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Abstract

A general saddlepoint/Monte Carlo method to approximate (conditional) multivari-

ate probabilities is presented. The method requires a tractable joint moment generating

function (m.g.f.) but does not require a tractable distribution or density. The method

is easy to program and has third order accuracy with respect to increasing sample size

in contrast with standard asymptotic approximations, that are typically only accurate

to first order.

The method is most easily described in the context of a continuous regular exponen-

tial family. Here inferences can be formulated as probabilities with respect to the joint

density of the sufficient statistics or the conditional density of some sufficient statistics

given the others. Analytical expressions for these densities are not generally available

and it is often not possible to simulate exactly from the conditional distributions to ob-

tain a direct Monte Carlo approximation of the required integral. A solution to the first

of these problems is to replace the intractable density by a highly accurate saddlepoint

approximation. The second problem can be addressed via importance sampling; that

is, an indirect Monte Carlo approximation involving simulation from a crude approx-

imation to the true density. Asymptotic normality of the sufficient statistics suggests

an obvious candidate for an importance distribution.

The more general problem considers the computation of a joint probability for a

subvector of random T , given its complementary subvector, when its distribution is

intractable but its joint m.g.f. is computable. For such settings the distribution may

be tilted, maintaining T as the sufficient statistic. Within this tilted family, the com-

putation of such multivariate probabilities proceeds as described for the exponential

family setting.
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1 Introduction

Suppose that data X comes from a regular exponential family {f(x; θ) : θ ∈ Θ} in which

f(x; θ) = exp
{
θT t− b(θ) − d(x)

}
, (1)

where t = t(x) is a k-dimensional sufficient statistic. The density of the random variable

T = t(X) has exponential form

p(t; θ) = exp
{
θT t− b(θ) − dT (t)

}
, (2)

where dT (t) =
∫
t(x)=t exp {−d(x)} dx, an integral that is often intractable. The plausibility

of a hypothesized value θ0 is typically measured by a probability of the form,

P{s(T ) > s0; θ0} =
∫

1{s(t) > s0}p(t; θ0)dt . (3)

where s(T ) is, for example, the likelihood ratio test statistic. Exact analytical calculation

of this probability is not possible if the density of T is intractable. However, it is usually

straightforward to simulate data from (1) and hence a brute force Monte Carlo estimate of

(3) can be calculated.

More generally, let θ = (ψ, λ) be a partition of θ and let T = (U, V ) be the corresponding

partition of T . Inferences concerning ψ alone can be made free of the nuisance parameter

λ using the conditional distribution of U given V . This density is proportional to the joint

density in (2), being the ratio of the joint density of T = (U, V ) to the marginal density of

V . In contrast with the unconditional case, it is often not possible to simulate from this

conditional density. Thus, brute force Monte Carlo estimation of conditional probabilities is

not an option.

In this article we propose a simple but general saddlepoint/Monte Carlo method for

approximating both unconditional and conditional expectations like (3). The more important

approximations are for conditional expectations which cannot be estimated by brute force

Monte Carlo. Like the brute force methods, we obtain confidence limits on the Monte Carlo

aspect of the method, which is generally the dominant error. A very small bias results from

the saddlepoint aspect and cannot be removed, however this is generally negligible.

Apart from exponential family settings, the method more generally provides approximate

conditional multivariate probability computations. Suppose that T has an intractable mul-

tivariate distribution with known joint moment generating function (m.g.f.). The unknown

multivariate density of T = (U, V ) can be tilted and nested within an exponential family.

Then, any multivariate conditional probability for U given V may be computed with this

method so long as the joint m.g.f. of T is computable. The determination of analytical

approximations for the (untilted) cumulative distribution function of U given V or other

conditional multivariate probability computations have been long-standing problems in sad-

dlepoint methods. Our solution is to apply an efficient Monte Carlo method to integrate the
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joint saddlepoint density of T , thus providing approximate conditional probabilities along

with confidence intervals for the Monte Carlo aspect.

The first step in the method is to replace the intractable density for the sufficient statistic

T by the normalized saddlepoint density approximation derived by Daniels (1954). Integra-

tion with respect to the saddlepoint density rather than the intractable true density typically

results in an approximation which is essentially exact for many practical purposes. A par-

tial explanation is that the normalized saddlepoint density approximation has an error of

O(n−3/2) (that is, third-order accuracy) on normal deviation regions with respect to in-

creasing sample size. In contrast, the asymptotic normal approximation is only accurate to

first-order or O(n−1/2). However, saddlepoint approximations often have an accuracy with

small sample sizes that defy any asymptotic explanation (see, for example, Butler et al.,

1992).

In many applications the sufficient statistic is of high dimension and so exact numerical

evaluation of integrals, even with respect to the tractable saddlepoint density, is not feasible.

Thus, we propose instead a Monte Carlo integration procedure in which realizations of the

sufficient statistics are generated from a crude approximate density based on asymptotic

normality. A Monte Carlo estimate is then constructed using importance weights that are

the ratio of the saddlepoint density to the crude approximate density. The use of an initial

crude approximation to calculate integrals with respect to the highly accurate saddlepoint

density motivates the name “simulation-assisted saddlepoint” (SAS) approximation used in

the title.

