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Abstract

Ratios of quadratic forms in correlated normal variables which introduce noncentral-
ity into the quadratic forms are considered. The denominator is assumed to be positive
(w.p. 1). Various serial correlation estimates such as least squares, Yule-Walker, and
Burg as well as Durbin-Watson statistics provide important examples of such ratios. The
cumulative distribution function (cdf) and density for such ratios admit saddlepoint ap-
proximations. These approximations are shown to preserve uniformity of relative error
over the entire range of support. Furthermore, explicit values for the limiting relative
errors at the extreme edges of support are derived.

Abbreviated Title: Saddlepoint Uniformity

Key words and phrases. Ratios of quadratic forms, saddlepoint approximations, se-
rial correlations.

1 Introduction

Consider the ratio of quadratic forms

R =
ǫ′Aǫ
ǫ′Bǫ

(1)

where, without loss in generality, A and B are assumed to be n × n symmetric. Let

ǫ ∼N (µ, In) and suppose B is also positive semidefinite thereby assuring that the denomi-

nator is positive with probability one. There is no loss in generality in having the covariance

of ǫ as the identity. This is because, if the distribution of ǫ wereN (µ,Σ) , then (1) describes

the model with Σ
1

2AΣ
1

2 and Σ
1

2BΣ
1

2 replacingA and B respectively, and Σ−
1

2µ replacing

1



µ in the distributional assumption on ǫ. Thus model (1) incorporates all dependence among

the components of ǫ as well as noncentrality that occurs when µ �= 0.

Various sorts of saddlepoint approximations for the distribution (cdf) and density of

R have been proposed beginning with the seminal work on serial correlations in Daniels

(1956). Further marginal distributional approximations are given in McGregor (1960),

Phillips (1978), Jensen (1988), Wang (1992), Lieberman (1994a,b), Butler and Paolella

(1998a), and Marsh (1998). Joint distributional approximations for the set of serial correla-

tions comprising the correlogram were initiated by Daniels (1956) and continued in Durbin

(1980) and Butler and Paolella (1998b).

The main contributions of the current paper are in establishing the uniformity of relative

errors for the saddlepoint cdf and density approximations in the right tail when used with

univariate ratios R in a class CR that is defined below. This class encompasses all the

examples in the aforementioned papers. Expressions for the limiting relative error are

given as the right edge of support for R is approached and sample size n is held fixed.

These expressions are explicit in the more elementary settings in which a certain defining

eigenvalue is simple and mostly implicitly defined when multiple. The noncentral beta

distribution provides an important example in which the limiting error is explicit but the

defining eigenvalue is multiple.

The left tail of R is dealt with by changing A to −A thus switching the left tail of R to

the right tail of −R. The results for the right tail of −R can now provide similar uniformity

results for the left tail when applicable. If −R is a member of class CR then we say that R

is in CL. However, for the most part, the paper concentrates on class CR.

The class of ratios CR is characterized technically in terms of a sequence of largest

eigenvalues. Let (l, r) be the support of R, with r perhaps infinite, and define λn(r) as the

largest eigenvalue of A− rB for r ∈ (l, r) . The class CR is characterized as those ratios R

whose matrices A and B admit the limit

0 = lim
r→r

λn(r) (2)

with dimension n fixed. Class CR contains the subset B that consists of all ratios with
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bounded support (l, r); this is a property of R that is guaranteed when B > 0, or positive

definite. Such ratios include the Durbin-Watson statistics as well as the Yule-Walker and

Burg estimators of serial correlation with arbitrary lag computed from least squares resid-

uals. If B ≥ 0 has at least one zero eigenvalue, then r may be finite or infinite. The portion

of CR with r =∞ includes least squares estimators of serial correlation in various sorts of

models with arbitrary lag and computed from residuals with trend or covariates removed.

Such models include those with autoregressive lag in the dependent variable and those with

lag in the additive noise.

Large sample space asymptotics of the sort considered herein, have not been previously

considered for the class B. The only previous consideration for a member of the class CR−B

is in Jensen (1988, 1995 §9.4). He obtained results in agreement with those below for the

least squares estimator of lag one serial correlation, when the time series is a mean zero

AR(1) model.

The class CR excludes F -statistic and Satterthwaite-type ratios as have been considered

in Butler and Paolella (2002). In this work λn(r) > 0 does not depend on r. For this set-

ting, saddlepoint uniformity is also maintained; however, a different asymptotic saddlepoint

behavior results from these different assumptions.

Some alternative large sample size asymptotics for the lag one least squares estimator,

showing that the error is O(n−1) and O(n−3/2) on compact sets as n → ∞, are given in

Lieberman (1994b) and Jensen (1995 §9.4) respectively when µ = 0. Such asymptotics, in

which n→∞, are not considered in this paper.

2 Saddlepoint Approximations

2.1 Distribution Theory

The cdf for R in the most general setting with noncentrality is

Pr (R ≤ r) = Pr

(
ǫ′Aǫ
ǫ′Bǫ

≤ r

)
= Pr

(
ǫ′ (A− rB) ǫ ≤ 0

)
(3)

= Pr (Xr ≤ 0)
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where Xr has been so defined. Assume the spectral decomposition

A− rB = P′rΛrPr (4)

where Pr is orthogonal and Λr = diag (λ1, . . . , λn), with

λ1 = λ1 (r) ≤ · · · ≤ λn = λn (r)

consisting of the ordered eigenvalues of (4). Whenever convenient, we suppress the depen-

dence of the various quantities on r. The distribution of Xr is therefore

Xr =
n∑

i=1

λiχ
2
(
1, ν2i

)
, (5)

where
{
ν2i
}
are determined as (ν1, ..., νn)

′ = νr = Prµ and represent the noncentrality

parameters of the independent noncentral χ21 variables specified in (5). The ordered values

of {λi} are in 1-1 correspondence with the components of νr specified through the particular

choice of Pr. Notationally we use χ
2
k for the central chi-square instead of χ

2 (k, 0) .

Before proceeding with the development of a saddlepoint approximation for the distri-

bution of R, we must first characterize the support of R, its relationship to the eigenvalues

λ1(r) and λn(r) and the convergence strip for the moment generating function of Xr.

Lemma 1 All the eigenvalues of Λr are strictly decreasing in r for B > 0 and decreasing

when B ≥ 0.

Proof. This is a direct consequence of theorem 9 in Magnus and Neudecker (1988,

§10.9).

The next result should be clear without proof.

Lemma 2 The distribution of R is degenerate at a single point if and only if A = cB for

some scalar constant c.

A description for the support of R requires consideration of the various cases involved

which depend on eigenvalue decompositions for A and B. Suppose that B has p ≥ 0 zero
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eigenvalues and let O′
B
be the orthogonal matrix of eigenvectors for B such that

OBBO
′
B =


 ΛB 0

0 0p×p


 .

Denote

OBAO
′
B =


 C11 C12

C21 C22




where C11 is (n− p)× (n− p) and C22 is p× p. Let N(C12) denote the null space in ℜp for

matrix C12.

Lemma 3 The support of R is specified in the following set of cases.

1. Suppose B > 0, hence p = 0, and A has rank of at least one. Then the support of R

is the finite interval (l, r) with l and r as the smallest and largest eigenvalues of B−1A.

2. If p ≥ 1, so B has at least one zero eigenvalue, then the right edge r is given as follows.

(a) If C22 has a positive eigenvalue, then r =∞.

(b) If C22 < 0 then r <∞ and r is the largest eigenvalue of

Λ−1
B

(C11 −C12C−122 C21). (6)

(c) If C22 ≤ 0 and C22 has at least one zero eigenvalue, then r =∞ if N(C22) �

N(C12); otherwise r <∞ and is the largest eigenvalue of

Λ−1
B

(C11 −C12OC1Λ−1C O′C1C21).

Here, O′
C
= (OC1,OC2) consists of the eigenvectors of C22,

OCC22O
′
C =


 ΛC 0

0 0m×m


 ,

ΛC < 0, m is the multiplicity of the zero eigenvalue, and the columns of OC1

and OC2 consist of eigenvectors with nonzero and zero eigenvalues respectively.
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Proof. For case 1, set z1 = B
1/2ǫ so that

R =
ǫ′Aǫ
ǫ′Bǫ

=
z′1B

−1/2AB−1/2z1
z′1z1

. (7)

The ratio R in (7) is bounded between the smallest and largest eigenvalues of B−1/2AB−1/2

or equivalently B−1A. Proof for case 2 is relegated to Appendix 7.1.1.

