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I. INTRODUCTION

A Markov Renewal Process (MRP) with m(< «) states is one which records
at each time t, the number of times a system visits each of the m states
up to time t, if the system moves from state to state according to a Markov
chain with transition probability matrix P0 = [pij] and if the time required
for each successive move is a random variable whose distribution function
(d.f.) depends on the two states between which the move is made. Thus, if
the system moves from state i to state j, the holding time in the state i
has Fij(x) as its 4.f. (i, = 1, 2, é.' , m) . We set Qij(x) = pijFij(X)'
Obviously Qij(x) = 0 for x < 0 and jgl Qij(w) =1 . Let Nj(t) denote the

number of times the system visits state j in the time interval (0,t) and

let fij(t) denote the number of transitions from i to j , in the interval

m
(0,t). N(t) = z Nj(t) is the total number of transitions of the MRP,
j=1
Let Zt denote the state of the system at time t and let J0 ’ J1 R J2 ro*cc

be the successive states assumed by the MRP. Further we shall denote by

X

XO(= 0), Xl e Xy n ottty the times spent by the MRP in the successive states.

Thus, for example, the MRP makes a transition from Jk_1 to Jk , after

remaining in Jk-l for time Xk .

*This research was sponsored by the Office of Naval Research, Contract
No. N0O0014-68-A-0515, Project No. NR 042-260.



Pyke (196la, 1961b, 1964, 1968) has studied Markov Renewal Processes
extensively and his notation is followed in this paper as far as possible.
The matrix F(t) = [fij(t)] is called the transition count matrix of the
MRP. The distribution of the transition count matrix of a Markov chain
was first obtained by Whittle (1955) and later by Dawson and Good (1957),
Goodman (1958) , and Billingsley (1961). 1In this paper, the distribution
of the transition count matrix of a Markov renewal process is obtained
and the first and second order moments of this distribution are also de-
rived. Asymptotic expressions for thése moments, for large t are also
obtained.

If g is a real measurable function of the two states between which a
transition is made by the MRP and also of the time taken to make this
transition and if we set

N(t)

W o(e) = nzl gla__, + 3. X)), (1.1)
the process {wg(t) , £t >0} is called a cumulative process corresponding
to the MRP. Pyke and Schaufele (1964), (see also Moore and Pyke, 1968),
have obtained the mean and variance of Wg(t). In this paper, we derive the
entire distribution of Wg(t). The moments of Wg(t) and also the covariance
between Wg(t) and another process Wh(t) are obtained in this paper by an
alternative method which yields expressions which are easier to calculate
than Pyke's as these moments are expressed directly in terms of the basic
quantities Qij and pij of the MRP and not in terms of recurrence times of

the MRP and the imbedded Markov chain, as Pyke has done.

II. TRANSITION COUNT MATRIX

Every transition into a state k must be followed by an exit out of



state k , except for the initial state, say i , and the final state, say j .

It follows, therefore, that

fk'(t) - f'k(t) = (S- - 6. ’ (k = l, 2, tee m) (2.1)

k i
all Kronecker deltas. Let F = [fij]’ where fij (i,j =1, 2, +++ , m) are

m m :
where £ _(t) = Rzl £,,08 £ () = .2__2.1 e (€) and &, &, are

all non-negative integers. Let

Viy(F,t) = Prob(F(t) = F , 2z, =3lz, = i) (2.2)

In other words, Vij(F,t) is the joint distribution of the transition count
matrix and the final state of the MRP, conditional on the initial state
being i . Obviously, if F does not satisfy (2.1), Vij(F,t) = 0 . Similarly
F = 0 implies that there are no transitions of the MRP in (0,t) and so, the

initial and final states must be the same. Hence

0 if § # 1
Vij(O,t) = ? (2.3)
1 - Q.. ()
k=1 ik

Observe also that F = O satisfies (2.1) only when i = j . Again,

Vij(F,t) 0 , if F does not satisfy (2.1) . (2.4)

