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1. INTRODUCTION

Pilot studies and early phase clinical trials (Phase I and

sometimes Phase II) are exploratory experiments conducted more

to generate hypotheses than to confirm efficacy of a particular

drug. The measure of “success” in such a trial is in the ad-

ditional information gathered about the substance or disease

under study, and whether that information is useful in generat-

ing new avenues of research. This paper describes, in detail not

possible in medical journals, the application of advanced statis-

tical methods to data generated by a randomized double-blind

placebo-controlled pilot study of gabapentin for its efficacy in

reducing scratching, secondary to itching, in patients with liver

disease (Bergasa et. al., to appear).

The data generated by the trial (and in most clinical trials)

contain a variety of problems that are not typically discussed

in statistics textbooks. Such issues include, but are not lim-

ited to, small numbers of subjects, missing data, and outliers.

Missing values in a trial that is already small are of particu-

lar concern, since one does not want to discard any data and

therefore decrease further the efficiency of any estimates. The

presence of large outliers raises the question of whether to be-

lieve the data (i.e. the outliers are true values, and should be

included in all analyses) or to delete or downweight them in or-

der to fit a model. The small sample size implies that many of
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the asymptotic results dealing with the consistency of model es-

timates from methods such as multiple imputation are no longer

applicable.

However messy the final measurements and the myriad of

methodological problems they pose for the statistician, such re-

sults represent years of work for the principal investigators, and

a significant time investment for the research subjects. Prac-

ticing statisticians face this quandary daily: how to glean all

information possible from the data without sacrificing statisti-

cal principles, and to do so as quickly as possible. The story of

this search is not often told in the resulting papers in subject-

matter journals. Part of the purpose of this paper is to provide

information about particular methods that might be helpful to

a practicing statistician with a messy data set to analyze. The

methods presented here are by no means the only tricks that can

be used for dealing with messy data; they are given as an ex-

ample of the effort required in analyzing a “simple” pilot study.

The other, more important, purpose of the paper is to empha-

size that the statistical results from a trial cannot always be

interpreted by a statistician alone. Collaboration with an ex-

pert in the subject matter of the trial can lead to new theory to

be tested.

2. THE GABAPENTIN TRIAL

3



The protocol called for sixteen subjects to be randomized

to either gabapentin or a placebo. Before the treatments be-

gan, and prior to randomization, baseline data of scratching

activity and perception of itch were obtained hourly over at

least a 48-hour period in the hospital. After the initial (pre-

treatment) quantification, subjects were given their randomly

assigned medication and asked to resume their normal daily

routines. After four weeks on the study medication, the sub-

jects returned to the hospital for a second 48-hour evaluation

(called “on-treatment” in the sequel), which was conducted in

the same way as the first.

Scratching activity, a behavior which results from the per-

ception of itch, was measured by a monitoring system that con-

sists of a piezo film sensor glued to a cast custom made to fit

the middle finger on the dominant hand of the user (Talbot,

et. al., 1991). The main component of the system is a signal

processor, which consists of a frequency counter incorporating

a threshold detector and a bandpass filter to prevent extrane-

ous counts from being registered. At the start of the recording

session, subjects were asked to scratch over a defined distance

on a piece of cardboard as if they were scratching their skin.

The counts are added and recorded as hourly scratching activ-

ity (HSA). The result is a numerical value, which purports to

be an objective measure of scratching behavior for each subject.
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Large values indicate more scratching.

Any background noise recorded in the system was subtracted

from the hourly scratching activity value. This subtraction re-

sulted in some negative values, which were recorded as zeros.

A value of zero means that the amount of scratching during

that hour was below the background level of body movement,

or that it was absent after movement. For any subject, the im-

portant thing about the measurement is the relative size of the

pre-treatment value versus the on-treatment value. For these

reasons, the zeroes were not treated as detection limits, instead,

they were left in the data as real values.

Perception of itch was measured using a visual analog scale.

The visual analog scale has been is used extensively in medical

experiments as a way to measure outcomes such as pain and

fatigue (Auburn, 2003; Hartmannsgruber, 2000; Wewers, 1990).

The visual analog scale consists of a straight line, 10 millime-

ters in length. For the purposes of the gabapentin study, the

left endpoint of the line represents “no itching” and the right

endpoint “severe itching”. Subjects were asked to make a mark

on the line corresponding to the severity of the itching they

perceived to be experiencing at the time the instrument was

administered. The distance from the left endpoint to the mark

(in mm) is the visual analog score (VAS). For this study, VASs

were measured every hour for at least 48 hours during baseline
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and post-treatment quantification periods.