Some of the settings described in Lemma 3 concern ratios that are not in the class CR.

Lemma 4 When considering the right tail, matrices A and B admit a ratio R in class CR
only for cases 1 or 2(b) or 2(c). When considering both the left and right tails, then class

CR ∩ CL encompasses case 1 or the special setting of case 2(c) in which C22 = 0.

Proof. See Appendix 7.2.1.

Lemmas 3 and 4 are most easily understood by using some simple examples. Consider

an F1,1 distribution for R. Then

A− rB =


 1 0

0 −r




and λ1(r) = −r with λ2(r) ≡ 1. Clearly this is not in the class CR nor in CL. Since C22 = 1,

a scalar, this is case 2(a).

Next consider n = 2 and the least squares estimate of a lag 1 serial correlation in the

simplest setting with R = ǫ1ǫ2/ǫ
2
1 = ǫ2/ǫ1. Note this has the Cauchy distribution when

µ = 0 and the support is (l = −∞, r = ∞). To see that this ratio is in the classes CR and

CL, note that

A− rB =


 −r 1/2

1/2 0


 (8)

and the limiting eigenvalues are

lim
r→−∞

(−r −
√
r2 + 1)/2 = 0 = lim

r→∞
(−r +

√
r2 + 1)/2. (9)

The example illustrates a case 2(c) ratio in which C12 = 1/2 and C22 = 0 are scalars and

N(C22) � N(C12). The same results hold more generally with least squares estimates of

serial correlation from regression residuals.
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Lemma 5 Suppose R has a non-degenerate distribution in class CR as described in Lemma

4, B ≥ 0, and A has rank of at least one. The upper range of support r ≤∞ for R, as given

in cases 1,2(b), and 2(c) of Lemma 3, solves

λn (r) = 0. (10)

If r is an interior point for the support of R, then the mgf of Xr is

MXr(s) =

(
n∏

i=1

(1− 2sλi)
−1/2

)
exp

{
s
n∑

i=1

λiν
2
i

1− 2sλi

}
(11)

and convergent on the neighborhood of zero given as

1

2λ1 (r)
< s <

1

2λn (r)
. (12)

Proof. Value r is interior to the support of R if and only if λ1 (r) < 0 < λn (r) . Using

the continuity of λn (·) and the restriction to class CR, then (10) must hold.

2.2 Cdf Saddlepoint Approximation

The saddlepoint approximation is based on the cumulant generating function (cgf) for Xr

given as KXr (s) = lnMXr (s) . The saddlepoint ŝ is the unique root of

0 = K ′
Xr (ŝ) =

n∑

i=1

(
λi

1− 2ŝλi
+

λiν
2
i

(1− 2ŝλi)
2

)
(13)

in the range (12). The Lugannani and Rice (1980) approximation to first-order is

P̂r1 (R ≤ r) =





Φ(ŵ) + φ (ŵ)
{
ŵ−1 − û−1

}
if 0 �= E [Xr]

1
2 +

K′′′

Xr
(0)

6
√
2πK′′

Xr
(0)3/2

if 0 = E [Xr]
(14)

where Φ(·) and φ (·) denote the distribution and density function of a standard normal

random variable, respectively, and

ŵ = sgn (ŝ)
√
−2KXr (ŝ) û = ŝ

√
K ′′
Xr

(ŝ). (15)

Higher derivatives of KXr are given as

K
(j)
Xr

(ŝ) = 2j−1 (j − 1)!
n∑

i=1

λji (1− 2ŝλi)
−j
(
1 +

jν2i
1− 2ŝλi

)
. (16)
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Third and fourth derivatives allow computation of the second-order approximation which

includes further terms in the saddlepoint expansion. This has been given in Daniels (1987)

as

P̂r2 (R ≤ r) = P̂r1 (R ≤ r)− φ (ŵ)

{
û−1
(
κ̂4
8
− 5

24
κ̂23

)
− û−3 − κ̂3

2û2
+ ŵ−3

}
(17)

for r values such that 0 �= E[Xr] where κ̂j = K
(j)
Xr

(ŝ)/K ′′
Xr

(ŝ)j/2.

2.3 Density Saddlepoint Approximation

The saddlepoint density approximation for fR (r) , the density of R at r, is derived in

Appendix 7.2 as

f̂R (r) =
Jr (ŝ)√

2πK ′′
Xr

(ŝ)
MXr (ŝ) , (18)

where ŝ is the same saddlepoint used in the cdf approximation and which solves (13). Factor

Jr (ŝ) is computed from

Jr (s) = tr (I− 2sΛr)
−1
Hr + ν′r (I− 2sΛr)

−1
Hr (I− 2sΛr)

−1 νr (19)

with Hr= PrBP
′
r. The second-order saddlepoint density in this context is

f̂R2 (r) = f̂R (r) (1 +O) (20)

where

O =

(
κ̂4
8
− 5

24
κ̂23

)
+

J ′r (ŝ) κ̂3

2Jr (ŝ)
√
K′′
Xr

(ŝ)
− J ′′r (ŝ)

2Jr (ŝ)K′′
Xr

(ŝ)
. (21)

Example 6 For matrices A and B in which R ∼ Beta
(
m
2 ,
n−m
2

)
, the saddlepoint density

in (18) is

f̂R (r) =
B
(
m
2 ,
n−m
2

)

B̂
(
m
2 ,
n−m
2

)fR (r)

where B̂ is Stirling’s approximation for the Beta function B.
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3 Uniformity of the Approximations in r

The relative errors of the Lugannani and Rice approximation in (14) and the density ap-

proximation in (18) are shown to be uniform over [0, r) when in class CR. These results

follow as a consequence of deriving their finite limiting ratios as r → r. The limiting ratios

are derived in Theorems 10, 11, 16, and 17 below. Our approach for computing these limit-

ing ratios follows that also used in Jensen (1988, 1995 §9.4) and generalizes these results to

accommodate both noncentrality and the special concerns of multiple eigenvalues.

The nature of these asymptotics is dependent on the multiplicity of eigenvalue λn (r) = 0,

denoted asm.As a simple eigenvalue withm = 1, the limiting ratios are derived in Theorems

10 and 11. This is a common setting encountered while dealing with serial correlations. With

m ≥ 2 however, the asymptotics are more difficult and such results are deferred to Theorems

16 and 17. Examples of the multiple eigenvalue setting are also common and include least

squares estimates and Yule-Walker estimates for lag l serial correlation with l ≥ 2. One

important multiple eigenvalue example is the noncentral beta distribution discussed in §4.

The Case 2(a) setting is not in CR; however, the relative error can still be shown to

be uniform over [0,∞). Section 7.5 of the Appendix discusses this setting and shows that

the asymptotics are those found with Satterthwaite F -type ratios as detailed in Butler and

Paolella (2002).

The following result is used extensively in computing these limiting ratios.

Lemma 7 Suppose Z0 ∼ χ2n0 independently of Z1 ∼ χ2 (n1, 2ω) . If a0, a1 > 0, then the

density of a1Z1 − a0Z0 at zero is

fa1Z1−a0Z0 (0) =
a
1

2
n1−1
0 a

1

2
n0−1

1 2−1e−ω

(a0 + a1)
n̄−1B

(
n1
2 ,

n0
2

)
(n̄− 1)

1F1

(
n̄− 1;

n1
2
;

ωa0
a0 + a1

)

where n̄ = (n0 + n1) /2.

Proof. The density is the convolution

∫ ∞

0

1

a0a1
fZ0

(
t

a0

)
fZ1

(
t

a1

)
dt
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computed by expressing the noncentral χ2 as a weighted sum of central χ2 densities as in

Johnson and Kotz (1970, p. 132). Tedious calculation lead to

a
1

2
n1−1
0 a

1

2
n0−1
1 2−1e−ω

(a0 + a1)
n̄−1 Γ

(
n0
2

)
{ ∞∑

k=0

Γ (n̄+ k − 1)

Γ
(
n1
2 + k

)
k!

(
ωa0

a0 + a1

)k}
.

The lemma results upon recognizing that the summation in curly braces is the Taylor

expansion for the confluent hypergeometric function 1F1 in Abramowitz and Stegun (1972,

13.1.2).