We apply the SAS method in the context of inference based on independent samples

from univariate gamma distributions using the aircraft air conditioner data from Cox &

Snell (1981), and the cancer survival data of Cameron & Pauling (1978). Even though infer-

ence based on sampling from gamma distributions is clearly of practical relevance, there is

surprisingly very little literature on exact computation in this setting. A second application

uses the exponential tilting idea to approximate a complex conditional distribution arising

in the context of the multivariate gamma distribution. The examples illustrate that a) the

SAS method can be more efficient computationally even when direct simulation is possible;

b) parameter transformation can dramatically improve the computational efficiency; c) first

order asymptotic approximations can be inaccurate; and d) the SAS method can solve pre-

viously intractable problems. Specifically, all of the conditional probability computations

presented are intractable by other methods.

The remainder of the article is organized as follows. Daniels’ saddlepoint density formula

and its relationship to Barndorff-Nielsen’s p∗-formula are discussed in Section 2. Monte

Carlo estimation via importance sampling is discussed in Section 3. The SAS approximation

method is illustrated in Section 4 for inferences concerning gamma and normal populations.

The use of exponential tilting to address the more general context is discussed in Section 5

and illustrated using the multivariate gamma distribution. We conclude in Section 6 with a
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discussion of an alternative Markov chain Monte Carlo (MCMC) integration method which

could be used as a substitute for importance sampling when it is inefficient or numerically

unstable.

Throughout the article a star superscript denotes a saddlepoint approximation and a

tilde overscore denotes a Monte Carlo estimate. The letter p is used as a generic notation for

a probability density. Furthermore, we allow densities to be expressed in terms of any pa-

rameterization. Thus, for example, p(t; θ) and p(t;µ) denote the density of t, using canonical

and mean parameterizations respectively, where µ = E(T ) = ∂b(θ)/∂θ.

2 Saddlepoint density formulas

Let θ̂ be the maximum likelihood estimate (m.l.e.) of the canonical parameter which satisfies

the one-to-one relationship ∂b(θ̂)/∂θ̂ = t. Daniels derives a saddlepoint approximation to

(2) given by

p∗(t; θ) = (2π)−k/2
∣∣∣∣∣
∂2b(θ̂)

∂θ̂∂θ̂T

∣∣∣∣∣

−1/2
exp{θT t− b(θ)}
exp{θ̂T t− b(θ̂)}

, (4)

where the dependence on t is also implicit in θ̂. It is generally advisable to normalize

the saddlepoint density if possible so that it integrates to one. An approximation to the

conditional density of U given V = v is obtained by fixing v in (4) and normalizing so that

the resulting function is a probability density. This procedure is equivalent to normalizing

the double saddlepoint density approximation proposed by Barndorff-Nielsen (1983).

2.1 Reparameterization

The sufficient statistic t is the m.l.e. for the mean parameter, µ = E(T ). A saddlepoint

formula for the m.l.e. of any one-to-one reparameterization of µ can be obtained via jacobian

transformation of (4). In particular, since ∂t/∂θ̂ = ∂2b(θ̂)/∂θ̂∂θ̂T , it follows that

p∗(θ̂; θ) = (2π)−k/2
∣∣∣∣∣
∂2b(θ̂)

∂θ̂∂θ̂T

∣∣∣∣∣

1/2
exp{θT t− b(θ)}
exp{θ̂T t− b(θ̂)}

, (5)

where the dependence on θ̂ is also implicit in t. More generally, let τ = g(θ) be an arbitrary

one-to-one reparameterization of the canonical parameter. Then jacobian transformation of

(5) reveals

p∗(τ̂ ; θ) = (2π)−k/2
∣∣∣∣∣
∂2b(θ̂)

∂θ̂∂θ̂T

∣∣∣∣∣

1/2 ∣∣∣∣∣
∂θ̂

∂τ̂

∣∣∣∣∣
exp{θT t− b(θ)}
exp{θ̂T t− b(θ̂)}

. (6)
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Let j(τ) denote the expected information with respect to τ ; that is, the expected value

of minus the second derivative of the loglikelihood function with respect to τ . Then the

relation

j(τ) =
∂θT

∂τ
j(θ)

∂θ

∂τT
(7)

implies that (6) can be re-expressed more concisely as,

p∗(τ̂ ; τ) = (2π)−k/2 |j(τ̂)|1/2 f(x; τ)

f(x; τ̂ )
, (8)

which is Barndorff-Nielsen’s p∗-formula in the exponential family context.

2.2 p∗ probabilities

An approximation to the probability P (τ̂ ∈ A; τ), where A is an arbitrary (measurable) set

in Rk is given by

P ∗(τ̂ ∈ A; τ) =

∫
1{τ̂ ∈ A}p∗(τ̂ ; τ)dτ̂
∫
p∗(τ̂ ; τ)dτ̂

. (9)

Now, let τ = (χ, ω) and, for each fixed ω, let Aω denote the set {χ : (χ, ω) ∈ A}. Then,

since the saddlepoint approximation to the conditional density of χ̂ given ω̂ is proportional

to (8), an approximation to the conditional probability P (τ̂ ∈ A|ω̂; τ) is given by

P ∗(χ̂ ∈ Aω̂|ω̂; τ) =

∫
1{χ̂ ∈ Aω̂}p∗(χ̂, ω̂; τ)dχ̂

∫
p∗(χ̂, ω̂; τ)dχ̂

. (10)

Note that the approximation given in (9) presumes integrability of the p∗-formula.

