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Abstract Computational expressions for the exact CDF of
Roy’s test statistic in MANOVA and the largest eigenvalue
of a Wishart matrix are derived based upon their Pfaffian
representations given in Gupta and Richards (1985). These
expressions allow computations to proceed until a prespec-
ified degree of accuracy is achieved. For both distributions,
convergence acceleration methods are used to compute CDF
values which achieve reasonable fast run times for dimen-
sions up to 50 and error degrees of freedom as large as 100.

Software that implements these computations is described
and has been made available on the Web.
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1 Introduction

This paper provides an exact computational expression for

the cumulative distribution function (CDF) of the largest

eigenvalue of a central matrix beta distribution. The right

tail probability from this distribution is the p-value of Roy’s
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(1945) test statistic in MANOVA and is a quantity that has

proved to be very difficult to compute. Similar computa-

tional expressions are given for the CDF of the largest root

of a central Wishart matrix with identity covariance which

may be derived by letting the error degrees of freedom in the

matrix beta expressions grow to infinity. Software for com-

puting CDF values of both distributions to a prespecified de-

gree of accuracy is described and has been made available

on the Web.

Among the four major MANOVA tests, Roy’s largest

eigenvalue test and the Lawley-Hotelling test still lack p-

value approximations that can be accurately computed in all

settings and particularly when degrees of freedom are small

or matrices have higher dimension. For the other two tests,

Wilks’ likelihood ratio test and the Bartlett-Nanda-Pillai test

have saddlepoint approximations that have been shown to

be highly accurate for most all settings; see Butler (2007,

§11.1) and the references therein.

For his test, Roy (1945) offered some reduction expres-

sions for exact p-value computation which are tractable in

dimensions k = 2,3, and 4. Nanda (1951) and Pillai (1956)

extended these procedures up to k = 8 while Pillai (1956,
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1965) offered a general approximate expression in the up-

per tail of the CDF that has limited accuracy for higher di-

mensional matrices. Kres (1983) provided general tables of

95th and 99th percentiles for the distribution of Roy’s test

and the largest eigenvalue of a Wishart. For the latter distri-

bution, Johnstone (2001) provided a Tracy-Widom approx-

imation accurate for higher dimensions. It would be useful,

however, to be able to compute both distribution functions

and maintain high accuracy for all dimensions and degrees

of freedom.

Sugiyama (1967) showed that the maximum eigenvalue

distributions for the matrix beta and Wishart can be expressed

in terms of 2F1 and 1F1 matrix argument hypergeometric

functions. However, until recently, these functions have also

proved to be very difficult to compute either exactly or even

approximately. Highly accurate Laplace approximations for

these functions were developed in Butler and Wood (2002)

that have proved useful for many important MANOVA ap-

plications, including power function computation in

MANOVA for Wilks’ test as well as block independence;

see Butler and Wood (2005) and Butler (2007, §11.3). These

approximations, however, fail to accurately determine

p-values for Roy’s test and the largest eigenvalue of the

Wishart because their relative error accuracy is preserved

in the wrong tail of the distribution. The rejection region

for Roy’s test is in the right tail while it is the CDF that

is approximated by Laplace approximation 2F̂1. Thus if the

true significance of Roy’s test is 0.02 and 2F̂1 is used to ap-

proximate the true CDF value 0.98 with a moderately small

relative error of 2.5%, then p-value approximation leads to

1− 2F̂1 ∈ (−0.0045,0.0445) or perhaps a negative p-value

approximation.

Our computational expressions build upon the theoreti-

cal work of Gupta and Richards (1985) who gave exact Pfaf-

fian expressions for matrix argument hypergeometric func-

tions 2F1 and 1F1 when the matrix arguments are scalar mul-

tiples of the identity matrix, as occurs with Roy’s test. Thus

Gupta and Richards were able to show that the distribution

of Roy’s test statistic can be expressed as the Pfaffian of a

skew-symmetric matrix whose entries are complicated ex-

pressions that involve double integration terms as well as

hypergeometric functions. Despite their theoretical work, al-

gorithms and software for implementing these computations

have been lacking for perhaps two reasons. First, they made

an unfortunate error in specifying one of the degrees of free-

dom for the function 2F1 that gives Roy’s distribution. Sec-

ondly, all entries of the Pfaffian are quite difficult to compute

and have been left in complicated forms that require double

integration and scalar argument 2F1 computation. Numerical

stability in computing their expressions is perhaps the most

severe problem that we encountered.

Our contributions are algorithmic and computational. We

develop expressions for the Pfaffian entries in terms of series

expansions that can be computed in Maple. It is necessary

to use Maple and retain a sufficiently large number of digits

during computation in order to avoid the instability prob-

lems of the computations which, for our expressions, con-

cern summing these series expansions. In the case of Roy’s

test with cutoff r ∈ (0,1), these summations are shown to be

ultimately monotone (decreasing or increasing) which leads

to partial sums with a linear convergence rate of r. Thus,

far into the right tail of the distribution where r ≈ 1, this

convergence can be very slow. Aitken’s (1926) convergence

acceleration method is used to improve upon summation ef-

ficiency.
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For the largest Wishart eigenvalue distribution, terms in

the skew-symmetric matrix are alternating sums, whose terms

are shown to be ultimately decreasing in magnitude and par-

tial sums are shown to have a superlinear convergence rate.