3.1 Simple Eigenvalue λn (r) = 0

Suppose r < ∞, under the circumstances of Cases 1, 2(b), or 2(c). We assume here that

A − rB has a simple zero eigenvalue with multiplicity m = 1. For general A and B, this

multiplicity is often difficult to anticipate. Define

ν0 = νn (r) := pn(r)
′µ, (22)

where pn(r) is the eigenvector associated with the zero eigenvalue of A− rB.

The situation with r =∞ is more complicated.

Lemma 8 Suppose Case 2(c) with r =∞. Then m, the multiplicity of zero eigenvalues in

{λi (∞)} is the number of zero eigenvalues for C22. If m = 1 then

ν0 = νn (∞) := o′nO
′
B2µ (23)

where on is the p×1 eigenvector associated with the zero eigenvalue of C22, O′B = (OB1,OB2)

and OB2 is n× p and the orthonormal basis for the null space of B used to determine C22.

Proof. See Appendix 7.1.

The AR(1) example in (8) with n = 2 provides a simple example. Here, C22 is the

scalar 0 so that o′n = 1, and O′
B2 = (0, 1) ; hence ν0 = µ2.

Lemma 9 Suppose the conditions of Lemma 5 and let m = 1. Then, as r→ r ≤∞,

ǫ = λn (r)→ λn (r) = 0
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and

ŝ =
t0
ǫ
+O (1)→∞, (24)

where

t0 =
1

4n

{
2n− 1 + ν20 −

√(
ν20 + 2n− 1

)2 − (2n− 1)2 + 1

}
(25)

and ν0 is defined in (22) or (23). In addition,

û→ u0 =

√
n− 1

2
+

2t20
(1− 2t0)

2 +
4ν20t

2
0

(1− 2t0)
3 . (26)

Proof. The largest eigenvalue λn (r) is continuous at r = r so that ǫ = λn (r) → 0 as

r→ r. Define t̂ = ǫŝ and replace ŝ with t̂ in saddlepoint equation (13) to get

0 =
n∑

i=1

{
λi

1− 2t̂λi/ǫ
+

λiν
2
i(

1− 2t̂λi/ǫ
)2

}

= ǫ

[
n−1∑

i=1

{
λi

ǫ− 2t̂λi
+O (ǫ)

}
+

{
1

1− 2t̂
+

ν2n(
1− 2t̂

)2

}]
. (27)

Remove the factor ǫ and take the limit of this equation as r→ r to get

0 =
n− 1

−2t0
+

1

1− 2t0
+

ν20
(1− 2t0)

2 , (28)

where limr→r νn = ν0 and t0 is defined to be the appropriate root of (28). There are two

roots to this quadratic equation and the smaller root in (25) is the correct limiting value of

t̂. The reason for this is that the larger root exceeds 1/2 and 1/2 is an upper bound on the

range of values for t̂ as deduced from (12). To show that t̂→ t0 as given in (25), note that

the estimating equation in (27), without factor ǫ, converges uniformly to (28) in a compact

neighborhood of t0; therefore t̂ must converge to t0 by a uniform continuity argument. The

expansion for ŝ in ǫ in (24) now follows. Similar arguments provide the expansion

K ′′
Xr (ŝ) ∼ 2

n−1∑

i=1

{
λ2i

(1− 2t0λi/ǫ)
2 +

2λ2i ν
2
i

(1− 2t0λi/ǫ)
3

}
+ 2

{
ǫ2

(1− 2t0)
2 +

2ǫ2ν2n
(1− 2t0)

3

}

∼ ǫ2
{
n− 1

2t20
+

2

(1− 2t0)
2 +

4ν20
(1− 2t0)

3

}
.

Thus σ̂ =
√
K′′
Xr

(ŝ) = O (ǫ) and ŝ = O
(
ǫ−1
)
and the product û converges to u0 as given

in (26).
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Theorem 10 Suppose n ≥ 2, R has a non-degenerate distribution in CR, B ≥ 0, and A

has rank of at least one. If m = 1, then the limiting ratio of the true tail probability to its

first order Lugannani and Rice approximation in (14) is

lim
r→r

Pr (R > r)

P̂r1 (R > r)
=

√
2π (1− 2t0) (2t0)

n−1
2 u0e

−η2

B
(
1
2 ,
n+1
2

)
n
2

1F1

(
n

2
;
1

2
;
ν20
2

)
. (29)

where parameters t0, u0, ν0, and η2 are specified in (25), (26), (22,23), and (36) respectively.

All of these parameters are determined by ν0 so the right side of (29) is a function of ν0

alone.

Proof. The general method of proof entails writing the tail probability ratio for finite

r as an inversion integral. The limiting ratio is then determined by passing the inversion

integral to its limit as r→ r.

The right tail probability of R is determined in terms of Xr, using the inversion formula

as

Pr (Xr > 0) =
1

2πi

∫ ŝ+i∞

ŝ−i∞
z−1MXr (z) dz

=
1

2π

∫ ∞

−∞
(ŝ+ it)−1MXr(ŝ+ it)dt

=
MXr(ŝ)

ŝσ̂

1

2π

∫ ∞

−∞

(
1 +

it

ŝσ̂

)−1 MXr(ŝ+ it/σ̂)

MXr(ŝ)
dt (30)

where the last integral results from a scale change to the variable of integration with σ̂ =
√
K ′′
Xr

(ŝ).

The asymptotic behavior of the first order saddlepoint approximation in (14) is related

to the leading factor in (30) according to

P̂r1 (Xr > 0) ∼ φ (ŵ) /û−1 =
MXr(ŝ)

ŝσ̂
√
2π

(31)

as r → r if it can be shown that ŵ → ∞ under such limits. From Lemma 9, ŝ → ∞ and

λ1 (r) < 0 for sufficiently large r so that the term {1− 2ŝλ1 (r)}−1/2 → 0 in MXr(ŝ) as do

some other terms; thus ŵ =
√
−2KXr(ŝ)→∞.

Using (31) in (30) then

lim
r→r

Pr (Xr > 0)

P̂r1 (Xr > 0)
=
√
2π lim

r→r
1

2π

∫ ∞

−∞

(
1 +

it

ŝσ̂

)−1 MXr(ŝ+ it/σ̂)

MXr(ŝ)
dt. (32)
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The limiting inversion is now determined by finding the pointwise limit of its integrand and

applying the dominated convergence theorem. A dominating function that is integrable is

provided in Appendix 7.3.

The limiting values of the integrand in (32) are now determined. For the first term,

(
1 +

it

ŝσ̂

)−1
∼
(
1 +

it

u0

)−1
.

The centrality factors of the MXr -ratio are

n∏

i=1

{
1− 2 (ŝ+ it/σ̂)λi

1− 2ŝλi

}− 1

2

=
n∏

i=1

{
1− 2itλi

σ̂ (1− 2ŝλi)

}− 1

2

. (33)

As ǫ→ 0, σ̂ = û/ŝ ∼ ǫu0/t0 so that

σ̂ (1− 2ŝλi) ∼
(
ǫu0
t0

)
(1− 2t0λi/ǫ) (34)

∼





−2u0λi > 0 if i = 1, . . . , n− 1

(ǫu0/t0) (1− 2t0) if i = n .

The limit of (33) is therefore

(
1 +

it

u0

)−n−1
2

(1− 2itη1)
− 1

2

where

η1 =
t0

u0 (1− 2t0)
.

For the limit of the noncentral portions of the MXf -ratio, the exponent of term i of exp (·)

is
(ŝ+ it/σ̂)λiν2i

1− 2 (ŝ+ it/σ̂)λi
− ŝλiν

2
i

1− 2ŝλi
=

ν2i
2

(
1

1− 2 (ŝ+ it/σ̂)λi
− 1

1− 2ŝλi

)
. (35)

As ǫ → 0, then ŝ → ∞ and 1 − 2ŝλi → +∞ since λi (r) < 0 for i = 1, . . . , n − 1. Simple

computations show the real portion of (35) is O
(
ŝ−1
)
→ 0 and the imaginary portion is

O (σ̂)→ 0. Thus the limit of the MXf -ratio contribution is 1 for i = 1, . . . , n− 1. For i = n,

13



the exponent from the right side of (35) is

∼ ν2n
2


 1

1− 2ǫ
(
t0
ǫ + it t0ǫu0

) − 1

1− 2 t0ǫ ǫ




∼ ν20
2

(
1

1− 2t0 (1 + it/u0)
− 1

1− 2t0

)

=
η2

1− 2itη1
− η2

where

η2 =
ν20

2 (1− 2t0)
. (36)

Using the dominating convergence theorem, the limiting ratio in (32) is

√
2π

1

2π

∫ ∞

−∞

(
1 +

it

u0

)−n+1
2

(1− 2itη1)
− 1

2 exp

(
η2

1− 2itη1
− η2

)
dt. (37)

In (37), the first exponential term in t is expanded in a Taylor series to give an integrand of

(
1 +

it

u0

)−n+1
2

×
∞∑

k=0

(1− 2itη1)
− 1

2
(1+2k)

(
e−η2

ηk2
k!