3. EXPLORATORY DATA ANALYSIS

Statisticians recognize that real data are usually not well-

behaved, and that proper preparation of the data is essential

in obtaining a valid and reliable statistical analysis. In other

words, it is necessary to perform an exploratory analysis in an

attempt to obtain valid statistical inference from a small data

set. Figure 1 shows baseline HSA values for patients in the

gabapentin and placebo groups at seven time points during the

study. Each plotting symbol (either a circle or a diamond, de-

pending on the group) represents one patient. Initially, there

are seven subjects in each group; data for one patient in the

gabapentin group is not shown because the measuring device

for that patient failed at the baseline quantification.

Figure 1 about here.

From Figure 1, we see that, at every time point, several

subjects have very low HSA values. Some of these values are

identical to zero. Second, for almost any parametric statistical

analysis chosen for these data, stable model parameter estimates

would be very difficult to obtain due to the presence of extremely

large values. This is particularly true at hour 8, and is similarly

pronounced for other hours that are not shown in this graph. An

examination of patient behavior versus the times at which out-

6



liers occurred revealed that such large values were unexpected

within the range of outputs from the piezo film sensor; therefore,

all outliers were deleted and imputed using MNNHDI, described

in the next section.

Finally, Figure 1 shows a high rate of missing data, as there

are progressively fewer patients as the length of the hospital

stay increases. This is not an artifact of the plotting proce-

dure, as Table 1 shows. In this table, we see the percentage

of values missing for each subject, for both the HSA and VAS

measurements at both treatment times, previous to the dele-

tion of outliers in the HSA measurements. Ideally, each sub-

ject should have had 48 pre- and on-treatment measurements

for both variables. In reality, only two subjects completed a

48-hour recording session as originally designed; most subjects

completed between 20 and 25 hours of recording. There are typ-

ically higher rates of missing values for VAS due to a provision

in the study protocol which prevented researchers from disturb-

ing the subjects while they were sleeping. Thus, approximately

one-third of the VAS measurements are missing by design.

Table 1 about here

If this study were to be analyzed using a complete case anal-

ysis (CC), where only cases with complete data are used, the

large number of missing values would seriously compromise the

power of any analysis. A more promising alternative would be
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to replace all missing observations (as well as outliers) in a prin-

cipled way.

4. IMPUTING MISSING DATA

There is a rich literature on imputation of missing data.

Many articles dealing with imputation assume that data are

missing completely at random (MCAR). Most of the time, the

true mechanism is missing not at random (MNAR), also called

non-ignorably missing (Carpenter and Kenward, 2005). In such

cases, the desired method of dealing with the missing data in-

volves modeling the missing data mechanism, which is typically

unknown (Little and Rubin, 2002, Chapter 15) .

The missing observations from the gabapentin trial are gen-

erated by a mixture of mechanisms. For some values, we know

that the mechanism generating missing values is independent

of the observations themselves. For example, two of the sub-

jects were missing entire pre- or on-treatment quantifications,

because the machine recording HSA failed. The data missing

for these two subjects would be considered MCAR. However,

the same mechanism is not operating for all missing values. If

we delete outliers, we will be doing so because they are too large.

The mechanism generating those missing values will be MNAR

by construction.

There is a growing literature on imputation of MNAR data
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for longitudinal studies, of which the pretest-posttest study is

a special case. Reams and Van Deusen (1999) suggested using

hot-deck imputation for estimating values missing by design in

an annually-conducted forest inventory survey. The authors do

not mention the effect of inherent correlation structure on the

variance and bias of the imputed values. Liu and Gould (2002)

evaluate last observation carried forward (LOCF), CC, multi-

ple imputation (MI), and a mixed-effects model as replacement

strategies for replacing missing data in longitudinal trials. They

found that MI tended to perform the best for data MNAR, be-

cause of its flexibility to include surrogate variables, correlated

with the missing values. However, the theoretical and empirical

results from these articles rely on simulations and/or data sets

where the number of subjects is many times that of number of

subjects in the gabapentin study. In addition, these studies did

not consider the situation where the variables measured at each

time point in the study were time series themselves.

