1 — §2, (ht;) # 1for h < h,. This eliminates high frequency nodes that are highly aliased
with the nugget. If the first unique distance were included, the corresponding basis element would essentially be a constant
within the hull of the data and confounded with any nugget estimate. Second, all of the nodes achieve at least one crossing
within the hull of the data since 1 — £2, (hj?‘ t,-) =1,i=2,..., ¢, eliminating extremely low frequency nodes and potentially
unstable sill estimates. This definition is also independent of the scale of the particular distances being employed. Finally,
the placement and number of the nodes are dictated by the unique distances in the empirical semivariogram, generally
reducing computational overhead since most practical applications have fewer than 200 unique distances.

3.2. Selecting k

As Cherry et al. (1996) noted, as « increases, so does the smoothness of the basis elements. From an informal point-of-
view, this makes sense given that satisfying conditionally negative definiteness imposes more and more constraints as the
dimension of the spatial process increases (see Schoenberg (1938) for a more formal argument). Thus, they favored using
k = 3, or the sinc function, over ¥k = 1 (cosine) or k = 2 (Jy), even for lower dimension problems. We take their argument
further and suggest that even higher values of x desirable on the same smoothness grounds (Fig. 1).

The Bessel function of the first kind has an infinite number of roots whose spacing converges to 7 as h — oo (Watson,
1958). This means that while each basis element passes through 1 within the hull of the data using the node space defined
above, it may do so several times, which could result in fits with wiggly behavior between the empirical semivariogram
data points. This phenomenon is plainly evident for « = 1, which is a form of cosine interpolation. Even the sinc function
exhibits this behavior given its slowly decaying cyclic nature. For values of k > 11, £2, (-) dampens rapidly beyond its first
root (Fig. 1), which greatly reduces this behavior. One might wonder if this argument should be taken to its extreme and
let « — 00, which would result in using members of the exponential family as basis elements. The problem here is that
ask — 0o, t. — oo. Thus, we would forfeit our ability to precisely control where a given basis element passes through

1. In addition, £2, (v/2«xh*) converges fairly rapidly to exp(—h?®). Thus, we use x = 11 for the purpose of simulation and
application, even though other values of « are certainly valid for the proposed method.

3.3. Estimating o

As Fig. 1 shows, k primarily affects the behavior of the basis elements after they pass through 1, while « primarily impacts
their behavior between the first lag and the origin. Given the new basis and node space definitions, a natural question arises
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Fig. 2. In the upper plot, the dashed line shows the number of nonzero NNLS parameters as a function of «, while the solid curve shows the degrees of
freedom as estimated by ridge regression. The lower plot shows o2 (-) as a function of & using the number of nonzero NNLS parameters as degrees of
freedom as the dashed line, and using the ridge regression estimated degrees of freedom as the solid curve. The dot indicates the minimum of the solid
curve. The erratic behavior in the upper dashed curve makes the minimization of the lower dashed curve difficult. Both plots are based on the same sample
generated by a spherical semivariogram with 10% nugget, and a range of 6 from a 20 x 20 realization.

concerning how to choose the tuning parameter . Model selection criteria, such as Akaike’s information criterion (Akaike,
1973), Bayesian information criterion (Schwarz, 1978), or generalized cross validation (Craven and Wahba, 1979) can be
used to estimate «. Unfortunately, we found all three methods tended to underestimate «, which may be due to the heavy
correlation inherent in the empirical semivariogram. Thus, we propose the following optimization criterion:

)

L[ =7 () /7 )]
2(@) = -
= g )

where df ()70,) is the degrees of freedom of the fit, 7, (-), obtained using nonnegative least squares (NNLS) whose solution
is:

p@)= argngin {A.p — 7} {Aep — 7},
p=

where (Ay); = 1— 2, (h#t),i = 1,...,¢j = 1,...,¢and 7 = [y (h),...,y (hy)] is the vector of empirical
semivariogram values.

NNLS is similar to shrinkage methods such as ridge regression (Hoerl and Kennard, 1988) and Lasso. Zou et al. (2004)
showed that the expected number of nonzero parameters in Lasso is the degrees of freedom in the framework of Stein’s
unbiased risk estimation (SURE). Hence, Zou et al. (2004) used the number of nonzero parameters for a particular sample
as the degrees of freedom for Lasso. While this is an unbiased estimate, the degrees of freedom are now a stochastic integer
quantity. In the present context, taking the number of positive parameters as the degrees of freedom for the NNLS fits is
unsatisfactory since it is not a smooth function of @ with jumps back and forth between consecutive integers a common
occurrence. This phenomenon makes reliably minimizing the o2 (-) curve extremely difficult (Fig. 2).