3 Monte Carlo Integration

If it is possible to simulate values, τ̂1, . . . , τ̂N , directly from (8), then a Monte Carlo estimate

of (9) is given by

P̃ ∗ = N−1
N∑

r=1

1{τ̂r ∈ A} .

3.1 Importance sampling approximation

If direct simulation from (8) is not possible, we can construct an indirect Monte Carlo

estimate using the asymptotic normal distribution as an importance distribution as follows.

5



Simulate an i.i.d. sample, τ̂1, . . . , τ̂N , from the asymptotic normal density φ(τ̂ ; τ, j(τ)−1).

Then

P̃ ∗ =

∑N
r=1 1{τ̂r ∈ A}wr∑N

r=1wr
, (11)

where wr = p∗(τ̂r; τ)/φ(τ̂r; τ, j(τ)
−1) is the rth importance weight. The ratio estimate P̃ ∗

given in (11) converges to the saddlepoint approximation P ∗ given in (9), as N increases, by

the Strong Law of Large Numbers, provided the p∗-density is integrable. This condition is

equivalent to the importance weights having finite expectation.

Monte Carlo estimates of conditional probabilities can be constructed in a similar manner

to those just described for unconditional probabilities. The analog of (11) for approximating

P (χ̂ ∈ Aω̂|ω̂; τ) involves simulating an i.i.d. sample χ̂1, . . . , χ̂N from the asymptotic normal

approximation to the conditional density of χ̂ given ω̂. This approximating conditional

density is derived from the normal approximation to the joint density of τ̂ using the standard

formulas (see e.g. Mardia et al., 1979, p. 63). Let

j(χ, ω) =


 jχχ jχω
jωχ jωω




be a block partition of the expected information matrix for τ and denote the corresponding

partition of j−1 using superscripts. Then, conditional on ω̂, χ̂ is approximately normal with

mean vector and variance-covariance matrix given by µχ̂|ω̂ and Σχ̂|ω̂ respectively, where

µχ̂|ω̂ = χ+ jχω(jωω)−1(ω̂ − ω) (12)

and

Σχ̂|ω̂ = jχχ − jχω(jωω)−1jωχ . (13)

A ratio estimate of P (χ̂ ∈ Aω̂|ω̂; τ) then has the same form as (11) with rth importance

weight, wr = p∗(χ̂r, ω̂; τ)/φ(χ̂r;µχ̂|ω̂,Σχ̂|ω̂).

There is considerable simplification in (12) and (13) when inference concerns a portion

of the canonical parameter. Specifically, the canonical parameter, ψ, is orthogonal to its

complementary mean parameter, ν = E(V ), in the sense that jψν = 0. This can be verified

directly using (7). In fact, in terms of the block partition in the canonical parameterization

θ = (ψ, λ), we have

j(ψ, ν) =


 jψψ·λ 0

0 j−1
λλ




where jψψ·λ = jψψ − jψλj
−1
λλ jλψ. It follows that the mean and variance formulas used in the

normal approximation to the conditional density simplify to µψ̂|v = ψ and Σψ̂|v = j−1
ψψ·λ.
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3.2 Monte Carlo error assessment

The Monte Carlo error in (11) can be assessed using the asymptotic variance formula derived

using the delta method,

var(P̃ ∗) ≈ 1

NE(w)2
E
{
[w(I − P ∗)]2

}
=
σ2

N
, (14)

say, where I = 1{τ̂ ∈ A}. An estimate of σ based on the N simulations is

σ̃ =
1

w̄

√√√√ 1

N

N∑

r=1

[
wr(Ir − P̃ ∗)

]2
.

This estimate can be updated after every simulation by keeping track of the relevant sums. To

control the Monte Carlo error in practice we can continue the simulations until the absolute

error is estimated to be less than a prespecified level, ǫ, with 100(1−α)% confidence; i.e. until

ÃE = |zα/2|σ̃/
√
N ≤ ǫ, where zα denotes the α-quantile of the standard normal distribution.

Alternatively, one could use a relative error criterion, R̃E = ÃE/P̃ ∗ ≤ ǫ.

We mentioned in Subsection 3.1 that the importance weights must have finite expectation

for P̃ ∗ to converge to P ∗ almost surely as the simulation size, N , increases. Existence of a sec-

ond moment is required for the Central Limit Theorem to also hold and for P̃ ∗ to converge at

rate N−1/2. In the example considered in Subsection 4.1, E(w2) = ∞ with a normal impor-

tance distribution and so the variance formula (14) is not valid. In practice, this translates

in erratic convergence properties. The situation is often rectified by using a heavier-tailed

multivariate-t candidate, with the same mean and scale matrix and corresponding impor-

tance weight wr ∝ p∗(τ̂r; τ)/tf (τ̂r; τ, j(τ)
−1), where tf denotes a multivariate-t density with

f degrees of freedom. We have found that a low value, such as f = 5, works well in a wide

range of examples.