)
.

This may be recognized as the product of two characteristic functions representing the

convolution of − 1
2u0

χ2n+1 = −a0Z0 and η1χ
2 (1, 2η2) = a1Z1 variables as in Lemma 7. The

inversion integral in (37) is the density of a1Z1−a0Z0 at 0 as given by Lemma 7. Reducing

this to an expression in t0 and using η2 (1 + 2u0η1)
−1 = ν20/2 leads to

fa1Z1−a0Z0 (0) =

√
1− 2t0 (2t0)

n−1
2 u0e

−η2

B
(
1
2 ,
n+1
2

)
n
2

1F1

(
n

2
;
1

2
;
ν20
2

)

which gives (29).

In the central case with ν = 0, the limiting ratio of tail probabilities in Theorem 10

works out to be

B̂

(
1

2
,
n− 1

2

)
/B

(
1

2
,
n− 1

2

)
, (38)

where B̂ is Stirling’s approximation. This same limiting error was derived in Jensen (1995,

§9.4) which considered the tail ratio for the distribution of the least squares estimate in a

mean zero AR(1) model. Jensen’s (9.4.7) is this value when the difference in notation is

accounted for (our n is his n+ 1).
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As ν20 →∞, then the limiting ratio in Theorem 10 is

Γ̂

(
1

2
,
n− 1

2

)
/Γ

(
1

2
,
n− 1

2

){
1 +O(ν−20 )

}

where Γ̂ is Stirling’s approximation. This follows from the large argument asymptotics for

1F1 as given in 13.1.4 of Abramowitz and Stegun (1972).

Theorem 11 Under the conditions of Theorem 10, the first order saddlepoint density has

the same relative limit given in (29). The intermediate limit

lim
r→r

fR (r)

f̂R (r)
=
√
2π (1− 2t0)

3

2 (2t0)
n−3
2 u0e

−η2



p0

1F1

(
n
2 ;
3
2 ;
ν2
0

2

)

B
(
3
2 ,
n−1
2

)
n
2

+ (1− p0) (1− 2t0)
1F1

(
n+2
2 ; 52 ;

ν2
0

2

)

B
(
5
2 ,
n−1
2

)
n+2
2



 (39)

is derived where

p0 =
1− 2t0

1− 2t0 + ν20
.

This expression is shown to be analytically the same as the right side of (29).

Proof. Follow the approach used for the cdf. From (63) in the Appendix,

fR (r) = E (W ) fYr (0) = E (W )
1

2π

∫ ∞

−∞
MYr (ŝ+ it)dt

= E (W )
MYr(ŝ)

σ̂

1

2π

∫ ∞

−∞

MYr(ŝ+ it/σ̂)

MYr(ŝ)
dt

= f̂R (r)
√
2π

1

2π

∫ ∞

−∞

MXr(ŝ+ it/σ̂)Jr (ŝ+ it/σ̂)

MXr(ŝ)Jr (ŝ)
dt

from (67) in the Appendix. Then,

lim
r→r

fR (r)

f̂R (r)
=
√
2π lim

r→r
1

2π

∫ ∞

−∞

MXr(ŝ+ it/σ̂)Jr (ŝ+ it/σ̂)

MXr(ŝ)Jr (ŝ)
dt. (40)

The inversion is much the same as with the cdf except as concerns the different factor

J (ŝ+ it/σ̂) /J (ŝ) in place of (1 + it/ŝσ̂)−1. The dominating convergence theorem can still

be applied since, in Appendix §7.4, the norm of this new factor is shown to be uniformly

bounded in t for sufficiently large r. In addition it is also shown that

Jr (ŝ+ it/σ̂)

Jr (ŝ)
∼ p0 (1− 2itη1)

−1 + (1− p0) (1− 2itη1)
−2 . (41)
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The limit of the MXr -ratio from Theorem 10 leads to a limiting inversion in (40) as

1

2π

∫ ∞

−∞
{p0φa1Z1 (t)φ−a0Z0 (t) + (1− p0)φa2Z2 (t)φ−a0Z0 (t)}dt

where φ (·) denotes a characteristic function, a0Z0 ∼ 1
2u0

χ2n−1, a1Z1 ∼ η1χ
2 (3, 2η2) , and

a2Z2 ∼ η1χ
2 (5, 2η2) . The limiting ratio is therefore

√
2π {p0fa1Z1−a0Z0 (0) + (1− p0) fa2Z2−a0Z0 (0)} ,

which is (39) upon using Lemma 7.

The proof that (39) agrees analytically with the right side of (29) is deferred to the

Appendix §7.4.

Relative errors for the second order approximations, with the cdf given in (17) and the

density given in (20), are also uniform in the right tail. The additional correction terms for

second order cdf remain bounded as r → r. This occurs because κ̂3, κ̂4 and û have finite

nonzero limits and because the last term ŵ−3 → 0. Some additional work is needed to deal

with the last two terms in (21), the correction term of (20). From the asymptotics in §7.3,

one can show that

J (j)r (ŝ) = O
(
ǫj
)

as ŝ→∞ or ǫ→ 0. Using
√
K′′
Xr

(ŝ) = O (ǫ) , then these last two terms converge to nonzero

values as ǫ→ 0.

3.2 Multiple Eigenvalue λn (r) = 0

In this setting, the asymptotics depend on the relative rates of convergence to zero for the

multiple eigenvalues of A− rB that approach 0 as r→ r. If m denotes its multiplicity, then

m ≥ 1 by definition of r. The allowable values for m are 1 ≤ m ≤ n−1 but not m = n. This

latter value would make limr→r(A−rB) ≡ 0 in which case the distribution of R approaches

a degenerate distribution by Lemma 2. For unbounded ratios in Case 2(c), the value of m

is the dimension of the null space for C22, whereas for ratios in B the value of m is less

transparent.
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We must first determine the relative rates at which the m largest eigenvalues of A− rB

vanish as r → r in the two separate settings, r < ∞ and r =∞. For the former setting,

general formulae for these relative rates are given in the next lemma. When r =∞, the

relative rates must be determined on a case by case basis.

Lemma 12 Suppose r < ∞ and 0 is an eigenvalue of multiplicity m for A − rB. Let

the columns of n × m matrix U0 be an orthonormal basis for the null space of A − rB.

Furthermore, denote the ordered eigenvalues of U′
0BU0 as

0 ≤ τn−m+1 ≤ · · · ≤ τn.

If τn > 0, then the limiting relative rates of convergence to zero for the largest m eigenvalues

of A− rB are

lim
r→r

λi (r)

λn (r)
=

τi
τn

= ωi (42)

for i = n−m+ 1, . . . , n where 0 ≤ ωn−m+1 ≤ · · · ≤ ωn = 1.

For the most common case in which B > 0, then τn−m+1 > 0 so that ωn−m+1 > 0.

Proof. The results follow by using theorem 13 in Magnus and Neudecker (1988, p. 167)

that has been taken from Lancaster (1964). A nontrivial requirement for using this result

is that all the eigenvalues of A− rB have only linear elementary divisors; this holds in our

setting since the matrix is symmetric.

Theorem 13 states that the m derivatives {∂λi (r) /∂r|r=r} assume values as the eigen-

values of −U′0BU0. Using L’Hospital’s rule,

lim
r→r

λi (r)

λn (r)
= lim
r→r

∂λi (r) /∂r

∂λn (r) /∂r

which are ratios of {−τi} . The larger the eigenvalue, the greater its rate of decrease to 0 has

to be to catch up with the others as r→ r. Therefore these rates are the ratios of τi-values

specified in (42).

In case 2(c) for which r =∞, the results of Lancaster (1964) cannot be applied directly

since the components of the matrix A−rB are not analytic at r =∞. A partial result may

be obtained by reparametrizing

D(ε) = (A− rB) /r = εA−B (43)
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and letting ε→ 0. If {λi (ε)} denote the ordered eigenvalues of A− ε−1B then

ψi(ε) = ελi (ε) (44)

are the ordered eigenvalues of (43).