In this case, Wijngaarden’s convergence acceleration method

is used to improve upon summation efficiency; see Press et

al. (1992).

For both distributions, components of the skew-symmetric

matrix that specifies the CDF are computed to a prespec-

ified number of significant digits. This allows approximate

overall relative error bounds to be determined in our p-value

computation for Roy’s test and also for the CDF of the largest

Wishart eigenvalue.

Our practical contribution is to provide Maple software

that may be used to compute both of these CDFs to a pre-

specified degree of accuracy. This software can be used with-

out knowledge of the Maple programming language;

see the readme.txt files zipped with the Maple

programs that may be downloaded at

http://www.smu.edu/statistics/faculty/butler.html.

2 The CDF for Roy’s test statistic in MANOVA

In MANOVA, suppose that the error sums of squares matrix

We is Wishartk(n,Σ) with n degrees of freedom and the hy-

pothesis sums of squares Wh is independently Wishartk(m,Σ).

Roy’s test is based on the distribution of the largest eigen-

value λ1 of the random Beta matrix (We +Wh)−1Wh. It’s ex-

act CDF is given in the theorem below.

We assume that n ≥ k and, without loss in generality,

m ≥ k. The latter inequality can be assured to hold through

the distributional equivalence

λ1(k,m,n)∼ λ1(m,k,m+n− k). (1)

We use the following notation:

αi = 1
2 (m+ k +1)− i≥ 1

2 i = 1, ...,k

β = 1
2 (n− k +1)≥ 1

2 .

Also define the multivariate gamma and beta functions as

Γk(a) = πk(k−1)/4
k

∏
i=1

Γ {a− 1
2 (i−1)} a > 1

2 (k−1)

Bk(a,b) = Γk(a)Γk(b)/Γk(a+b)

which reduce to univariate versions Γ and B for k = 1.

Theorem 1 The exact null distribution function of Roy’s statis-

tic λ1(k,m,n) is

F(r) = Pr(λ1 ≤ r) =
1

Bk(m
2 , n

2 )
πk2/2

Γk(k/2)
rkm/2

√
|Ar|

0 < r < 1. (2)

Here, Ar = (ai j) is a skew-symmetric matrix (ai j = −a ji)

whose structure is determined by whether k is even or odd.

For k even, Ar is k× k with

ai j = r−(αi+α j)

{
2

Lβ

∑
l=0

(−1)l
(

β −1
l

)
Cr(αi +α j + l,β )

αi + l

−Cr(αi,β )Cr(α j,β )

}
, (3)

where

Cr(a,b) = B(a,b)Ir(a,b), (4)

B(a,b) is the beta function, and Ir(αi,β ) denotes the incom-

plete beta function as given in (26.5.1) of Abramowitz and

Stegun (1972). The range of summation is

Lβ =





β −1 if n− k is odd, so β is an integer

∞ if n− k is even.
(5)

For the case in which k is odd, then Ar is (k + 1)× (k + 1).

The upper left k× k block is the matrix (ai j : i, j = 1, ...,k)
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described above with ai j given in (3). The (k + 1)st column

(row) is determined as

ai,k+1 =−ak+1,i = r−αiCr(αi,β ) i = 1, ...,k. (6)

Proof Let p = 1
2 (k+1). Sugiyama (1967) specified the CDF

in terms of a matrix argument 2F1 function as

F(r) =
Γk{(m+n)/2}Γk(p)
Γk(n/2)Γk(m/2+ p)

rkm/2

× 2F1 (p−n/2,m/2;m/2+ p;rIk) (7)

=
Γk{(m+n)/2}Γk(p)
Γk(n/2)Γk(m/2+ p)

rkm/2

× 2F1 (m/2, p−n/2;m/2+ p;rIk) (8)

upon interchanging the first two arguments of 2F1. The in-

terchange in (8) is crucial in order that subsequent expres-

sions reduce to their simplest computational form. Gupta

and Richards (1985), when using (7), put the second argu-

ment of 2F1 in (7) as n/2 which is incorrect. Despite this er-

ror, Gupta and Richards (1985) provide the means by which

the simple expressions in Theorem 1 may be determined

from (8). According to (3.1) in Gupta and Richards (1985),

2F1 (m/2, p−n/2;m/2+ p;rIk) =

Γk(m/2+ p)
Γk(m/2)Γk(p)

πk2/2

Γk(k/2)

√
|Ar|

and this leads to the overall expression (2).

The important contribution of our theorem is in reduc-

ing the entries of Ar to the simple forms given in (3) and

(6). According to (3.4) of Gupta and Richards (1985), ai j =

2Ii j− Ji j for i < j ≤ k where

Ji j = B(αi,1)B(α j,1)2F1(p−n/2,αi;αi +1;r)

××2F1(p−n/2,α j;α j +1;r)

and the Ii j term is evaluated below. The 2F1 function is re-

lated to the incomplete Beta function Ir(a,b), given in

(26.5.23) of Abramowitz and Stegun (1972), according to

2F1(1−b,a;a+1;r) = aB(a,b)r−aIr(a,b). (9)

Thus

Ji j = r−(αi+α j)Cr(αi,β )Cr(α j,β )

is the latter term in (3).