But, if F # 0 and F satisfies (2.1), we can consider the first transition

and the subsequent transition count, yielding
m
ViyEit) = kgl Qi (8 * Vg (F(i,%), t) (2.5)

where * denotes convolution and F(i,k) denotes the matrix obtained from



F by reducing its entry in the ith row and kth column by unity. The gen-

erating function of the probabilities Vij(F,t) is therefore,

m £

k
o, ) = KV.. F,t 2.6
15(808) g k,g=1 Erg Vig ) (2.6)

where, § = [gij]. From (2.3); {(2.4), and (2.5),

m m
9 5(E/8) = kgl Qi (8) * By 8 S (B8] + 8,01 - kgl Q. (B)} . (2.7)
Using
® -st
0
and
0 - ® -st
‘i’ij(é,s) Soe dtcpij(g,t) ' (2.9)

to denote the Laplace-Steiltjes transforms (L. - S.T.) of Qij and ¢ij ’

respectively, and denoting by q(s) and ¥0(£,s), the matrices [qij(s)] and

[ng(g,s)], respectively, we obtain from (2.7),

¥0(g,s) = q(s) O & » ¥0(g,s) + I - hi(s) , (2.10)
where
m
and
Hence,
¥0(g,8) = [T - q(s) O £17T1I ~ h(s)] (2.11)



whittle (1955) has proved the following result:

m f
whittle's lemma: Coefficient of I akk£ in the (i,j)th element of the
1 k, 2=1
m x m matrix (I - A) , Where A = [aij] ; 1is
m
kfl S
F*, (2.12)
ji m
il £ !
k,g=1 X%

if sz are non-negative integers such that

£ -f_ =6, -8

ke .k k=1, 2, ¢+¢e , m) ,

sk

and is zero otherwise. Here ng is the cofactor of the (j,i)th element

of the matrix F* = [f;j] , defined by

6ij - fij/fi- ; fi- > 0
* =
fij (2.13)
‘. , £ =0
ij i.
m sz
Hence, the L. - S.T. of Vi.(F,t) viz. the coefficient of 1 Ekz in
J k, =1
wii(g,S) is
m
1
kE1 k. mo )
BY, o I (ay, () (1 - h(s))
I £ o1 k,2=1
k,g=1 K&
(2.14)

if F satisfies (2.1)

0 otherwise.

The distribution of F(t) alone can be obtained from (2.11) and (2.14) by

sufiming with respect to the fixed state j . Thus, if



U, (F,t) = Prob(F(t) = F|z (2.15)

]
=
g

-
=
tt
-
-
N
-
L]
.
-
-
g

0

the L. - S.T. of the generating function of U, (F,t) is given by Wi(é,s) '

the ith element of the column vector
y(e,s) = v0(g,s)e
= (1 -at® 0 &) Mz - ns)e (2.16)
=(T-a=0) 7 (1-ats))e -
where e¢' = [1, 1, <<« , 1] . The L. - S.T. of Ui(F,t) is, from (2.14),
m
n £ 1!
pe, L 1 (a (s))f“B (@ - n (s)) (2.17)
ki m o aB k ' ’
i 1 (XlB"'l
or,B=1 B

if the matrix F 1is such that, the equations
£f -f =6, -8 (2.18)

hold for all a =1, 2, «++« , m . If there is no such k , for which (2.18)

hold, Ui(F,t) is zero.

III. MOMENTS OF F(t)

Let F(tIZ0 = i) denote the transition count matrix of the MRP in (O,t),

given that the initial state is i . Let further,

|
£

'
0
3

g (i,s) =

a of E{fae(t)[ZO =i} ,

(3.1)

|
&
]
0
3

0] (S(i,S) -

aBy of E{faB(t)fYG(t)]zo =i} ,

and let QU (s) ,

B

o (s) be the column vectors of g _(i,s) and
—aByd aB



anyﬁ(i's)' (i=1, 2, *++ , m), respectively. We can obtain the L. - S.T.
of the moments of faB(t) by Qifferentiating (2.11), an appropriate number
of times with respect to the appropriate gaB's and then putting £ = I .
However, we use a different method here. This method was employed by
Martin (1967) for the moments of the transition count matrix of a Markov

chain. We extend it here to an M.R.P. Observe that

‘Sia‘sks + faB(t - xl]z0 =k), if 3, =k, (k=1, 2, +--m

qu(tlZO = i) =

0 , if there is no transition in (O,t) (3.2)