3.3 Choice of Parameterization

The efficiency of all numerical integration procedures, including importance sampling, vary

with the parameter of integration τ̂ . Roughly speaking, importance sampling achieves its

greatest efficiency when the importance distribution tf for τ̂ is an accurate approximation

for its saddlepoint density p∗. An efficient reparametrization to τ̂ from canonical θ̂ should

lead to p∗(τ̂ ; τ) ≈ φ {τ̂ ; τ, j(τ)−1} over a range of τ̂ and τ -values. Our experience is that

the choice of τ as a variance-stabilized parameterization works very well. Fraser (1988)

provides partial confirmation to this choice for a one-dimensional parameter. He notes that

the variance-stabilized parameter τ̂ can have a saddlepoint density p∗(τ̂ ; τ) with the shape

of a normal density φ {τ̂ ; τ, 1} over a range of τ -values. Accordingly, variance-stabilized

parameter integration is considered in our approach whenever possible. Exact variance

stabilization is sometimes difficult to implement so approximate stabilization may be used
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in practice. Multivariate covariance stabilization is generally difficult, so for k ≥ 2, one

might settle for variance stabilization of the individual components marginally. Inevitably

the choice of parameterization in practical applications is a compromise between the efficiency

of the parametrization and its difficulty of implementation using the importance sampling

scheme.

4 Examples

In Subsections 4.1-4.3 we illustrate the SAS method for conducting likelihood based infer-

ences when sampling from several independent gamma distributions. We use the notation

Ga(α, β) for a gamma distribution with canonical shape and scale parameters, α and β

respectively; that is,

f(x;α, β) =
βα

Γ(α)
xα−1 exp{−βx} , x > 0 . (15)

The statistics, U = log
∏
Xk and V =

∑
Xk, based on a random sample from this distribu-

tion, are jointly sufficient for α and β.

Inferences concerning the shape parameter can be carried out without knowledge of the

scale if they are based on the conditional distribution of U given V using the SAS methods

described in Sections 2 and 3. For example, a P-value for a test of H0 : α = α0 based on

the likelihood-ratio statistics can be obtained via integration of the p∗ formula for the joint

density of (α̂, V ) given in equation (10). Similarly, inference concerning β can be conducted

via integration of the p∗ formula for the joint density of (β̂, U). An extension of the latter

is illustrated in Subsection 4.3, where we test homogeneity of scale parameters for several

gamma distributions with the same shape.

Clearly, inferences based on the conditional distribution of U given V are equivalent to

those based on the conditional distribution of Z = U − n log(V/n) = n log(g/a) given V ,

where g and a are the geometric and arithmetic sample means respectively. However, note

that since (X1/V, . . . , Xn/V ) has a symmetric Dirichlet density independent of V , the con-

ditional distribution of Z given V is the same as its marginal distribution. This distribution

has exponential form

p(z;α) = exp {zα− b(α) − d(z)} , (16)

where the function d(z) is intractable but b(α) is easily derived as

b(α) = n log Γ(α) − log Γ(nα) + nα log n , (17)

(see Jensen, 1986, Section 2).

These observations suggest an alternative approach to inference concerning α. Rather

than constructing a test using the full likelihood, obtained as a product of gamma densities of
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the form given in (15), one can use the conditional likelihood obtained from (16). In the one-

sample case, likelihood ratio statistics constructed from the full and conditional likelihoods

are both monotone functions of z and hence lead to equivalent one-sided tests. However, the

two approaches do not yield equivalent two-sided tests in the one-sample case and they are

generally different in the multi-sample case discussed in Subsections 4.1 and 4.2 below.

The conditional m.l.e. for α is the solution of the equation z = b′(α). The density (16)

and hence that of the conditional m.l.e. can be approximated directly by the p∗-formula in

(5) with α and z in place of θ and t. Integrability of the p∗-formula for the conditional m.l.e.

is shown by Booth et al. (1999, Appendix II). In contrast, the full m.l.e. is a solution of

z = c′(α), where

c(α) = n {α + log Γ(α) − α logα} . (18)

As noted earlier, approximate conditional inference using the full m.l.e. involves the use of

the p∗-formula for the joint density of (α̂, V ). Integrability of the joint p∗-formula can be

shown using arguments similar to those in Booth et al.. Implementation of the SAS method

is straightforward whether the full or conditional m.l.e. for α is used for inference. However,

the conditional m.l.e. for α is known have superior repeated sampling properties to the full

m.l.e. for small and moderate sample sizes (Yanagimoto, 1988) and hence we will emphasize

methods based on the conditional m.l.e. in what follows.

Before proceeding to the numerical examples, we note that the conditional likelihood

approach described above for inference concerning α is not feasible for inference about β

because the conditional density of V given U is not tractable.

4.1 Testing simultaneous exponentiality

Suppose that data consist of independent random samples from m gamma distributions and

consider the hypothesis that the distributions are all exponential; i.e. α1 = · · · = αm = 1.

As indicated above, it is appropriate to base inferences concerning the shape parameters on

the marginal distribution of the statistics, Zi = ni log(gi/ai), i = 1, . . . , m, with densities of

the form given in (16). The likelihood ratio test based on the product of the densities for

the Zi’s is given by

−2 log Λ = 2
m∑

i=1

{zi(α̂i − 1) − bi(α̂i) + bi(1)} , (19)

where the m.l.e.’s satisfy the nonlinear equations, zi = b′i(α̂i), i = 1, . . . , m, which must be

solved iteratively. The exact P-value for this test, P = P (Λ ≤ Λobs), can be approximated by

brute force Monte Carlo involving simulation of exponential samples and calculation of the

m.l.e.’s for each simulated data set. Alternatively, a SAS approximation can be constructed

using the p∗-density for each α̂i combined with a Student-t importance distribution. Booth
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Test Statistic −2 log Λ DF Chisquared Brute Force SAS

Conditional 15.56 10 .113 .126 .128

Full 15.59 10 .112 .165 .168

Table 1: Simulation-assisted saddlepoint and direct Monte Carlo approximations of exact

conditional P-values for testing simultaneous exponentially of the aircraft, air-conditioner

data

et al. show that the use of a normal importance density in this setting results in importance

weights with infinite second moments. They then derive a rejection sampler using a Student-t

candidate for sampling directly from this particular p∗-density. The degrees of freedom used

in this context is the largest integer value for which the importance weights have a finite

second moment.