The expression for Ii j in (3.5) of Gupta and Richards

(1985) assumes an especially simple form when determined

from the matrix argument 2F1 function as expressed in (8).

In this case

Ii j =
∫ 1

0
yα j−1(1− ry)n/2−p

{∫ y

0
xαi−1(1− rx)n/2−pdx

}
dy

(10)

and the powers of factors (1−y) and (1−x) in its integrand

are zero. Expression (10) can be evaluated by using the gen-

eralized Binomial expansion

(1− rx)n/2−p =
Lβ

∑
l=0

(
n/2− p

l

)
(−rx)l

and termwise integration leads to

Ii j =
Lβ

∑
l=0

(
β −1

l

)
(−r)l

αi + l

∫ 1

0
yαi+α j+l−1(1− ry)n/2−pdy

=
Lβ

∑
l=0

ul (11)

where

ul =
(

β −1
l

)
(−r)l

(αi + l)(αi +α j + l)

× 2F1(p−n/2,αi +α j + l;αi +α j + l +1;r) (12)

The final form of this term as recorded in (3) results by

rewriting 2F1 as an incomplete Beta function as expressed

in (9).

For k odd, the last column of Ar is given in (3.7) of Gupta

and Richards (1985) and this term reduces to (6) when the

2F1 term is reduced by using (9). ut
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The smallest root λk of the matrix beta has a distribution

that may be expressed in term of the largest root as described

in Johnson and Kotz (1972, §39.2 p. 183). This leads to

λk(k,m,n) D= 1−λ1(k,n,m). (13)

Therefore Theorem 1 also provides the distribution of λk

upon using the relationship (13).

There are two cases when determining the values {Ii j :

i < j} in skew-symmetric matrix Ar = (ai j) with ai j = 2Ii j−
Ji j. When n−k is an odd integer, Lβ < ∞ and the expression

for Ii j in (11) can be computed exactly as a finite sum. For

n−k even, Ii j is an infinite sum with the following properties

that are shown in the appendix.

Corollary 1 Suppose n− k is an even integer so (11) is an

infinite series. If (n− k)/2 is an even integer, the sequence

{ul : l ≥ (n− k + 1)/4− 1} is a monotonic decreasing se-

quence of positive values converging to 0; if (n− k)/2 is an

odd integer, then the sequence is a monotonic increasing se-

quence of negative values converging to 0. The convergence

rate for the partial sums of the series is linear with rate r,

e.g.

lim
l→∞

|ul+1|
|ul |

= r ∈ (0,1).

3 Largest eigenvalue of a Wishartk(m, Ik)

The distribution of τ1 = τ1(k,m), the largest eigenvalue of

Wh ∼ Wishartk(m, Ik) for m≥ k, may be determined by tak-

ing the appropriate limit of the distribution of λ1(k,m,n) as

n→ ∞. The weak convergence

nλ1(k,m,n) D→ τ1(k,m)

as n → ∞, allows two approaches in determining an expan-

sion for the CDF of τ1. The first approach expresses

Pr{λ1(k,n,m)≤ r/n} (14)

in terms of 2F1 by using (8), and passes (14) to the limit in

n. This leads to the matrix argument confluent 1F1 hyper-

geometric function expression for the CDF of τ1 given by

Constantine (1963) and conveniently recorded in Muirhead

(1982, p. 421). Proceeding as in Theorem 1, and applying

the theory of Gupta and Richards (1985) to 1F1 instead of

2F1, then the CDF of τ1 may be derived as stated in Theo-

rem 2 below.

The second and simpler approach is to take the limit of

the right hand side of (2) and (3) directly as n→ ∞ but with

r replaced by r/n. This approach is used to derive Theorem

3 below.

For cases in which m < k, so the Wishart matrix is not

full rank, the distributional equivalence

τ1(k,m) D= τ1(m,k) (15)

can be used to reduce the dimension of the Wishart to full

rank. This result easily follows by noting that XT X and XXT

have the same nonzero eigenvalues when X is an m× k ma-

trix of i.i.d. normal variables.

Theorem 2 The exact null CDF of τ1(k,m) is

F(r) = Pr(τ1 ≤ r) =
1

Γk(m
2 )

πk2/2

Γk(k/2)
(r/2)km/2

√
|Br|

0 < r < ∞. (16)

Here, Br = (bi j) is a skew-symmetric matrix (bi j = −b ji)

whose structure is determined by whether k is even or odd.

For k even, Br is k× k with

bi j = (r/2)−(αi+α j)

{
2

∞

∑
l=0

(−1)l

l!(αi + l)
γ(αi +α j + l,r/2)

− γ(αi,r/2)γ(α j,r/2)

}
, (17)
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where

γ(a,r/2) = Γ (a)P(a,r/2) =
∫ r/2

0
ta−1e−tdt (18)

is the incomplete gamma function given in (6.5.2) of

Abramowitz and Stegun (1972). For the case in which k is

odd, then Br is (k + 1)× (k + 1). The upper left k× k block

is the matrix (bi j : i, j = 1, ...,k) described above with bi j

given in (17). The (k +1)st column (row) is determined as

bi,k+1 =−bk+1,i = (r/2)−αiγ(αi,r/2) i = 1, ...,k. (19)