Lemma 13 Consider case 2(c) in which r = ∞ and assume that the zero eigenvalue has

multiplicity m. Then λn−m+1 (r) , . . . , λn (r) are analytic at r =∞. If λ′n (∞) > 0 then the

relative rates of convergence are

ωi =
∂λi (ε) /∂ε|ε=0
∂λn (ε) /∂ε|ε=0

=
∂2ψi (ε) /∂ε

2|ε=0
∂2ψn (ε) /∂ε2|ε=0

(45)

for i = n−m+ 1, . . . , n.

Proof. Whereas m eigenvalues among {λi (ε)} converge to zero as ε → 0, now p ≥ m

eigenvalues of D(ε) converge to zero as ε → 0. Lancaster’s (1964) results may be applied

to determine {ψ′i (0)} for the p zero roots of D(0). This leads to ψ′i(0) = 0 for i = n−m+

1, . . . , n. To see this, note that Lancaster’s results specify these derivatives as the eigenvalues

of

O′B2AOB2 = C22

or the elements of ΛC for the p−m smallest and zero for the m largest.

Lancaster’s results also assure that {ψi(ε)} are analytic functions at ε = 0. Since ψ′i(0) =

0 for i ≥ n−m+ 1 then their Taylor expansions are

ψi(ε) = ε2ψ′′i (0)/2 +O(ε3)

which yields Taylor expansion for λi (ε) as

λi (ε) = εψ′′i (0)/2 +O(ε2). (46)

Hence {λi(ε)} are analytic at ε = 0 and {λi(r)} are analytic at r = ∞. The relative rates

of convergence are now determined from the leading terms in (46) or alternatively by using

L’Hospital’s rule applied to (44). Both of these arguments lead to the expressions in (45).
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The limiting noncentrality parameters {ν0i : i = n−m+ 1, . . . , n} are more difficult to

determine for m ≥ 2 because they are expressed in terms of the limiting eigenvectors

associated with the eigenvalues that vanish. In the case r <∞, it is intuitively clear, and

Lancaster (1964) has shown formally that these eigenvectors are smoothly defined as r→ r.

Let P2r be n×m and denote the last m columns of P′r which are the eigenvectors for the

m largest eigenvalues of (A− rB) ( which increase in size with column number). Then P2r

is continuous at r = r and the limiting noncentrality parameters are

(ν0,n−m+1, . . . , ν0,n)
′ = P′2rµ. (47)

In the unbounded setting with r = ∞, let n × m matrix P2ε consist of the eigenvectors

corresponding to the largest m eigenvalues of D(ε) in (43). Then the limiting noncentrality

parameters are given in (47) with P20 = limε→0P2ε replacing P2r. In complicated practical

examples in which these computations are not explicit, these limiting eigenvectors are best

computed numerically by taking ε small, for example ε = 10−7 or r = r− 10−7.

Example 14 The least squares estimate of a lag 2 serial correlation with n = 3 and zero

mean has the form R = ǫ1ǫ3/ǫ
2
1 and leads to the matrix

D (ε) = εA−B =




−1 0 1
2ε

0 0 0

1
2ε 0 0


 = Q′ε




ψ−(ε) 0 0

0 0 0

0 0 ψ+(ε)


Qε

where

Q′ε =




2ψ−(ε)/ε 0 2ψ+(ε)/ε

0 1 0

1 0 1


 ψ±(ε) = −1

2 ± 1
2

√
(1 + ǫ2).

The eigenvectors in matrix Q′ε have not been normalized as would be needed to use the

notation P′ε. The limits of the eigenvalues are

lim
ε→0

{ψ−(ε), 0, ψ+(ε)} = (−1, 0, 0)
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and the limiting normed eigenvectors have P′ε → I3 as ε→ 0. Note that ∂ψ+(ε)/∂ε|ε=0 = 0.

Also the eigenvalues of

O′B2AOB2 =


 0 1 0

0 0 1







0 0 1
2

0 0 0

1
2 0 0







0 0

1 0

0 1


 =


 0 0

0 0




are both zero as discussed in Lemma 13. The limiting rate

ω2 = lim
r→∞

λ2 (r)

λ3 (r)
= lim
ε→0

0

∂2ψ+ (ε) /∂ε2
=

0

1/2
= 0.

The limiting noncentrality parameters are

 ν02

ν03


 = P′20µ =


 0 1 0

0 0 1


µ =


 µ2

µ3


 .

In this context the derivations for the relative errors become rather messy due to their

dependence on {ωi, ν0i} . The derivations, however, are identical to those in the simple

eigenvalue setting, except for the modifications needed to account for these differential rates

of convergence. We shall briefly demonstrate these modifications in the next lemma and

then simply state all the results without details since the proofs lend little further insight.

All summations in the remainder of this subsection are over S = {n−m+ 1, . . . , n} .

Lemma 15 Suppose R is in class CR and let m be the multiplicity of the zero eigenvalue

of A− rB. Then, as r→ r,

ǫ = λn (r)→ λn (r) = 0

and

ŝ =
t0
ǫ
+O (1)→∞, (48)

where t0 is the unique solution to

0 = −n−m

2t0
+
∑

i∈S
ωi

{
1

1− 2t0ωi
+

ν20i
(1− 2t0ωi)

2

}
(49)

in (0, 1/2) with S = {n−m+ 1, . . . , n} . In addition,

û→ u0 =

√√√√n−m

2
+ 2t20

∑

i∈S
ω2i

{
1

(1− 2t0ωi)
2 +

2ν20i
(1− 2t0ωi)

3

}
. (50)
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Proof. The saddlepoint equation in this instance, with t̂/ǫ replacing ŝ, is

0 = ǫ

[
n−m∑

i=1

{
λi

ǫ− 2t̂λi
+O (ǫ)

}
+
∑

i∈S

{
λi/ǫ

1− 2t̂λi/ǫ
+

λiν
2
i /ǫ(

1− 2t̂λi/ǫ
)2

}]
. (51)

Passing to the limit using λi/ǫ → ωi for i ∈ S, then it may be seen that the right side of

(51) in the square brackets converges to the equation of (49). There is a unique solution t0

to this equation because the right side of (49) is strictly increasing in t0 and maps (0, 1/2)

onto (−∞,∞) . The remainder of the proof is straightforward.

Theorem 16 Suppose n ≥ 2, and the conditions of Lemma 15. Define operator D0 (X) to

be the density of random variable X evaluated at zero. Then the limiting ratio of the true

tail probability for R to its first order Lugannani and Rice approximation in (14) is

lim
r→r

Pr (R > r)

P̂r1 (R > r)
=
√
2πD0

{∑

i∈S
η1iχ

2 (1, 2η2i)−
1

2u0
χ2n−m+2

}
(52)

where the χ2 terms are independent random variables. Parameters η1i and η2i for i ∈ S are

η1i =
t0ωi

u0 (1− 2t0ωi)
η2i =

ν20i
2 (1− 2t0ωi)

.

In the case m = 1, this result reduces to that in Theorem 10.

The comparable result for the density requires some further notation. Let

Hr = limr→rPrBPr = (hij) and define

WJ =
∑

i∈S
hiiη3i +

∑

i∈S

∑

j∈S
ν0iν0jη3iη3jhij > 0

where η3i = (1− 2t0ωi)
−1 .

Theorem 17 Under the conditions of Theorem 16, the limiting ratio for the density ap-

proximation is

lim
r→r

fR (r)

f̂R (r)
=

√
2π

WJ


∑

i∈S
hiiη3iD0




∑

j∈S
η1jχ

2 (1, 2η2j) + η1iχ
2
2 −

1

2u0
χ2n−m



+

∑

i∈S

∑

j∈S
ν0iν0jη3iη3jhijD0

{∑

k∈S
η1kχ

2 (1, 2η2k) + η1iχ
2
2 + η1jχ

2
2 −

1

2u0
χ2n−m

}
 ,

where all χ2 variates are assumed to be independent.
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In the case m = 1, this can be shown equivalent to the result of Theorem 11. In showing

this, we must use the fact that

χ2 (l, 2η2) + χ22 = χ2 (l + 2, 2η2)

as given in Johnson and Kotz (1970, p. 132)

4 Noncentral Beta
(
m
2 ,

n−m
2

)
Distribution

This distribution has

A =


 Im 0

0 0




and B = In so that r = 1 and ωi ≡ 1. This leads to the explicit expression

t0 =
1

2
+

1

4n

{
(θ −m)−

√
(θ −m)2 + 4θn

}
,

where

θ =
∑

i∈S
ν20i =

m∑

i=1

µ2i .