Taking L. - S.T. of the expectation on both sides,

m m
i, = . . . k,
0 q1r8) kzl Uy ()85 By + krz-l a5y () o (k/s)
m
=q;a(8)8; + kzl qik(S)oaB(k,S) (3.3)
Hence,
_an(S) = an(S)g_u + q(S)_o_uB(S) (3.4)

where Er denotes an m x 1 vector, with zeroes everywhere, except the rth

(r =1, 2, «+-+ , m) element which is unity. Finally, therefore,

- _ -1
g_dB(S) = an(S) (1 - ats)) e,
=q (s) « oth column of (I - q(s))-l (3.5)
aB
or
. : -1
| cae(l,s) = an(s){(I - q(s)) '}ia . (3.6)

where'{B}ij denotes the element in the ith row and jtP column of a



matrix B . In exactly the same way,

fas(tlzo = i)de(tIZO =1i) = 8 ySa68aitex ¥ Giyékafas(t - xllzo = k)
81adkpfys(t ~ X, |2 = %) (3.7)
+felt - X, 12, = kVE o (t - xllz0 =k) ,

if J1 =k , (k=1,2, *«* , m

and is zero, if there is no transition in (0,t) . Taking L. - S.T. of
expectations on both sides of (3.7), and combining all such results for

i=1, 2, **+ , m , we obtain after a little algebra,

(s) =6 &8 .0 (s) +0 (§,8)0 (s) + 0 . (B,s)O (s) (3.8)
~y$ Y$ -

EaBYé ay Bé—uB af B

IV. ASYMPTOTIC VALUES OF THE MOMENTS OF F(t)

The moments of fas(t) , derived in Section III, are hidden under the
Laplacian curtain and in this section, we derive asymptotic expressions
for them, for large t , by expanding the L. - S.T.'s in powers of s and
using Tauberian arguments,-as employed by Cox (1962), in the case of ordinary
renewal processes.

Kshirsagar and Gupta (1967) have proved that

(I - q(s))-l = ;%— Hy + a Hy + El'Hl + 0(1) (4.1)
1 1
where
H, = adjoint of I - Py = ed ,

4 being a column vector such that d4'p, = 4' |, (4.2)

0]

Hy = [hij] = coefficient of s in the adjoint of I - P, *+ SP; (4.3)



q(s) = PO - sPl + 0(s) (4.4)

Pl = [cij] P (4.5)

cij = pij Sm xdFij(x) R (4.6)
0

a= é(ztl - al> , (4.7)

k, = 4'P,d (4.8)

k, = d'P.d (4.9)

8 = Sum of the principal minors of order m~2 of PTl(I—PQ)
1 = sum of the principal minors of order m-1 of P7<(I-Pg)

(4.10)

Observe that the vector d , defined by (4.2) is proportional to the vector
of stationary probabilities of the imbedded Markov chain, the transition

probability matrix of which is P It should also be noted that Kshirsagar

0 °

and Gupta use o instead of ;l and define it as the reciprocal of the product
1

of |P1| and the non-zero latent roots of le(I—PO); but it can be proved
that this is the same as (4.8).
Using (4.1) and (4.4), it can be readily seen that

d c

, _ 1 _ _aaB 1
oaB(l,s) = EEI dapaB kl + adapaB + kl hiapaB + 0(1) (4.11)
and hence,
. dp
1 s o aB
Y E(fa8|zo = i) —--—-kl . (4.12)

where n denotes asymptotic equivalence. Using (4.11), after a little

algebra, one obtains



10

1 : d dp
—_— = 3 n, . . __L_L
t Covif o fwlz0 i) | Gaytse(sdapas/k =2
1
) dadypydcae . 2ad d PaB Y8
2
kl k1
dh . p P p_.p
+ _Y Sa"aBy$s +dh Zag"ys (4.13)
k2 o By k2
1l 1