Proof For any r > 0, large n assures that r/n < 1. Starting

with the components of matrix Ar in Theorem 1,

lim
n→∞

naCr/n(a,β ) = 2aγ(a,r/2)

so that the term Ji j has limit

(r/n)−(αi+α j)Cr/n(αi,β )Cr/n(α j,β )→

(r/2)−(αi+α j)γ(αi,r/2)γ(α j,r/2)

which is the latter term in (17). Likewise for the term Ii j, the

portion of the lth term in its expansion in (3) that depends

on n has the limit

nαi+α j [ 1
2 (n− k−1)]l Cr/n(αi +α j + l,β )→

2αi+α j γ(αi +α j + l,r/2)

which leads to the former term on the right side of (17). The

number of terms in the expansion Lβ → ∞. The remaining

limits needed for (16) are easily computed as

lim
n→∞

1
Bk(m

2 , n
2 )

πk2/2

Γk(k/2)

( r
n

)km/2
=

1
Γk(m

2 )
πk2/2

Γk(k/2)

( r
2

)km/2
.

ut

Suppose the infinite series expression for bi j given in

(17) is Ii j = ∑∞
l=0 vl where

vl =
(−1)l

l!(αi + l)
γ(αi +α j + l,r/2).

Corollary 2 The alternating series {vl : l > r/2} is mono-

tone decreasing in magnitude, e.g. |vl+1| < |vl | for l > r/2.

The partial sums of the sequence exhibit superlinear conver-

gence to Ii j in that

lim
l→∞

|vl+1|
|vl |

= 0

for any r > 0.

A proof is given in the appendix.

4 Computations

4.1 Roy’s test

The computation of exact CDF values for Roy’s test, to some

specified number of digits, requires sufficiently accurate ap-

proximations to the Ii j terms which contribute to the entries

of skew-symmetric matrix Ar. This is not an issue when

n− k is odd since the Ii j terms are all finite sums which are

computed by our supporting software.

For n− k even, the Ii j terms are all infinite series that

must be approximated. The natural albeit naive estimate for

infinite series Ii j is the the q-th partial sum

sq =
q

∑
l=0

ul .

A natural measure of how well sq approximates Ii j is the

relative error of sq;

Er (sq) =
∣∣(sq− Ii j)/Ii j

∣∣ . (20)

This measure of error is not computable in practice since Ii j

is unknown and therefore one must consider an approximate

relative error of sq, or

Êr (sq) =
∣∣(sq− sq+1

)
/sq+1

∣∣ .

While there is no guarantee that the approximate relative er-

ror will be close to the true relative error, it often is quite

close in practice; see for instance Chapra (2004).
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Along with a measure of error we require a stopping cri-

terion to identify the numbers of terms to be summed. We

take our stopping criterion to be smallest integral q, such

that

Êr (sq) < 10−D (21)

for some specified integer D.

In the appendix we provide a proof that the partial sums

of the terms in Ii j converge linearly to Ii j with rate r. The

practical importance of this result is that smaller values of r

generally require fewer terms for accurate approximations to

Ii j than larger values of r and particularly relative to values

of r near one. Furthermore, for values of r near one, conver-

gence acceleration methods may provide answers in much

less time than the q-th partial sum. Convergence acceleration

methods use fewer terms than are used in sq to accurately ap-

proximate Ii j. More specifically, a convergence acceleration

method transforms a set of q + 1 terms, u0, . . . ,uq, in some

fashion to produce an approximation which is often much

closer to Ii j than is sq.

We found that the convergence acceleration method known

as Aitken’s δ 2 process, Aitken (1926), provided approxi-

mations to Ii j in less time than the q-th partial sum. This

was to be expected since Aitken’s δ 2 process is known to

work especially well for partial sums which converge lin-

early to their limit; see (3.9.7) of Abramowitz and Stegun

(1972). Aitken’s δ 2 process generates an improved estimate,

s̃q, from three successive partial sums as

s̃q = sq−
(
sq− sq+1

)2
/
(
sq−2sq+1 + sq+2

)
. (22)

We determine index q for Aitken’s method to be smallest

integer satisfying (21) when applied to {s̃q} in (22).

4.2 Largest eigenvalue of a Wishartk(m, Ik)

In this setting, the computation of exact CDF values always

involves bi j terms in (17) that must be computed as truncated

infinite series. Suppose

sq =
q

∑
l=0

vl

is the q-th partial sum for Ii j, the infinite series portion of

bi j. The relative error of sq, or Er (sq) , is defined as (20)

with Ii j replacing Ii j. A relative error bound turns out to be

Er (sq) <
∣∣vq+1

∣∣/min
{∣∣sq− vq+1

∣∣ ,
∣∣sq + vq+1

∣∣} . (23)

To show this, first note that the sequence of partial sums
{

sq
}

is a Cauchy sequence and that vl terms are monoton-

ically decreasing in magnitude for all l > r/2, as shown in

the appendix. Thus, for r/2 < q < q̃ = q+Q,

∣∣sq− sq̃
∣∣ =





∣∣vq+1
∣∣−∑Q/2−1

l=1

(∣∣vq+2l
∣∣− ∣∣vq+2l+1

∣∣)− ∣∣vq̃
∣∣,

for Q even
∣∣vq+1

∣∣−∑(Q+1)/2−1
l=1

(∣∣vq+2l
∣∣− ∣∣vq+2l+1

∣∣),

for Q odd

<
∣∣vq+1

∣∣ .