Furthermore,

u0 =

√
n−m

2
+ 2t20

{
m

(1− 2t0)
2 +

2θ

(1− 2t0)
3

}
.

Theorem 18 For a noncentral Beta
(
m
2 ,
n−m
2

)
with min (m,n−m) ≥ 1, the limiting ratio

of the true tail probability to its first order Lugannani and Rice approximation is

RE =

√
2π (1− 2t0)

m
2 (2t0)

n−m
2 u0e

−η2

B
(
m
2 ,
n−m
2

)
n−m
2

1F1

(
n

2
;
m

2
;
θ

2

)
, (53)

where

η2 =
θ

2 (1− 2t0)
.

The first order saddlepoint density has the same relative error limit.
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Proof. The proof follows the general flow of the single eigenvalue proof. For the density

approximation, an intermediate result is that

REden =
√
2π (1− 2t0)

m
2
+1 (2t0)

n−m
2
−1 u0e

−η2

{
p0

1F1
(
n
2 ;
m
2 + 1; θ2

)

B
(
m
2 ,
n−m
2

)
m
2

+(1− p0)
(1− 2t0) 1F1

(
n
2 + 1; m2 + 2; θ2

)

B
(
m
2 + 1, n−m2

) (
m
2 + 1

)
}
,

where

p0 =
(1− 2t0)

∑
i∈S hii

(1− 2t0)
∑
i∈S hii +

∑
i∈S
∑
j∈S ν0iν0jhij

=
(1− 2t0)m

(1− 2t0)m+ θ
.

The same recursions for the confluent hypergeometric function, used in Theorem 11, lead

to a simplification of this result so that REden is as given in (53).

In the central setting with θ = 0, the value in (53) reduces to

RE = B̂

(
m

2
,
n−m

2

)
/B

(
m

2
,
n−m

2

)
. (54)

This is consistent with the computation of the central Beta
(
m
2 ,
n−m
2

)
density in Example 5.

As θ →∞, the limiting ratio for (53) is

Γ̂

(
1

2
,
n−m

2

)
/Γ

(
1

2
,
n−m

2

){
1 +O(θ−1)

}

which follows from the asymptotics for 1F1 given in 13.1.4 of Abramowitz and Stegun (1972).

The limiting ratio in (53) has a relationship with the Laplace approximation to 1F1

given in Butler and Wood (2002, eqn. 11). Suppose (53) is rewritten as

REcdf = γ (θ) 1F1

(
n

2
;
m

2
;
θ

2

)

where γ (θ) is the leading factor from (53). Denote R̂Ecdf as γ (θ) 1F̂1 where 1F̂1 is the

Laplace approximation for 1F1 from Butler andWood (2002). Then R̂Ecdf no longer depends

on θ and has a constant value as the ratio in (54). Thus

1F̂1

(
n

2
;
m

2
;
θ

2

)
=

1

γ (θ)
B̂

(
m

2
,
n−m

2

)
/B

(
m

2
,
n−m

2

)
.
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5 Serial Correlations

Least squares, Yule-Walker, and Burg estimates for lag l correlations without the sample

mean have the respective forms

Rls =

∑n−l
i=1 ǫiǫi+l∑n−l
i=1 ǫ

2
i

Ryw =

∑n−l
i=1 ǫiǫi+l∑n
i=1 ǫ

2
i

Rb =

∑n−l
i=1 ǫiǫi+l

1
2

∑
i∈I ǫ

2
i +
∑n−l
i=l+1 ǫ

2
i

, (55)

where I = {1, . . . , l, n− l + 1, . . . , n} . Estimator Rls is in class CR−B whereas the other

two are in B. All are represented in the large sample space asymptotics.

5.1 Least Squares Estimates

For estimator Rls, OB = In and C22 = 0 so Rls is in both CR and CL. The multiplicity of

the zero eigenvalue at r =∞ is m = l.

Example 19 Consider Rls with n = 7 and l = 3 = m. The matrix D (ε) admits 3 eigen-

values

0 < ψ5(ε) = ψ6(ε) < ψ7(ε)

which converge to 0 as ε → 0. For each ψ′′i (0) = 1/2 so the relative rates are ω5 = ω6 =

ω7 = 1. The limiting noncentrality parameters are (µ5, µ6, µ7)
′ .

Example 20 Consider the previous example but suppose ǫ24 is excluded from the denomi-

nator so the estimator is R =
∑4
i=1 ǫiǫi+3/

∑3
i=1 ǫ

2
i . In this instance l = 3 but m = 2. The

matrix

C22 =




0 0 0 1
2

0 0 0 0

0 0 0 0

1
2 0 0 0




has eigenvalues −1/2, 0, 0, and 1/2. This R is in case 2(a) which is addressed in §7.5 of the

Appendix.
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5.2 Yule-Walker and Burg Estimates

Some examples and results help to distinguish the simple and multiple eigenvalue settings

that may arise using the Yule-Walker estimates. Suppose that Al is the numerator matrix

for lag l with the examples in (55).

Example 21 l = 1. In such settings, the largest eigenvalue of A1 has multiplicity 1 and

the simple setting applies. This result follows from the next lemma and the fact that A1 is

an irreducible matrix.

Lemma 22 Consider a Yule-Walker ratio with general lag l and suppose that the n × n

matrix Al is irreducible. Then the simpler settings of Theorems 10 and 11 apply for large

sample space relative errors.

Proof. Consider the n components as states of a Markov chain with transition matrix

as Al. All states communicate and the period of the chain must be 2 since step l followed by

step −l returns to any state. By the Perron-Frobenius theorem (Seneta, 1981, thm. 1.7),

the 2 eigenvalues of Al attaining the largest magnitude must be opposites that differ by the

factor −1.

Example 23 n = 5 and l = 2. The 5 × 5 matrix A2 is not irreducible and consists of

two irreducible subchains with states {1, 3, 5} and {2, 4} . The 5 eigenvalues are 0, ±1/2,

±1/
√
2. The support of R is

(
−1/

√
2, 1/

√
2
)
and the largest eigenvalue is simple.

Example 24 n = 8 and l = 3. The 8 × 8 matrix A3 is not irreducible and consists of

three irreducible subchains with states {1, 4, 7} , {2, 5, 8} and {3, 6} . The 8 eigenvalues, with

their multiplicities in parentheses, are 0(2), ±1/2(2), and ±1/
√
2(2). The support of R is

(−1/
√
2, 1/

√
2) and the largest eigenvalue has multiplicity 2 so Theorems 16 and 17 are

applicable.

The irreducibility assumption of Lemma 22 guarantees the simple situation for the Yule-

Walker estimate. When Al is not irreducible, both simple and multiple eigenvalue settings

are common.
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Example 25 The Burg estimator with n = 6 and l = 2 has support (−1, 1) . The largest

eigenvalue of A−rB has multiplicity 2 and is

λ5(r) = λ6(r) = −3
4r +

1
4

√
r2 + 8 ↓ 0 as r→ 1.

Thus ω5 = ω6 = 1. The null space of A−B has orthonormal basis given by the rows of

U′
0 =

1√
3


 0 1 0 1 0 1

1 0 1 0 1 0




which delineates the communicating states with lag 2.

6 Numerical Example

In practice, serial correlations with arbitrary lag l are computed from least squares resid-

uals and this often assures in practice that the largest eigenvalue of A− rB has algebraic

multiplicity one. Thus the simpler situation for the large deviation errors occurs most often

in practical data analysis.

Numerical confirmation of the large deviation errors in Theorems 10 and 11 is possible

by considering the simplest model of §2.1. This is the least squares estimate of lag one with

n = 2 in a model without a location effect. Then R = ǫ2/ǫ1 with ǫi
indep∼ N(µi, 1) . The

exact density can be expressed as

fR (r) =
1

2π

∫ ∞

−∞
|x| exp

{
−1

2
(x− µ1)

2

}
exp

{
−1

2
(rx− µ2)

2

}
dx (56)

= (πδ)−1 exp

{
−1

2

(
µ21 + µ22

)}
+
λθ (µ1 + rµ2)

δ
√
2πδ

where

δ = 1 + r2, θ = erf

(
µ1 + rµ2√

2δ

)
, λ = exp

(
−1

2

(µ1r − µ2)
2

δ

)
.