For a numerical illustration of the methods consider the aircraft air conditioner data in

Cox & Snell. The data consist of the times between failures of air conditioners in m = 10

different aircraft. The sample sizes are not particularly small, varying from 9 to 30, with

a total sample size of 199 and so one might expect the usual chisquared approximation to

work well. The results are summarized in Table 1.

The brute force Monte Carlo P-value was based on 18,500 simulated datasets, the number

required for 5% relative error accuracy with 99% confidence (i.e. ǫ = .05 and α = .01).

Simulation-assisted saddlepoint approximation using ten independent Student-t distributions

with 3 degrees of freedom required 79,000 simulated sets of conditional m.l.e.’s to attain

the same relative accuracy. Note that the SAS value is extremely accurate, although the

chisquared approximation would probably be adequate for practical purposes in this case.

Also, even though the SAS method required more simulated values of the conditional m.l.e.’s,

the total computational effort was about half that of brute force simulation because in the

latter case the m.l.e.’s have to be computed for each data set.

One might expect normal approximation to the null distribution of the conditional m.l.e.

to be inaccurate in this setting because the support of the distribution is bounded below at

zero. In particular, this means that negative simulated values of the α̂i’s must be discarded.

Problems of this nature can often be alleviated by transforming to a different parameter

scale. In the present setting, use of a log transformation, ηi = logαi, results in a marked

increase in the efficiency of the SAS method. Specifically, the 5% relative error convergence

criterion was met with only 25,000 simulated sets of conditional m.l.e.’s with a final value

of P̃ ∗ = .121. Note that use of the log transformation requires a jacobian adjustment to the

p∗-formula of |∂α̂/∂η̂| =
∏
i α̂i, as indicated in equation (6).

The corresponding results based on the full likelihood-ratio statistic (which has the same

form as in (19) with ci(αi) in place of bi(αi)) are also given in Table 1. Similar com-

ments concerning efficiency apply in this case. Note that, although the full and conditional
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loglikelihood-ratio statistics are almost identical, the exact conditional P-values are quite

different.

The next two subsections consider tests of hypotheses involving nuisance parameters that

cannot be handled by brute force simulation.

4.2 Testing homogeneity of gamma shape parameters

Now consider the hypothesis, α1 = · · · = αm, of homogeneity of shape parameters for m

gamma populations. As in the previous subsection, inference is based on the conditional

likelihood obtained as the joint distribution of the statistics, Z1, . . . , Zm. However, in this

case the unspecified common shape is a nuisance parameter. To frame the problem in the

general notation established in the earlier sections, let αi = λ + ψi for i = 1, . . . , m, with

the identifiability constraint, ψ1 = 0 so that λ = α1. Then, we wish to assess the hypothesis

of homogeneity, ψ2 = · · · = ψm = 0, using the likelihood-ratio test with null probabilities

computed from the conditional distribution of ψ̂2, . . . , ψ̂m given z· =
∑
zi, the sufficient

statistic corresponding to the nuisance parameter λ. Note that z· is the m.l.e. of the

mean parameter complementary to the canonical parameter ψ and hence the simplifications

described at the end of Subsection 3.1 apply. Since ψ̂i = α̂i − α̂1 and z· =
∑
b′i(α̂i), it

follows that the jacobian adjustment to the p∗-formula in (6) due to the transformation

(α̂1, . . . , α̂m) → (ψ̂2, . . . , ψ̂m, z·) is given by {∑ b′′i (α̂i)}−1. The likelihood ratio statistic has

the same form as in the test of exponentiality except that the common unit shape is replaced

by the (conditional) m.l.e. of the unspecified nuisance parameter λ. This value must be

calculated for each simulated value of ψ̂2, . . . , ψ̂m and fixed z· using an iterative procedure

and so the SAS method involves more computation than in the previous case. The observed

likelihood ratio statistic is −2 log Λ = 15.44 in this problem resulting in a chisquared P-value

approximation of .080 based on 9 degrees of freedom.

As in the test of exponentiality, log transformation of the shape parameter increases

the efficiency of the SAS approximation. In fact, the method failed to converge using the

canonical parameterization even after five million simulations. The value of P̃ ∗ after each

10,000 simulations is plotted in Figure 1. The plot indicates occasionally large adjustments

to P̃ ∗ corresponding to extreme importance weights, which explains the slow convergence or

failure of the method. In contrast, the SAS approximation utilizing a log transformation,

(α̂1, . . . , α̂m) → (η̂2, . . . , η̂m, z·), is well behaved, converging after 1.6 million simulations to

P̃ ∗ = .131. This suggests that the chisquared approximation is not very accurate, although

that approximation is for the unconditional P-value and so is not directly comparable. An-

other reason for skepticism about the chisquared approximation is that the data should be

more compatible with the homogeneity hypothesis (as indicated by a larger P-value) than

the more restrictive exponentiality hypothesis discussed above.