Passing to the limit as q̃→ ∞ leads to

∣∣sq−Ii j
∣∣ <

∣∣vq+1
∣∣ (24)

for q > r/2 so

sq−
∣∣vq+1

∣∣ < Ii j < sq +
∣∣vq+1

∣∣ . (25)

From (25), the relative error is bounded by (23) so the stop-

ping criterion for the q-th partial sum is the smallest integer

q, greater than r/2, such that

∣∣vq+1
∣∣/min

{∣∣sq−
∣∣vq+1

∣∣∣∣ ,
∣∣sq +

∣∣vq+1
∣∣∣∣} < 10−D. (26)

Since
{

sq
}

converges superlinearly to bi j, which is like

linear convergence but with rate zero, our computational times
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should not increase very rapidly in r. Nonetheless, we have

considered several convergence acceleration methods.

Our preferred method of convergence acceleration in this

context is van Wijngaarden’s technique which is a highly ef-

ficient implementation of Euler’s transformation; see Good-

win (1961). Euler’s transformation generates a convergent

alternating series (from the original series) which converges

to Ii j but at a more rapid rate than the original sequence;

see Knopp (1990). The q-th partial sum of Euler’s transfor-

mation for alternating series Ii j is

sq =
1
2

q

∑
l=0

(
−1

2

)l

∆ lv0,

where ∆ l is the l-th forward difference operator defined as

∆ lv0 =
l

∑
j=0

(
l
j

)∣∣v j
∣∣ .

van Winjgaarden’s technique is in fact an improved imple-

mentation of Euler’s transformation. It is well known that

Euler’s transformation performs best when applied to a par-

tially summed series; see Press et al. (1992). In our applica-

tion we may write

Ii j =
∞

∑
l=0

ṽl ,

where ṽ0 = sq̆ and ṽl = (−1)q̆+l ∣∣vq̆+l
∣∣ for l ≥ 1. van Winj-

gaarden’s technique first determines q̆ and then applies Eu-

ler’s transformation to partially summed terms {ṽl}; see Press

et al. (1992).

Since there is no guarantee that the terms generated by

van Winjgaarden’s technique will eventually be monotoni-

cally decreasing, we can no longer use (26) as the basis for a

stopping criterion. Instead, we take as our stopping criterion

the smallest value of q satisfying (21).

We also considered algorithm 1 from Cohen et al. (2000),

another convergence acceleration method, but found it to

yield inaccurate answers. This came as no surprise since the

vl terms do not satisfy the requisite condition which guaran-

tees the accuracy of the algorithm.

4.3 Error bounds on probabilities

Error bounds can be specified for probabilities of these largest

eigenvalue distributions using the error bounds on the ele-

ments of matrices Ar or Br that have been computed to a

certain degree of accuracy. The basic idea is to determine

the relative error in probability computation when the com-

ponents of Ar are computed to a relative error of 10−D.

For Roy’s test, let p denote the probability computation

from matrix Ar when components of Ar are subject to error.

The differential of ln p is

d p/p = d (ln |Ar|)/2 = tr
(
A−1

r dAr
)
/2. (27)

Entries of Ar = (ai j) are of the form ai j = 2Ii j − Ji j where

only {Ii j : i 6= j} are subject to computational error due to

truncation of their infinite series expressions; diagonal en-

tries {aii} are zero and not subject to error so daii ≡ 0 for all

i. If the stopping criterion (21)

|(Îi j− Ii j)/Ii j|< 10−D (28)

holds, as it often does in practice, then

∣∣dIi j/Ii j
∣∣ < 10−D i 6= j.

Additional entries besides the diagonal of Ar that do not

need to be estimated, and whose differentials can therefore

be taken as 0, include the (k +1)st column and row when k

is odd. Thus,

|dai j|= 2|dIi j| ≤ 2×10−D ∣∣Ii j
∣∣ i 6= j
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which leads to a relative error bound for p as

|d p|/p = 1/2
∣∣∣∑k

i=1∑k
i 6= j=1ai jdai j

∣∣∣

≤ 10−D∑k
i=1∑k

i 6= j=1|ai j| ∣∣Ii j
∣∣

= 10−D tr{[A−1
r ] [I]} (29)

where [A−1
r ] = (|ai j|), and [I] = (

∣∣Ii j
∣∣) with Iii = 0. The in-

equality in (29) is potentially quite conservative.

A similar bound on the relative error of a probability for

the largest eigenvalue of a Wishart is

|d p|/p < 10−D tr{[B−1
r ] [I ]}, (30)

where [I ] = (
∣∣Ii j

∣∣) with Iii = 0.

5 Numerical results

The performance of these numerical methods for comput-

ing p-values for Roy’s test and the distribution of the largest

eigenvalue of a Wishart are considered. In both instances,

the computations are for exact CDF values, obtained by us-

ing partial sums and convergence acceleration methods for

estimated 95th and 99th percentiles. These estimated per-

centiles were simulated by using 95th and 99th empirical

percentiles from 10 million simulated values of the eigen-

values. Our goal in the exact computations was to produce

answers accurate to at least three digits, after rounding.