From Theorem 10, the limiting relative errors in the left and right tails are dependent on

ν0 alone; in both tails this value is ν0 = µ2 so that the limiting relative errors are the same

in both tails regardless of the values of µ1 and µ2.

Density (56) is both heavy tailed and bimodal for µ1 = 0.2 and µ2 = 2. Figure 1 plots

the exact density, the normalized version of f̂R in (18) denoted as f̄R, and the second order
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saddlepoint f̂R2 in (20) for this case. While both appear highly accurate in the tails, only the

latter captures the bimodality. Figure 2 plots the ratio of the exact to the three approximate

densities including f̂R, f̄R and f̂R2. As |r| increases, we have numerically confirmed that

fR (r) / f̂R (r)→ 0.8222, in agreement with the value computed from Theorems 10 and 11.

This value is virtually achieved at |r| = 10. Both f̄R and f̂R2 perform better than f̂R in the

tails, the latter most notably so.

The true cdf of R, or FR (r) , must be computed from (56) using numerical integration.

In this case, |r| must be substantially larger before the same limiting ratio, as specified in

Theorem 10, is reached. Figure 3 plots

FR (r)

F̂R (r)
1{ŝ <0} +

1− FR (r)

1− F̂R (r)
1{ŝ > 0} vs. r (57)

with F̂R (r) as P̂r2 in (17) and as P̂r1 in (14). For these values of µi, P̂r1 is more accurate

than P̂r2 only in the range −1.8 < r < 1.2. At r = −25, 000, FR (r) / F̂R (r) = 0.8226 for

P̂r1, as given by Theorem 10, while for P̂r2 the ratio is 1.015. This latter ratio necessarily

includes the factor (1+OF ) where OF approximates the limit of the second-order correction

term.

If µ1 = µ2 = 0, R is Cauchy, and the saddlepoint density reduces to

f̂R (r) =
1√

2π (1 + r2)
=

√
π

2
fR (r) .

Thus f̄R is exact and the saddlepoint solution to 0 = K′
X (ŝ) is given by ŝ = r. The relative

error is,

fR (r) / f̂R (r) =

√
2

π
=

B̂ (1/2, 1/2)

B (1/2, 1/2)
,

in agreement with the large sample space theory. In this case, the values for ŵ and û in the

Lugannani-Rice formula reduce to

ŵ = sgn(r)
√
ln (1 + r2), û = r

(
1 + r2

)−1/2
.
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7 Appendix

7.1 Proofs for Lemmas

7.1.1 Lemma 3

Consider case 2(a) of Lemma 3. Transform (z′1, z
′
2) = ǫ′O′

B
and rewrite

R =
z′1C11z1 + 2z′1C12z2 + z

′
2C22z2

z′1ΛBz1
. (58)

Let the the angle between z2 and the eigenvector for the positive eigenvalue of C22 be

sufficiently small. As ||z2|| → ∞, then R→∞ and establishes part (a).

If C22 < 0, R in (58) is concave in z2 for fixed z1 and attains a maximum at ẑ2 =

−C−122 C21z1 with R value

R =
z′1(C11 −C12C−122 C21)z1

z′1ΛBz1
. (59)

Now the maximum value of R in (59) over z1 is specified in (6) of case 2(b).

If C22 ≤ 0 as in case (c), then further transform z2 to (z′3, z
′
4) = z

′
2O

′
C
and rewrite

R =
z′1C11z1 + 2z′1C12(OC1z3 +OC2z4) + z

′
3ΛCz3

z′1ΛBz1
.

If N(C22) ⊆ N(C12) then C12OC2 = 0. Now R is concave in z3 due to ΛC < 0 and the

successive maximization of R over z3 and z1 leads to the maximum in part (c). In the

event that C12OC2 �= 0, then sequences of z4 values which increase z
′
1C12OC2z4 lead to

unbounded support for R.

7.1.2 Lemma 4

Explanations are needed only for cases 2(a) and 2(c) in instances with r =∞. For case 2(a)

in which C22 has a positive eigenvalue, then λn(r) cannot converge to 0 as r→∞. To show

this, note that the eigenvalues of (A− rB) are also the eigenvalues of

Qr =


 In−p 0

0 OC


OB (A− rB)O′B


 In−p 0

0 O′
C




=


 C11 − rΛB C12O

′
C

OCC21 ΛC


 . (60)
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Suppose the positive eigenvalue of C22 is the last diagonal element of ΛC or the (n, n)

element of Qr. If ξn is the n-vector with a 1 in its last component and zeros elsewhere, then

λn(r) ≥ ξ′nQrξn = (ΛC)pp > 0

for all r. Thus λn(r)� 0 if ΛC has a positive eigenvalue.

Case 2(c) requires further decomposition of C22. The eigenvalues of A−rB are now the

eigenvalues of

Qr =




C11 − rΛB C12OC1 C12OC2

O′
C1C21 ΛC 0

O′
C2C21 0 0m×m


 . (61)

With the condition C12OC2 = 0 , then 0 is an eigenvalue of multiplicity m for all r,

and for sufficiently large r, all the eigenvalues in (61) are non-positive; this confirms that

r < ∞. However, suppose C12OC2 �= 0 and, for example, the (1, n) element of Qr is the

value (Qr)1n > 0. Then for any r, a positive quadratic form in Qr can be constructed

that assures λn(r) > 0. To construct this quadratic form, let ξ1 be the indicator of the 1st

component. For ε = ε(r) > 0 sufficiently small and θ = π/2− ε, then

λn(r) ≥ (ξ1 cos θ + ξn sin θ)
′Qr(ξ1 cos θ + ξn sin θ)

= (Qr)11 cos
2 θ + 2(Qr)1n cos θ sin θ > 0.

If (Qr)1n < 0 then take θ = −π/2+ ε. Thus, for finite r, λn(r) > 0 but without r <∞, this

argument fails.

For any r <∞, the multiplicity of the zero eigenvalue is at least the number of columns

in C12OC2 that are filled entirely with zeros. For each column having a nonzero entry,

the above argument may be used to show that an additional eigenvalue converges to zero.

Furthermore, with respect to the usual basis {ξ1, ..., ξn}, the first n−m coordinates of the

eigenvectors for the largest m eigenvalues must all converge to zero as r → ∞; thus the

largest m eigenvalues λn−m+1(r), ..., λn(r)→ 0 as r→∞ and their associated eigenvectors

eventually span {ξn−m+1, . . . , ξn}.
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7.1.3 Lemma 8

The structure ofQr in (61) assures the following eigenstructure as r→∞: (i) the n−p small-

est eigenvalues are O(−r) with associated eigenvectors that eventually span {ξ1, . . . , ξn−p};

(ii) the p−m finite intermediate eigenvalues are the diagonal elements of ΛC whose eigen-

vectors are eventually {ξn−p+1, . . . , ξn−m} if the diagonal entries ofΛC increase with indices;

and (iii) the largest eigenvalue is zero and has multiplicity m with vector space eventually

spanning {ξn−m+1, . . . , ξn}. Clearly (i) must hold. The argument at the end of Lemma 4

proves that (iii) holds with at least multiplicity m. Now by exclusion the remaining eigen-

vectors must span {ξn−p+1, . . . , ξn−m} resulting in (ii).

If m = 1 then, as r→∞,

0←− (A− rB)O′B


 In−p 0

0 O′
C


 ξn = (A− rB)OB2on,

where on is the last column of O′C and OB2on is the eigenvector for λn(∞) = 0.

7.2 Derivation of (18)

Ratio R has the form R = V/W so that its density at r may be expressed as the density of a

”constructed” random variable Yr using the Geary (1944) representation for the density of

a ratio of random variables. This is the essential aspect to the approaches used by Daniels

(1954, Sec. 9) and later Lieberman (1994b). The density of R at r, or fR (r) for fixed value

r, can be expressed in terms of the density of random variable Yr at 0, or fYr (0), where Yr

is the “constructed” random variable associated with mgf

MYr (s) =
1

E (W )

∂

∂t
MV,W (s, t)|t=−rs . (62)

The relationship is

fR (r) = E (W ) fYr (0) (63)

and is developed in Stuart and Ord (1994, Sec. 11.10). Density fYr (0) is easily approximated

with f̂Yr (0) , its saddlepoint approximation as in Daniels’ (1954); a density approximation

for fR (r) is therefore

f̂R (r) = E (W ) f̂Yr (0) (64)
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which is Daniels (1954, §9) approximation.