Calculation of the SAS approximation in this problem requires the jacobian of the trans-

11



formation from θ = (α1, . . . , αm) to τ = (η2, . . . , ηm, ν), where ν = E(z·) =
∑
b′i(αi). The

inverse of this jacobian is given by

∂τ

∂θT
=




1/α2 0 0 · · · 0

0 1/α3 0 · · · 0
...

0 · · · 0 1/αm 0

b′′2(α2) b′′3(α3) · · · b′′m(αm) b′′1(α1)




from which we obtain |∂θ̂/∂τ̂ | =
∏m
i=2 α̂i/b

′′
1(α̂1) for use in (6). The mean of the importance

distribution is given by the asymptotic approximation E(η̂i|z·) ≈ log α̂0, where α̂0 is the esti-

mated common shape under the null hypothesis. The α̂i’s are independent with asymptotic

variance 1/b′′i (α) and hence the asymptotic variance of τ̂ is given by

(
∂τT

∂θ

)
diag

(
1

b′′i (αi)

)(
∂τ

∂θT

)

αi=α

=




1/α2b′′2(α) 0 0 · · · 1/α

0 1/α2b′′3(α) 0 · · · 1/α
...

0 · · · 0 1/α2b′′m(α) 1/α

1/α 1/α · · · 1/α
∑
b′′i (α)




.

This implies an approximate conditional variance for η̂ = (η̂2, . . . , η̂m) given by

var(η̂|z·) ≈ diag

(
1

α2b′′i (α)

)m

i=2

− 1

α2
∑
b′′i (α)

11T .

The covariance of the importance distribution replaces α with α̂0.

4.3 Testing homogeneity of gamma scale parameters

Assuming a common shape parameter α for allm groups, consider testingH0 : β1 = · · · = βm.

With an alternative parameterization (γ2, . . . , γm, β, α), such that β1 = β and βi = β + γi,

i = 2, . . . , m, this is equivalent to testing H0 : γ2 = . . . = γm = 0. Under the null hypothesis,

v· =
m∑

i=1

vi =
m∑

i=1

ni∑

k=1

xki and u = log
m∏

i=1

ni∏

k=1

xki

are sufficient for α and β. Allowing the scale parameter to differ between groups introduces

the additional sufficient statistics, vi, i = 2, . . . , m. In this case, it is more convenient to

sample the vi than the γ̂i due to their simpler form. However, we note the two are related as

γ̂i = α̂
(
ni
vi

− n1

v1

)
, i = 2, . . . , m . (20)

Thus, the conditional P-value is calculated based on the approximation to the conditional

density of (v2, . . . , vm) given v· and u. Since these are the sufficient statistics, we may use

12



Daniels saddlepoint formula directly as given in (4), and thus avoid further computations

of jacobians which are needed for transformations. Note however that it is necessary to

calculate the m.l.e. for the common shape, α, for each simulated set of sufficient statistics.

Then, β̂ = (n1α̂)/v1 and the γ̂i’s can be determined from (20).

A SAS approximation to the conditional P-value can be obtained by simulating from the

multivariate normal approximation to the conditional distribution which has mean compo-

nents, niα̂0/β̂0 = niv·/n·, i = 2, . . . , m with n· =
∑m
i=1 ni, and variance-covariance matrix

with (i, j)th element

α̂0

β̂2
0

[
ni1{i = j} − ninj

n·

]
=

v2
·

n·
2α̂0

[
ni1{i = j} − ninj

n·

]
i, j = 2, . . . , m .

For the aircraft air-conditioner data discussed above, the observed loglikelihood ratio

statistic for testing homogeneity of scales is −2 log Λobs = 19.169, resulting in an asymptotic

P-value of 0.024 based on the chisquared approximation with 9 degrees of freedom. The

unconstrained m.l.e.’s for the scale parameters in this problem are given in Table 2. The

common shape estimate is α̂ = 1.007. Calculation of the SAS approximation to the condi-

Aircraft number 1 2 3 4 5

Sample size 23 29 15 14 30

β̂i 0.0105 0.0121 0.0083 0.0077 0.0169

Aircraft number 6 7 8 9 10

Sample size 27 24 9 12 16

β̂i 0.0131 0.0157 0.0051 0.0097 0.0123

Table 2: Sample sizes and m.l.e.s of scale for each aircraft

tional P-value required 141,000 importance samples to obtain a 5% relative error with 99%

confidence and resulted in the value 0.029.

For a second illustration, consider data from Cameron & Pauling which examines the

effect of supplemental vitamin C on the survival of ovarian cancer patients. The data consist

of survival times, in days, of six women who were treated with vitamin C. Each woman was

matched with ten control patients. The average of these 10 survival times is also provided.

For the purposes of this paper, we have ignored the possible correlation due to matching.