Our computations were performed using Maple 11 pro-

grams that are available for general use at

http://www.smu.edu/statistics/faculty/butler.html. Instructions

are provided to run the programs which assume no knowl-

edge of either Maple programming or of running such soft-

ware (although the user must have the software). Maple was

used primarily because a very high number of significant

digits can be carried when calculating with floating point

numbers. This is crucial in implementing such computations

which often involve small numbers obtained as differences

of much larger numbers due to the alternating nature of the

series under approximation. This differencing causes a loss

in the number of significant digits in the final answer; see

Scheid (1989) for further elaboration on this phenomenon.

In the case of Roy’s test with n− k an odd integer, ele-

ments of Ar are finite sums and our program performs exact

summation with run times typically less than a second.

In all other cases in which infinite series expansions must

be truncated, extensive numerical experimentation was used

to determine program settings that would yield accurate an-

swers with the least amount of time. These settings involve

SF , the number of digits that Maple uses in its computa-

tions and D, a bound on the true or approximate relative er-

ror when approximating elements of Ar or Br. Run times

were recorded in an hour:minute: second (h:mm:ss) format

and all computations were performed on an Intel dual-core

2.66GHz processor with 2.96GB of RAM.

5.1 Exact computations for Roy’s test for n− k even

Numerical experimentation showed that the time required

to produce sufficiently accurate CDF values (at least three

digits as measured by the conservative upper “Bound”) in-

creased quickly with k and only moderately with m. Our

study therefore only considered the speed of CDF computa-

tions for Roy’s test with k = m. Our settings include compu-

tations for dimensions k ranging from 4 to 54 and use error

degrees of freedom n = 30, 50, and 100.

Tables 1 and 2 record run times needed to accurately

determine CDF values for the estimated 95th and 99th per-

centiles respectively. These estimated percentiles (Perc.) are

the listed values of r determined from 107 eigenvalue sim-

ulations. For target value φ = 0.95 or 0.99, the exact com-
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putation of F(r) will differ from φ by a relative error of

about 10−7/2
√

φ (1−φ), which is 0.047 or 0.043 respec-

tively, where 04 indicates four zeros. These errors follow

from the delta method which, by weak convergence laws, as-

sumes F(r) = (F ◦ F̂−1)(φ)∼N
(
φ ,φ (1−φ)/107

)
. From a

practical perspective, this means that only the first four dig-

its of F(r) should be expected to agree with φ due to error

in the simulated values of r.

Tables 1 and 2 are also meant to provide some guidance

on how to choose good values of D and SF for the programs.

In general, for problems where there is a big difference be-

tween k and m, values of D and SF that give the best run

times may need to be found by trial and error. We suggest

using our table entries as starting values and increasing D

and SF in increments of 5 and 10 respectively, until there

is no change in the first three digits of the CDF value, after

rounding.

Tables 1 and 2 show that Aitken’s δ 2 process consis-

tently outperforms the partial sums in terms of run times.

Furthermore, its advantage over partial sums becomes more

substantial in the last few cases considered that have larger

values for both k = m as well as r. Probability computations

should be accurate to three significant digits, after rounding,

if the conservative relative error bound is less that 0.035. In

every case considered this bound is smaller thus indicating

at least three significant digits after rounding.

To summarize, our software provides “exact” computa-

tion of p-values for Roy’s test in a wide range of settings.

For odd n−k, the computation is exact, while for even n−k

the relative error bound (29) can be used to determine a con-

servative bound on the relative error. Due to the linear con-

vergence rate in r, quite fast run times result for values for

n as large as 100 when r is not much greater than 0.9. Rea-

sonable run times result with r as large as 0.99. Aitken’s

δ 2 process is programmed into the publicly available Maple

programs and should always be used in place of the q-th par-

tial sum. The greatest gains in efficiency over partial sums

can be expected farther out into the right tail of the distribu-

tion.

5.2 Exact computations for the largest eigenvalue of a

Wishartk(m, Ik)

In the case of Wishart eigenvalues, numerical experimen-

tation showed that computation times were sensitive to the

value of k but were only moderately so to the value of m.

Thus, computational speed was again studied with k = m

as listed under column “Dim.” in Tables 3 and 4. These ta-

bles present CDF computations for estimated 95th and 99th

percentiles that use van Wijngaarden’s convergence accel-

eration method as well as the q-th partial sum. The relative

error bounds for the partial sum method have been left out

because they agree with those of van Wijngaarden’s method

to three significant digits.

We see that in every case considered, van Winjgaarden’s

technique outperformed partial sums in terms of run times.

Furthermore, its advantage over partial sums becomes more

pronounced in the most computationally intensive cases with

larger k. Finally, relative error bound (30) guaranteed accu-

racy in every case considered.

In summary, our software can be used to compute, in

reasonable time, Wishart CDF values for values of k and m

as large as 50. Furthermore, van Wijngaarden’s convergence

acceleration technique is generally recommended instead of

partial sums and is programmed into the publicly available

Maple program.
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Table 1 Computational run times (h:mm:ss) for p-values of Roy’s test where r is an estimated 95th percentile from the distribution of λ1(k,m,n) determined

by simulating 107 λ1-values. aFor all settings, m = k. bThe conservative relative error bound (29) reported using 03 to indicate 3 zeros. cDenotes a run time

that was less than 0.5 second.