Hence, we approximate the degrees of freedom of the NNLS fit using the degrees of freedom of the closest ridge regression
fit. That is,

df (J;Dl) ~tr (S)W) 5

where

Ay = argmin [Aa (ATA, + A1) ATy — Aap]T {Aa (ATA, + A1) 'ATH — Aap] ,
A>0
and
Sie = Aq (ATA, + 1,1) " AT

is the ridge regression smoother matrix.
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This approximation of degrees of freedom for the NNLS fit is a smooth function of &, making minimization of the o' (-)
curve numerically stable (Fig. 2). Thus, « is estimated as

L1 =7 ) /7 )]

@ = argmin =)

0<a<1

, (1)

i=1
yielding the final fit given by
¢

7a (=Y [1- 2 (h6)|p (@),

i=1

4. Simulations

This section will demonstrate the efficacy of the new method via simulation. Three commonly used parametric
semivariograms - the exponential, spherical, and Gaussian - are chosen using various parameter combinations of @7 =
[61, 65, B3] to generate 20 x 20 two-dimensional realizations. The fields are generated using the root covariance matrix
method where the eigen decomposition of ¥ = VDV, (XD)j=61+6—vy (hu) is used to obtain X2 = VD%VT, which
is then applied to a random vector of appropriate length drawn from a N (0, 1) to generate a realization with the desired
semivariance structure.

Our ultimate goal is to compare the performance of the new technique and these traditional parametric models in terms
of nugget estimation and weighted integrated squared error (WISE). WISE is defined in the spirit of weighted least squares
(Cressie, 1985) so that lower lags receive more weight than later ones,

X o1 L h wz)T
WISE (7) = S - - 1Y , 5

()= [ gl o-r@fa= | [ vy ] @ @
where y (-) is the true semivariogram and j (-) is the estimated semivariogram using either the new method or one of
the parametric models. This measure is also known as integrated squared relative error. Extensive simulation has shown
that fixing « = 0.00, 0.575, 0.750, and 1.000 for white noise, exponential, spherical, and Gaussian spatial error processes,
respectively, to be nearly optimal at estimating the true parametric semivariogram in terms of WISE for a wide variety of
choices for ©.

For each random realization, the proposed semiparametric method, using both the estimated « and the corresponding
fixed value of «, and the three parametric models were fit using weighted least squares. The parametric fits used
the Nelder-Mead optimization algorithm in the R function optim. In contrast to popular alternatives like the
Broyden-Fletcher-Goldfarb-Shannon (BFGS) optimization algorithm, we were able to obtain convergence for every fit using
the generally slower Nelder-Mead algorithm. The initial value of @ for optimization was given as the minimizer of WISE
between the model being fit and the true model. The nugget estimate and WISE were recorded for each fit.

Nuggets (61) were set at either 10% or 30% of the sill, and range parameters (65) were set to either medium or long. Medium
range was defined as 1 for the exponential spatial error process, /3 for the Gaussian spatial error process, and 3 for the
spherical spatial error process, giving each the same approximate range of 3. The long range was set at 2 for the exponential
spatial error process, 2+/3 for the Gaussian spatial error process, and 6 for the spherical spatial error process resulting in an
approximate range of 6 for all three parametric semivariograms. The partial sills were set at 6, = 1 — 6; to achieve a unit
sill. Each of the four combinations of nugget and range for each parametric semivariogram was run 1000 times each. The
maximum lag included in the empirical semivariogram was 34/5, which is approximately 1/4 the maximum distance. We
ran many more combinations of nuggets, ranges, parametric functions such as the rational quadratic, and three dimensional
fields, but choose these particular ones to conserve space while still presenting a wide variety of semivariograms.

Figs. 3-5 show boxplots for the nugget estimates and WISE for the semiparametric and parametric fits. An examination of
the estimated nuggets using the fixed value of « as indicated earlier shows this approach is generally competitive with, and
sometimes better than, the fits from the parametric form generating the field. This is not terribly surprising since fixing «
is tantamount to knowing the true form of the model. A similar pattern emerges examining the WISE boxplots where using
a fixed value of « is again competitive with, or better than, the fits using the correct parametric function. The misspecified
parametric models did not compare favorably to using a fixed « in terms of nugget estimation with the same observation
generally applying to WISE.