Assuming that the distribution of survival times is gamma and that the individual pa-

tients share a common shape parameter, a significant difference in the scale parameters will

demonstrate a treatment effect. In particular, assume that the scale parameter for an in-

dividual control patient is β and for the treated patient is β + γ. The distribution of the

survival time for a treated patient is then gamma with parameters α and β + γ, while the

13



distribution for the averages of the controls’ survival times is gamma with parameters 10α

and 10β. Under the alternative hypothesis, the estimated mean survival time of a woman

taking supplemental vitamin C is 884.36 days while the estimated mean survival time of an

individual not taking vitamin C is 377.50 days. The likelihood ratio statistic is 3.84, yielding

an approximate unconditional P-value of .050, found using the chisquared distribution with 1

degree of freedom. In contrast, the SAS approximation of the conditional P-value was 0.010

requiring 42,000 importance samples to obtain a 5% relative accuracy with 99% confidence.

4.4 One-way ANOVA under normality assumptions

It is interesting to examine how well the SAS method works in the familiar one-way ANOVA

setting in which the samples are assumed to be drawn from normal populations, N(µi, σ
2
i ),

i = 1, . . . , k. Here, the canonical parameters are (ψi, λi) = (1/σ2
i , µi/σ

2
i ), with corresponding

sufficient statistics (
∑ni

j=1 x
2
ij ,
∑ni

j=1 xij). The likelihood ratio statistic for testing homogeneity

of variances is proportional to
∏k
i=1(Wi/W )ni/2, where Wi is the sum of square deviations

from the mean for the ith sample and W =
∑
iWi is the total within groups sum of squares

(Mardia et al., 1979, page 140). Since, the random vector (Wi/W, . . . ,Wi/W ) has a Dirichlet

distribution independent of the sample sums, xi·, i = 1, . . . , k, the conditional distribution

of the likelihood ratio statistic, Λ, is the same as its unconditional distribution. The SAS

method therefore leads to an extremely accurate approximation to the exact null distribution

of the likelihood ratio statistic. However, in this case a more direct approach is possible which

does not involve any simulation. Since the m.g.f. of log Λ is known, the null distribution

of Λ can be approximated using the Lugannani & Rice saddlepoint distribution function

approximation (see Booth et al., 1996).

The hypothesis that is typically of most interest in this setting is that of homogeneity

of means assuming equal variances. The likelihood ratio test is a monotone function of the

ratio, B/W , of between to within groups sums of squares and therefore equivalent to the

usual F-test. For i = 1, . . . , k, let µi = µ + δi with the identifiability constraint δ1 = 0.

The canonical parameters of interest in this case are then ψi = δi/σ
2, i = 2, . . . , k, while

λ1 = µ/σ2 and λ2 = 1/σ2 are nuisance parameters. The relevant conditional distribution

for inference about the ψi’s is that of (x2·, . . . , xk·) given x·· and
∑
ij x

2
ij or equivalently

given x·· and the total corrected sum of squares, T = B + W . The saddlepoint density

approximation for (x1·, . . . , xk·, T ) and hence for (x2·, . . . , xk·, x··,
∑
ij x

2
ij) is exact up to a

renormalization constant under the null hypotheses of homogeneity of means. Since, B/W

is jointly independent of x·· and T under the null hypotheses, it follows that the SAS method

is exact in this setting except for Monte Carlo error.
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5 Tilting

In this section, we calculate unconditional and the more difficult conditional probabilities

for a random vector T whose multivariate density is either unknown or intractable and not

necessarily from an exponential family. We alternatively suppose that its joint cumulant

generating function b(θ) = logE{exp(θTT )} exists in an open neighborhood of the origin.

If fT (t) is the unknown continuous multivariate density, then it may be tilted and nested

within an exponential family

fT (t; θ) = fT (t) exp{θT t− b(θ)} , (21)

which is of the form given in (2) with dT (t) = − log fT (t). Thus, computation of uncondi-

tional and conditional probabilities with respect to the unknown density fT can be carried

out using the SAS method.

To illustrate the power of this method we consider the computation of probabilities

for previously intractable conditional distributions arising in the context of a multivariate

gamma distribution. Let W be a Wishartk(n,Σ) variate, where the scale matrix Σ = (σij)

is positive definite. Then, the diagonal elements of W have a multivariate Gammak(
n
2
,Σ)

distribution as described in Johnson & Kotz (1972, Chapter 40). The marginal densities are

Gamma(n
2
, σii), i = 1, . . . , k and the components are independent when Σ is diagonal. Jensen

(1985) lists some applications of this distribution. The square roots of the components form a

multivariate Rayleigh distribution that arises in signal detection as discussed in Miller (1975).

The distribution has an intractable density which has prohibited its extensive use. However,

in reliability there aren’t many reasonable distributions on (0,∞)k that can be used to model

dependencies among the failure times of system components. This distribution becomes an

attractive choice to model such dependencies when its probability computations are made

tractable through use of the SAS method.

The cumulant generating function of T = 1
2
diagW is given by

b(θ) = −n
2

{
log |Σ−1 − Θd| + log |Σ|

}
,

where θ = (θ1, . . . , θk) and Θd is the diagonal matrix with ith diagonal entry equal to θi.

There is no loss of generality in assuming Σ is a correlation matrix. Also, for simplicity, we

restrict attention to the exchangeable setting in which Σ = (1 − ρ)I + ρ11T , where |ρ| < 1.