95th Percentile

Settinga Perc. Aitken’s δ 2 Partial Sums

k,n r D SF F (r) Boundb h:mm:ss D SF F (r) h:mm:ss

4,30 0.44938 6 8 0.949929 .03113 0:00:00b 6 8 0.949929 0:00:00c

14,30 0.88908 17 23 0.950097 .03403 0:00:02 17 23 0.950081 0:00:03

24,30 0.99161 33 40 0.949759 .03146 1:53:21 33 40 0.949748 2:14:13

4,50 0.29847 6 16 0.949953 .03101 0:00:00c 6 8 0.949821 0:00:00c

14,50 0.71061 16 24 0.950218 .03373 0:00:01 16 23 0.949766 0:00:01

24,50 0.89227 29 37 0.950409 .03131 0:00:41 29 37 0.950412 0:00:47

34,50 0.97050 44 54 0.949961 .04910 1:29:18 44 52 0.949967 1:39:22

4,100 0.16150 5 40 0.949974 .04926 0:00:00c 6 10 0.949927 0:00:00c

14,100 0.45340 16 26 0.950284 .04733 0:00:01 16 26 0.950284 0:00:01

24,100 0.64476 26 40 0.949572 .03554 0:00:06 26 40 0.949580 0:00:06

34,100 0.77376 38 55 0.950070 .03345 0:01:12 38 55 0.950071 0:01:16

44,100 0.86102 51 69 0.950025 .03199 0:06:01 51 69 0.950021 0:06:25

54,100 0.91941 65 83 0.950020 .03132 1:22:00 65 84 0.949994 1:34:39

Table 2 Similar runs times as in Table 1 but with r as an estimated 99th percentile. aFor all settings, m = k.

99th Percentile

Settinga Perc. Aitken’s δ 2 Partial Sums

k,n r D SF F (r) Bound h:mm:ss D SF F (r) h:mm:ss

4,30 0.52711 6 8 0.990384 .03110 0:00:00c 6 8 0.990384 0:00:00c

14,30 0.91481 17 23 0.990045 .03395 0:00:11 17 22 0.989511 0:00:13

24,30 0.99511 33 40 0.989566 .03145 2:47:14 33 40 0.989531 3:22:37

4,50 0.35901 6 13 0.990016 .04978 0:00:00c 6 9 0.989767 0:00:00c

14,50 0.74849 16 24 0.989970 .03365 0:00:01 16 24 0.989969 0:00:01

24,50 0.91077 29 38 0.989919 .03129 0:01:25 29 38 0.989921 0:01:37

34,50 0.97752 43 53 0.990410 .03898 1:35:00 43 53 0.990383 1:50:54

4,100 0.19816 6 37 0.989993 .04900 0:00:00c 1 10 0.989901 0:00:00c

14,100 0.48886 16 26 0.990284 .04715 0:00:01 16 26 0.990284 0:00:01

24,100 0.67268 26 41 0.989700 .03542 0:00:06 26 41 0.989698 0:00:06

34,100 0.79436 38 55 0.989961 .03339 0:01:16 38 55 0.989965 0:01:19

44,100 0.87555 51 69 0.989976 .03196 0:06:26 51 69 0.989972 0:06:53

54,100 0.92915 65 84 0.989960 .03131 1:25:51 65 84 0.989960 1:38:57
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Table 3 Computational run times for CDF values of τ1 = τ1(k,m), the largest eigenvalue of a Wishartk(m, Ik) matrix. The percentile r is an estimated 95th
percentile from the distribution of τ1 determined by simulating 107 τ1-values. aFor all settings, m = k.

95th Percentile

Dim.a Perc. van Wijngaarden Partial Sums

k r D SF F (r) Bound h:mm:ss D SF F (r) h:mm:ss

10 43.04154 11 29 .950007 .03287 0:00:03 11 32 .949974 0:00:04

15 63.85394 16 46 .950101 .03138 0:00:13 16 48 .949641 0:00:17

20 84.49639 21 63 .950060 .04701 0:00:48 21 64 .949737 0:01:05

25 105.02812 25 77 .950049 .03370 0:01:52 25 82 .949829 0:02:41

30 125.49347 30 96 .950144 .03199 0:04:06 30 99 .949969 0:06:09

35 145.90589 35 109 .950011 .03109 0:08:18 35 119 .950017 0:14:52

40 166.28269 40 132 .950023 .04599 0:17:17 40 132 .949835 0:47:15

45 186.62608 44 148 .950026 .03333 0:40:57 44 150 .949617 2:09:30

50 206.94297 49 165 .949984 .03187 1:38:58 49 167 .949708 4:29:11

Table 4 Similar run times as in Table 3 but using r as an estimated 99th percentile. aFor all settings, m = k.