Turning to the results when estimating «, the nugget estimates do not perform as well as using a fixed «, but they
are better than the misspecified models and are arguably competitive with the true parametric function. The degraded
performance comes as no surprise since the method is trying to determine how to approach the origin in a entirely data
driven way. Estimating « for the Gaussian spatial error process runs tends to underestimate the nugget, which makes
sense given « has an upper bound of 1 and the fixed « = 1 nugget estimates also exhibit negative bias. Also, the nugget
estimates seem to exhibit a negative bias when the range is medium and the nugget is high across all three parametric
forms. Overall, the nugget estimates perform better at the longer range where the method has more lags with which to
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Nugget Estimates
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Fig. 3. Nugget estimates and WISE for the 2D exponential spatial field simulations. The upper portion of the figure consists of five side-by-side boxplots
of the nugget estimates produced by the new semiparametric method using « = 0.575, an estimated value from Eq. (1), and from the three parametric
fits for 1000 20 x 20 two-dimensional realizations. The true nugget is indicated as a dashed horizontal line across the boxplots with the true values for 6;
and 05 indicated at the top of each panel. The lower portion of the figure is the weighted integrated squared error (WISE) defined in Eq. (2).

identify the underlying parametric form. In terms of WISE, estimating o does not do as well as using a fixed value, but is
again competitive with or better than fitting the true and misspecified models, respectively.

5. Application

Our research team routinely employs spatial modeling (kriging) in brain imaging for the purpose of statistical inference
and data driven smoothing (Spence et al., 2007), both of which depend heavily on nugget estimation. Even for a modestly
sized study, it is impractical to manually inspect and adjust semivariogram fits for every region of interest (ROI) on a subject-
by-subject basis. Hence, we have a motivation to use a nonparametric semivariogram estimator that could function in an
unsupervised fashion, while providing nugget estimates.

The example given here deals with functional magnetic resonance imaging (fMRI), where the subject lies in a magnetic
scanner while images are acquired during a performance task. The magnet records changes in blood oxygen level dependent
(BOLD) signals at locations across the brain to see which areas are involved in performing the task. The temporal signal-to-
noise ratio in fMRI experiments tends to be very low, which makes spatial modeling’s ability to borrow information in space
to strengthen these inherently weak signals a natural application. More information about fMRI methods can be found in
Lindquist (2008).

In this specific experiment, which lasted 304 s, the subject was shown nonsense words at random times on an overhead
view screen and asked to repeat them silently. The time between scans, or time to repeat (TR), was 2 s, which yielded a total
of 152 scans. We then extracted the BOLD signal at 1557 spatial locations (voxels) in the superior temporal gyrus, which is a
brain structure thought be to associated with the experiment. Next, we modeled the hemodynamic response function (HRF)
at each location in space under the standard linear convolution invariance assumption in conjunction with a 13 parameter
finite impulse response (FIR). Since TR = 2 s, the FIR covers 26 s after each stimulus. This step removes the temporal aspect
of the data leaving a 13 parameter FIR vector estimate at each location in space.
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Fig. 4. Nugget estimates and WISE for the 2D spherical spatial field simulations. The upper portion of the figure consists of five side-by-side boxplots of
the nugget estimates produced by the new semiparametric method using « = 0.750, an estimated value from Eq. (1), and from the three parametric fits
for 1000 20 x 20 two-dimensional realizations. The true nugget is indicated as a dashed horizontal line across the boxplots with the true values for 6; and
65 indicated at the top of each panel. The lower portion of the figure is the weighted integrated squared error (WISE) defined in Eq. (2).

We then computed the empirical semivariogram of the third FIR parameter (Fig. 6), which is generally the peak of
the HRF 6 s after a stimulus for this particular paradigm and subject. For demonstration purposes, we fit Gaussian (not
shown), spherical, and exponential parametric semivariograms. As the figure shows, the exponential semivariogram fit
(green) poorly fits the empirical semivariogram and yields a nugget estimate that is 0% of its estimated sill. The spherical
semivariogram fit (red) is better with a nugget estimate that is 20% of its estimated sill, but appears to overestimate the
range. The Gaussian semivariogram fit is not shown to avoid overcrowding the figure, but it tends to overshoot the early
lags albeit to a lesser degree than the exponential. It has the largest nugget estimate at 36% of its estimated sill. Finally,
the fit from our proposed method is shown in black with @ = 0.63, which uses four non-zero jumps including the nugget
estimated at 9% of its estimated sill. The semiparametric fit is arguably better in the body of the empirical semivariogram
and unsurprisingly yields a nugget estimate between that of the exponential and spherical fits in light of the discussion of
using fixed values of « in the simulation section. In addition, all the parametric fits required manually set starting parameter
values in a non-linear optimization algorithm, while the new method operated in an entirely automated fashion yielding a
fit in under 2 s on a 2006 Mac Pro including the time required to estimate «.