V. DISTRIBUTION OF Wg(t)

Wg(t) has already been defined in (l1.1l). In this section, we obtain

the Laplace transform of its distribution. Let

{o o]

- _ng(iljrx)
gij(n) = So e inj(x) (5.1)

It is easy to see that

-nW_(t) m £ . (t)
E(e I e, 2, = i) - T ga‘é‘s ) (5.2)
o,B=1

and so,

-nw _(t) m faB(t)
Ele 9 |z.=i)=©g{l 1 ¢ mlz. =i
a,B o8 0

But the right hand side is nothing but the generating function of the prob-

ability distribution of F(t), conditional on Z

o =1 with gaB(n) as the

arguments, and so by (2.16), its L. ~ S.T. is the ith element of the column

vector
Hr-q 0 em} Tz - ats))e (5.3)

where £(n) = [gij(n)] . (5.3) therefore gives the Laplace transform of



the distribution of Wg(t) - One can obtain the moments of W_(t) by
)
differentiating (5.3) w.r.t. n and then expanding in powers of s . Alter-

natively, the mean and variance can also be derived as below:

E(Wqﬁ:) |2, = i) E{E(Wg(t) [F(t), 2, = 1)}

m o8
= E{u-’g=l £,q () —:{; i Z, = 1}
- oL,I§=1 E(fas(t) |2, = 1) . -%s , (5.4)
where AdB = S: g(d,e,x)deB(x) . (5.5)
Let further BaB = S: gz(a,s,x)anB(x) . (5.6)

and then,

v(wg(t) |z, = i) E{V(Wg(t) [F(e), 2 = 1)} + V{E(Wg(t) |F(t), 2, = 1)}

m B a2
= 7 E(f 5 (8) |7, = 1><-—°‘-§ - —%ﬁ) (5.7)
arg=1 @ Pug PaB
m m A A
+ ) ] Cov(f (&), £ (t)]z, =i T 2
aB ) 0 p P
a,B=1 vy,5=1 . aB” v$
m m
W t = = . .
e se le Aas Aa and 321 B, g Ba (5.8)

By substituting for E(fas(t) |2, = i) and Cov(faB(t) OIS i) , from

(4.12) and (4.13), one can readily show that

. m dAa
% E(Wg(t) 1z, = i> ~n azl —i‘-;"i . (5.9)



m B d m Ad m A dc
1 . o o s
T V(wg(t) IZO = 1) n z -2 Z %o Z XS Y Y8

k
=1 "1 =1 *1 4,81 Py
m Aada 2 m AaA Gd h6
~2 YO0y oo

+ 2ak, ) = +2 7 5 (5.10)

=1 1 GrY16=l kl

If
N(t)

W (t) = .ngl R 1 » T4 X)) (5.11)

is another cumulative process, associated with the M.R.P. and if

® _(
AGB = So R(a,B,x)anB(X) ’ (5.12)
s® _ (7 22, g,x)dQ (%) (5.13)
aB 0 re! aB !
KG.B = So g(aIBIX)R(aIBIx)anB(x) v g KCIB = KC! (5.14)

it can be shown, in the same way as for V Wg(t)|ZO =i , that

1 m Kd m Ad m A “'dc
z Conw (t), W_(t) |z = i) vy 28y od j —xfxxs

g R 0 L k) L, kg o1 Pk

o a Y,8= yé§ 1

m A(R)d m A dc m /Aad
-y =2 X8 Y ¥ | oax vl
2 kl _ p .k 1l & k
a= ye8=1l “y§'1 a=1 1

A(R)d m dh (R) (R)
a o} z —Y-__z‘s“(A A 5 +a'"'A 5)
1 arys6=1 kj @ye oy

(5.15)
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