99th Percentile

Dim.a Perc. van Wijngaarden Partial Sums

k r D SF F (r) Bound h:mm:ss D SF F (r) h:mm:ss

10 48.95275 11 29 .990145 .03279 0:00:03 11 32 .989996 0:00:05

15 70.58583 16 47 .990067 .03134 0:00:14 14 49 .989952 0:00:20

20 91.83661 21 63 .989968 .04685 0:00:50 20 65 .990347 0:01:13

25 112.92604 25 79 .989945 .03361 0:01:58 25 83 .990287 0:02:57

30 133.90197 30 96 .990057 03195 0:04:15 30 100 .990112 0:06:49

35 154.73310 35 114 .990072 .03106 0:08:44 35 117 .990081 0:17:14

40 175.45746 39 132 .989983 .03587 0:17:07 39 135 .990017 0:59:05

45 196.17872 44 149 .990084 .03327 0:43:51 44 151 .989765 2:27:32

50 216.80902 49 168 .990006 .03183 1:47:56 49 168 .990114 4:58:49
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7 Appendix

7.1 Proof of Corollary 1

Term |ul | is given as

(
β −1

l

)
rl

αi + l

∫ 1

0
yαi+α j+l−1(1− ry)n/2−pdy

It is immediately obvious that all the terms in the above ex-

pression, except for the generalized binomial coefficient, are

monotonically decreasing in l. Note that
∣∣∣∣∣

(β−1
l+1

)
(β−1

l

)
∣∣∣∣∣ =

∣∣∣∣
β − l−1

l +1

∣∣∣∣ < 1

for all l≥ β/2−1 and therefore {|ul | : l ≥ (n− k +1)/4−1}
is monotonically decreasing. in l. It easy to verify that if

(n− k)/2 is an even integer, the sequence {ul : l ≥ (n− k +

1)/4− 1} is a sequence of positive values and if (n− k)/2

is an odd integer, it is a sequence of negative values.

The eventual monotonicity of the |ul | terms and results

from Clark et al. (1969) allow us to study the convergence

of partial sums to Ii j by simply considering the limit

lim
l→∞

|ul+1|
|ul |

.

In particular, the convergence of partial sum sq is linear if

this limit is in the unit interval but not zero or one, superlin-

ear if the limit is zero and logarithmic if the limit is one. The

substitution du = rdy in each integral below yields

|ul+1|
|ul |

=

∣∣∣
(β−1

l+1

) rl+1

αi+l+1
∫ 1

0 yαi+α j+l(1− ry)n/2−pdy
∣∣∣

∣∣∣
(β−1

l

) rl

αi+l
∫ 1

0 yαi+α j+l−1(1− ry)n/2−pdy
∣∣∣

=

∣∣∣∣∣

(β−1
l+1

)
(β−1

l

)
∣∣∣∣∣
∣∣∣∣
αi + l +1

αi + l

∣∣∣∣

× B(αi +α j + l +1,β )Ir(αi +α j + l +1,β )
B(αi +α j + l,β )Ir(αi +α j + l,β )

so that clearly

lim
l→∞

|ul+1|
|ul |

= lim
l→∞

B(αi +α j + l +1,β )Ir(αi +α j + l +1,β )
B(αi +α j + l,β )Ir(αi +α j + l,β )

To show that this limit is r it suffices, from equation (3), to

prove, for a = αi +α j + l and b = β , that

B(a+1,b)Ir(a+1,b)
B(a,b)Ir(a,b)

→ r

as a→ ∞ or equivalently, as l → ∞.

From (26.5.4) of Abramowitz and Stegun (1972) we have

B(a,b)Ir(a,b)=
ra(1− r)b

a

(
1+

∞

∑
q=0

B(a,b)
B(a+1,q+1)
B(a+b,q+1)

rq+1

)
.

As a→ ∞, it is easily shown using Stirling’s approximation

that

B(a,b)
B(a+1,q+1)
B(a+b,q+1)

= O(a−b)

for every q≥ 0. Thus

B(a+1,b)Ir(a+1,b)
B(a,b)Ir(a,b)

=
ra+1(1− r)b/(a+1)

(
1+O(a−b

)
)

ra(1− r)b/a(1+O(a−b))

→ r.

7.2 Proof of Corollary 2

Consider the ratio

|vl+1|
|vl |

=
l!(αi + l)

(l +1)!(αi + l +1)
γ(αi +α j + l +1,r/2)

γ(αi +α j + l,r/2)
.

Incomplete gamma function γ(a,x) can be expressed in terms

of the confluent hypergeometric function 1F1 by using equa-

tion (6.5.12) of Abramowitz and Stegun (1972)

γ(a,x) = a−1xae−x
1F1 (1,a+1,x) (31)

where

1F1(1,a+1,x) = 1+
1

a+1
x+

x2

(a+1)(a+2)

+ · · ·+ xq

∏q−1
k=1 (a+ k)

+ · · · (32)

as described in equation (13.1.2) of Abramowitz and Stegun

(1972). Note that each term in this expansion is decreasing

in a > 0 so that 1F1(1,a + 1,x) is a decreasing function in



Exact Distributional Computations for Roy’s Statistic and the Largest Eigenvalue of a Wishart 15

a > 0 for x > 0 fixed. Substituting for the gamma function

as in (31) and simplifying, the ratio is

1
l +1

αi + l
αi + l +1

αi +α j + l
αi +α j + l +1

r
2

1F1(1,αi +α j + l +2,r/2)

1F1(1,αi +α j + l +1,r/2)

<
1

l +1
r
2

(33)

upon using the monotonic decreasing property of 1F1(1,a+

1,x) in a. For l > r/2, this ratio of absolute terms will be

less than one.

Results from Clark et al. (1969) allow us to study the

convergence of partial sum sq again by simply considering

the limit

lim
l→∞

|vl+1|
|vl |

.

Using bound (33) it is easily established that this limit is

zero and as such the partial sums converge superlinearly to

Ii j.