6. Discussion

Nonparametric semivariograms offer an effective alternative to choosing a parametric form for spatial modeling. Others
have laid the groundbreaking work in terms of applying Bochner’s theorem and demonstrating the efficacy of nonparametric
semivariograms in a nugget-free setting. Cherry et al. (1996) discussed an approach to obtain nugget estimates, but
our attempts to implement their suggestion resulted in degenerate estimates. Hence, we have proposed several key
modifications to improve and extend the method. First, a more flexible basis was introduced by replacing the argument
of £2, (-) by h*. Then, careful consideration was given to the definition of the node space to make nugget estimation feasible
and to ensure stable sill estimation. Finally, a method for estimating o was set forth making unsupervised semiparametric
semivariogram and nugget estimation possible.
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Fig. 5. Nugget estimates and WISE for the 2D Gaussian spatial field simulations. The upper portion of the figure consists of five side-by-side boxplots of
the nugget estimates produced by the new semiparametric method using @ = 1.000, an estimated value from Eq. (1), and from the three parametric fits
for 1000 20 x 20 two-dimensional realizations. The true nugget is indicated as a dashed horizontal line across the boxplots with the true values for 6; and
65 indicated at the top of each panel. The lower portion of the figure is the weighted integrated squared error (WISE) defined in Eq. (2).
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The simulations using either a fixed or estimated @ demonstrate that the new method is competitive with fits from
the true parametric form, while outperforming the misspecified models. The new method, especially when estimating
o, admittedly exhibits biased nugget estimates, but much less so than the misspecified models, which speaks to its
robustness. The fMRI application demonstrates that the method can be reliably used in place of parametric semivariograms
in unsupervised brain imaging where it is impractical to manually inspect every semivariogram fit in such massive datasets.

The rank of ATA, is 1 when & = 0 and increases as @« — 1, which translates into more usable basis elements as o
increases. This is likely the reason Cherry et al. (1996) noted that only three or four basis elements are typically used despite
having a saturated node space. Hence, the sum of squared errors is a generally decreasing function of ¢, which necessitates
estimating the degrees of freedom for model selection. The new method also needs medium ranges to obtain reliable nugget
estimates, which is why we have included the option of using a fixed value for «. While using a fixed value still allows for
semiparametric modeling for short ranged semivariograms, the decision is again in the hands of the modeler instead of
being data driven. The solution to both these problems may ultimately be solved via the node space, as we discuss in the
next paragraphs.

The definition of the node space set forth in this paper is not unique, and we experimented with several different
approaches. One of the more promising ones defines ti('() to be the ith root of the Bessel function of order v = % and
redefines h* to be (h/h,)* so that all the distances in the empirical semivariogram fall in the unit interval. This has the
advantage that £2, (-) forms an orthogonal basis for covariograms with respect to the inner-product weighting function
w, (h) = < since [ 2 (ht!) 2. (ht/*)w, (h) dh = 0 fori # j.

Using this fact, it can be shown that 1— 2, (-) forms a quasi-orthogonal basis for semivariograms with respect to w, (-) for
large k. Such a basis could potentially take advantage of generalized Fourier series theory, but there are two problems with
this approach. First, no root larger than t1K) (he/h1)* can be used in the fitting process since the corresponding basis element
would pass through 1 before the first distance in the empirical semivariogram. This restriction is compounded by the fact
that the first root grows larger as « increases. Thus, quasi-orthogonality comes at the price of a sparse node space, which
severely impacts the flexibility of the basis. Even if quasi-orthogonality is discarded, empirical semivariograms covering a
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Fig. 6. Plot of three semivariograms fits to an empirical semivariogram shown as hollow circles. The empirical semivariogram is based on the third (peak)
parameter of the hemodynamic response function (HRF) estimated using a finite impulse response (FIR) fit to event related fMRI data in the superior
temporal gyrus consisting of 1557 voxel locations collected at 152 time points with a time to repeat (TR) of 2 s. The nuggets estimated by the spherical,
exponential, and semiparametric fits are 20%, 0%, and 9% of their estimated sills, respectively. For the semiparametric fit, & = 0.63, which is between an
exponential and spherical fit.

short range of distances will suffer from node sparsity. For ones covering a large range of distances, we were able to obtain
good fits using this technique and will continue to pursue this avenue of research.

A second approach involves modifying the node space so that the basis elements are equivalent in a certain sense. A
general sketch of the technique is to define the t; nodes for « = 1 as proposed in this paper. For @, < 1, each u; node for

that space is defined so that fohg [1— 2, (h*u;)]dh = fohe [1 — 82, (ht;)] dh. Some of the u; nodes will have to be discarded
since they will not obtain their respective jumps within the hull of the data. The corresponding t; nodes will also have to be
removed to keep the two node spaces on parity. Taken to the extreme of o, = 0, only the node corresponding to the nugget
will be left in both spaces. We have experimented with restricting «,, to a lower bound of 0.5, say, and then applying model
selection criteria with some success. This remains an active area of research where a different definition of node equivalence
may eventually obviate the need to estimate degrees of freedom.
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