Let t = (u, v) and consider computation of P {U ∈ C|v} for some set C. We calculate

this probability by nesting the multivariate gamma density within the exponential family

given by (21). Then let θ = (ψ, λ) represent the canonical parameter of t = (u, v). We can

now calculate a Monte Carlo estimate of the probability

P {U ∈ C|v} = P {U ∈ C|v;ψ = 0}
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according to (10). The unconstrained saddlepoints can be shown to satisfy the system of

equations

ζ̂i + q(1 − qζ̂.)
−1ζ̂2

i =
2ti
n

(22)

for i = 1, . . . , k, where

ζ̂i =
[
(1 − ρ)−1 − θ̂i

]−1
,

ζ̂. =
∑k
i=1 ζ̂i and

q = ρ(1 − ρ)−1 [1 + (k − 1)ρ]−1 .

Instead of simulating the ui or the corresponding saddlepoints ψ̂i = θ̂i, i = 1, . . . , l,

directly, it is more efficient to simulate

η̂i = ln
{
(1 − ρ)−1 − q − ψ̂i

}
. (23)

The p∗-density for {η̂i} is obtained as in (8). The importance sampling distribution is

Nl

[
ln
{
(1 − ρ)−1 − q

}
1, j−1

ηη·λ(ψ = 0, λ̂0)
]
,

where

jηη.λ(ψ = 0, λ̂0) =
[
(1 − ρ)−1 − q

]2
jψψ·λ(ψ = 0, λ̂0)

and λ̂0 is the value of the saddlepoint corresponding to v obtained from (22) for i = l+1, . . . , k

with ψ = 0.

Determination of the ψ̂i from the simulated η̂i follows directly from (23). The remaining

saddlepoints λ̂i are again determined from (22) for i = l + 1, . . . , k with ψ = ψ̂. Efficient

solution to these equations is usually achieved within 5 iterations of the Gauss-Newton

algorithm. Then the corresponding simulated values of u can be obtained by solving the

same equations (22) for i = 1, . . . , l.

In general, there is no simple way to validate the accuracy of the SAS method in approx-

imating conditional probabilities. However, for the univariate conditional probabilities in

which l = 1, such that we are conditioning on k− 1 variables, the Skovgaard approximation

may be used as a partial check. We consider SAS estimates for the conditional probability

that U is one standard deviation above its mean, i.e., P
{
U > n

2
+
√

n
2
|v
}
. Results are pre-

sented in Table 3 with n = 20 and the given values of ρ, k−1 and v. The SAS computations

were computed to have 95% assurance of 1% relative error.

For l > 1, the Skovgaard approximation is no longer applicable. Table 4 shows SAS

approximations with n = 20 to give 95% assurance of 1% relative error in the computation

of P
{
U > 1

(
n
2

+
√

n
2

)
|v
}
.
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k − 1 ρ v SAS Skovgaard

1 .3 13 0.186 0.177

1 .6 13 0.267 0.240

1 .9 13 0.378 0.349

2 .3 10, 13 0.188 0.180

2 .6 10, 13 0.230 0.206

2 .9 10, 13 0.167 0.149

3 .3 10, 12, 14 0.214 0.194

3 .6 10, 12, 14 0.288 0.251

3 .9 10, 12, 14 0.236 0.216

Table 3: Comparison of the SAS (with l = 1) and Skovgaard’s approximation

l k − l ρ v SAS

2 1 .6 13 0.101

2 1 .9 13 0.205

4 1 .6 13 0.091

4 1 .9 13 0.347

2 2 .6 10, 13 0.076

2 2 .9 10, 13 0.049

4 2 .6 10, 13 0.637

4 2 .9 10, 13 0.109

Table 4: Simulation-assisted saddlepoint approximations for conditional multivariate

Gamma probabilities with l > 1
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6 Discussion

Generally speaking, the efficiency of the SAS method we have described depends on the sim-

ilarity between the importance density and the saddlepoint or p∗-density. In many settings

the situation can be improved by transformation, as in the case of inferences concerning

the shape parameters of several gamma distributions discussed in Subsections 4.1 and 4.2.

Often it is a variance stabilizing or some similar transformation that succeeds in achieving

this efficiency. Such efficiency, however, can be expected to decline as the dimension of

the conditional distribution being integrated increases. In high dimensional problems the

method may not ever converge in practice even if theoretical convergence is assured. In such

problems an alternative Markov chain Monte Carlo (MCMC) integration method may be

more fruitful.

Suppose, for example, one wishes to approximate an integral with respect to the condi-

tional distribution of ψ̂ = (ψ̂1, . . . , ψl) given the sufficient statistic V = v. The basic idea of

the importance sampling method is to utilize the known asymptotic normal approximation

for this conditional distribution. More generally, let ψ̂−i denote the vector ψ̂ with its ith ele-

ment removed. Then, the normal approximation to the distribution of ψ̂i given ψ̂−i and v (or

the corresponding t-approximation) could be used as a candidate in a Hastings-Metropolis

algorithm in which i is either chosen at random or according to a systematic sequence at each

successive epoch in the Markov chain (see e.g. Besag et al., 1995). More generally, a block

version of the algorithm could be employed in which subsets of ψ̂ are updated at each stage.

We have not investigated this approach since importance sampling was successful in the

examples we considered. Also, the issue of assessing Monte Carlo error is more complicated

for dependent samplers.
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Figure 1: Simulation-assisted saddlepoint approximations of the exact P-value for testing

homogeneity of shape parameters. The dashed line tracks the approximation using the

canonical parameterization. The solid line tracks the corresponding approximation utilizing

a log transformation.