The joint mgf of (V,W ) required in (62) is easily computed as

M(s, t) = MV,W (s, t) = |Ω|− 1

2 exp
{
−12µ

′ (In−Ω−1
)
µ
}

where Ω = In − 2 (sA+ tB) . Take ∂/∂t by using the chain rule and the rules of matrix

differentiation and evaluate this at t = −rs to get
∂M(s, t)

∂t
|t=−rs = |Ξs|−

1

2 exp
{
sµ′Ξ−1s Drµ

}{
µ′Ξ−1s BΞ

−1
s µ+trΞ−1s B

}
(65)

where Ξs= I−2sDr and Dr = A−rB. The canonical reduction PrDrP′r= Λr also applies

to Ξs and is used to rewrite (65) in the simpler form

∂M(s, t)

∂t
|t=−rs = |I−2sΛr|−

1

2 exp
{
sν′r (I−2sΛr)−1Λrνr

}
Jr (s)

= MXr (s)Jr (s) (66)

with Jr (s) given in (19) and MXr (s) in (11).

The expression in (66) provides a saddlepoint approximation for the density of Yr at 0

as required in (64). First note that

E (W ) =
∂M(s, t)

∂t
|t=−rs=0 = Jr (0) ,

so we see that the mgf of Yr is

MYr (s) = MXr (s)
Jr (s)

Jr (0)
(67)

and the cgf is therefore KXr (s) + ln [Jr (s) /Jr (0)]. We may ignore the second term in this

expression when determining the saddlepoint since KXr (s) is strictly convex and clearly

the dominant term in the expression. By doing so we also assure that the saddlepoint at r

for the density approximation is the same as the saddlepoint used for the cdf approximation

at r. Following this approach, then

f̂R (r) = E (W ) f̂Yr (0)

=
1√

2πK ′′
Xr

(ŝ)
MXr (ŝ)Jr (ŝ)

as specified in (18).
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7.3 Dominating function for (32)

The norm of the first factor of the integrand in (32) is

(
1 +

t2

ŝ2σ̂2

)− 1

2

≤
(
1 +

t2

c21

)− 1

2

(68)

for some c21 > u20 and sufficiently large r. The centrality factors inside the MXr -ratio norm

are bounded as

n∏

i=1

∥∥∥∥
1− 2 (ŝ+ it/σ̂)λi

1− 2ŝλi

∥∥∥∥
−1

2

=
n∏

i=1

{
1 +

4t2λ2i
σ̂2 (1− 2ŝλi)

2

}− 1

2

≤
(
1 +

t2

c21

)−n−1
2
(
1 +

t2

c22

)− 1

2

(69)

for sufficiently large r where c22 > 1/
(
4η21
)
. This holds because of the convergence shown

in (34). The norm for the ith noncentrality term in the MXr -ratio involves only the real

portion of the exponent in (35) or

ν2i
2

(
1− 2ŝλi

(1− 2ŝλi)
2 + 4t2λ2i /σ̂

2
− 1

1− 2ŝλi

)
≤ 0

for all i. Thus all the noncentrality terms have norms bounded above by 1. The dominating

function is the product of expressions (69) and (68) which is integrable.

7.4 Results for Theorem 11

Denote the components ofHr asHr=(hij) . Consider Jr (s) as a function of complex variable

at the two values s = ŝ+ it/σ̂ or ŝ. At either point we have

Jr (s) =
n∑

i=1

hii
1− 2sλi

+
n∑

i=1

n∑

j=1

hijνiνj
(1− 2sλi) (1− 2sλj)

(70)

=
hnn

1− 2sλn
+

hnnν
2
n

(1− 2sλn)
2 +O (ǫ) (71)

as ǫ → 0. At s = ŝ + it/σ̂ and for i = 1, . . . , n − 1, each term (1− 2sλi)
−1 is uniformly

bounded in t, for sufficiently large r, and each term also converges to zero. The i = j = n

terms are retained in (71) and are bounded. Thus ‖Jr (ŝ+ it/σ̂)‖ is bounded and Jr (ŝ)
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stays bounded away from zero so the dominating converge theorem can be used. A simple

computation shows

Jr (ŝ+ it/σ̂) ∼ hnn

{
1

(1− 2t0) (1− 2itη1)
+

ν20
(1− 2t0)

2 (1− 2itη1)
2

}
, (72)

and the limiting behavior of Jr (ŝ) is determined by setting t = 0 in (72). The limiting ratio

in (41) now follows.

To show that (39) agrees analytically with the right side of (29), two different recursions

for the confluent hypergeometric function are used. Expression 13.4.7 of Abramowitz and

Stegun (1972), taken with a = n/2 and b = 3/2, leads to the recursion

nν20
3

1F1

(
n

2
+ 1;

5

2
;
ν20
2

)
=
(
ν20 − 1

)
1F1

(
n

2
;
3

2
;
ν20
2

)
+ 1F1

(
n

2
− 1;

1

2
;
ν20
2

)
. (73)

The expression in the curly braces of (39) may be reduced to

2 (1− 2t0) Γ
(
n
2

)
√
πΓ
(
n−1
2

) (
1− 2t0 + ν20

)
{
1F1

(
n

2
;
3

2
;
ν20
2

)
+
nν20
3

1F1

(
n

2
+ 1;

5

2
;
ν20
2

)}
.

After substitution of (73), this becomes

2 (1− 2t0) Γ
(
n
2

)
√
πΓ
(
n−1
2

) (
1− 2t0 + ν20

)
{
ν20 1F1

(
n

2
;
3

2
;
ν20
2

)
+ 1F1

(
n

2
− 1;

1

2
;
ν20
2

)}
. (74)

Recursion 13.4.4 of Abramowitz and Stegun (1972) is now used with a = n/2 and b = 1/2

so that

ν20 1F1

(
n

2
;
3

2
;
ν20
2

)
= 1F1

(
n

2
;
1

2
;
ν20
2

)
− 1F1

(
n

2
− 1;

1

2
;
ν20
2

)
.

Upon substitution, (74) becomes

2 (1− 2t0) Γ
(
n
2

)
√
πΓ
(
n−1
2

) (
1− 2t0 + ν20

) 1F1
(
n

2
;
1

2
;
ν20
2

)
. (75)

With (75) used in the curly braces of (39), then (39) simplifies to (29) using simple algebra.

7.5 Relative Errors for Case 2(a) of Lemma 3

The F1,1 example of §2 provides a simple example that illustrates the asymptotics involved

in this case. For finite r, the cgf admits saddlepoint ŝ solving

0 = K ′
r(ŝ) =

1

1− 2ŝ
− r

1 + 2rŝ
→ 1

1− 2ŝ
− 1

2ŝ
(76)
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as r → ∞. The solution to (76) at r = ∞ is ŝ = 1/4 which is well inside the edge of the

convergence strip at 1/2. This is the same asymptotics as occurs with Satterthwaite F -type

ratios as detailed in Butler and Paolella (2002). Because ŝ stops short of the edge of the

convergence strip, û also converges to a finite limit as r→∞. However, the value ŵ→∞ .

More generally, suppose λn(r) � 0 as r → ∞. Here, λn−p+1(r), . . . , λn(r) converge to

the ordered entries in ΛC denoted as λn−p+1 ≤ · · · ≤ λn > 0 and λ1(r), . . . , λn−p(r)→−∞.

Then as r→∞, the saddlepoint solution to (13) approaches ŝ∞, the solution to

0 = −n− p

2ŝ∞
+

n∑

i=n−p+1

λi
1− 2ŝ∞λi

(
1 + ν2i0 +

2ŝ∞λiν2i0
1− 2ŝ∞λi

)
, (77)

where {νi0} are the limiting noncentrality parameters. The right side of (77) is a strictly

increasing function of ŝ∞ that maps (0, 1/(2λn)) into (−∞,∞) and its root is the upper

bound to the saddlepoint which is well below 1/(2λn) the right edge of the convergence

strip. For the F1,1 example, this root is 1/4.

The remaining asymptotics for the right tail in this case are given in Butler and Paolella

(2002) where an explicit value for the limiting relative error has also been derived.
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Figure 1. Exact density fR (solid), second order f̂R2 (dashed), and normalized f̄R (dotted)
approximations.
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Figure 2. Error ratios fR/f̂R2 (dashed), fR/f̂R (dashed-dot) and fR/f̄R (dotted).
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Figure 3. The tail error ratios described in (57) for F̂R = P̂r2 (dashed) and F̂R = P̂r1
(dash-dot).
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