Since we cannot afford to throw out missing values, we need

a sensible way to replace them. Missing observations for the

gabapentin data were treated in two stages. First, the last 24

hours of the HSA measurements were deleted. Only two subjects

had complete 48-hour records for both pre- and post-treatment

quantifications in this study. The original purpose in collecting

48 hours of observations was to test for the presence of a 24-hour
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(e.g. circadian) rhythm in scratching activity, and imputation

of the last 24 hours of observations would probably not yield

usable estimates of any such rhythm. Without the last 24 hours

of measurements, the most important part of the study can

still be salvaged: to make a decision about the effectiveness of

gabapentin.

There were four subjects with incomplete HSA data for the

first twenty-four hours at the baseline assessment and five sub-

jects with incomplete data for the first twenty-four hours at

the on-treatment assessment (not accounting for missing data

caused by outlier deletion). The five subjects missing on-treatment

assessments include two subjects (Patients 8 and 9) who did not

complete the study; therefore, they have no data at all for the

on-treatment quantification. The equipment failed for a third

subject (Patient 13); she is missing all on-treatment measure-

ments, as well. After the last 24-hours of data were deleted,

some VASs were missing for four subjects at the baseline quan-

tification, and for ten subjects (including subjects 8 and 9) at

the on-treatment quantification. Most of the missing values

were the result of adherence to the study protocol stipulation

that subjects not be disturbed while sleeping.

In the second stage, the outliers were determined by examin-

ing studentized residuals from a complete data (pre-imputation,

last 24-hours deleted) analysis using the mixed-effects model
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given in Equation 3 (data not shown). The outliers were deleted

and all missing observations were replaced by an observation

from a matching subject (called a “donor”). This type of impu-

tation is sometimes called “Nearest Neighbor” hot-deck impu-

tation (NNHDI in the sequel) (Little and Rubin, 2002, p. 69).

More precisely, let yi = (yi1, . . . , yik) be a K × 1 complete–

data vector of outcomes. Further, let yi = (yobs,i, yobs,m) where

yobs,i is the observed part and yobs,m is the missing part of yi.

Then

ŷit = y`t + (yobs,i − yobs,`) (1)

where yobs,i is the mean of the observed values for subject i.

Subject ` is the donor.

It is important to choose a donor that is “close” to the sub-

ject whose observations are missing. “Close” is defined by a met-

ric, (e. g. d(i, j) = maxk |xik − xjk|) where xi = (xi1, . . . , xiK)T

are the values of K appropriately scaled covariates for a unit i

at which yi is missing (Little and Rubin 2002, p. 69). For time

series data, the distance metric is somewhat different. Suppose

subject i is missing a value at time t. For this trial, the donor

is defined as

dj(t) = min
j

T∑

t=1

|xit − xjt|, (2)

for all j = 1, . . . , n−1. Note that there are relatively few donors

for the recipients in this study. Efforts were made to ensure that

same donor was not used repeatedly. If one donor was chosen for
11



two or more recipients, the next-nearest donor was substituted.

Donor subjects should be selected using another variable

(the donor variable) besides the variable which is being imputed

(recipient variable). The effect of correlation between donor

variable and the recipient variable is addressed in the next sec-

tion. For these data, the only other available variable is the VAS;

therefore, nearest neighbors are determined by computing the

distance (2) between the recipient and all other subjects (candi-

date donors) within the same treatment group using VAS mea-

surements. Nearest neighbors were estimated using observed

values; further possibilities for using measurements missing by

design as donors are considered in the discussion.

Once a donor was selected, his or her HSA values were used

to substitute for missing HSA observations in the recipient. In

typical hot-deck imputation, the missing observations are re-

placed with donated observations only once, and the new data

are used as the “real” data set. This provides no estimate of

imputation error, nor does it reflect the variability between sub-

jects. For example, even if two subjects have exactly the same

VAS trajectory, it is quite likely that their HSA values will be

different due to random variation. It is necessary to estimate

the uncertainty associated with replacement of missing values.

Two modifications were made to NNHDI. First, a random

perturbation was added to mimic the inherent variability in the
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data. The random perturbation is generated from a N (0,29)

distribution. The variance of the additive noise is the variance

of the middle 80% of the extant HSA observations calculated

over all subjects. In addition, three sets of imputed values are

obtained, with three different sets of donors. Three sets pro-

vide enough information to estimate the imputation uncertainty,

while keeping the analysis simple.

5. SIMULATION EXPERIMENTS

In this section, two simulation experiments are described.

The first experiment examines the effect of outlier presence on

the correlation structure of an AR(1) process. The second ex-

amines effect size for a scenario where the HSA measurements

from each subject are uncorrelated. For all simulations, 250

replications for n = 15 subjects and t = 24 time points per

subject were computed, in order to mimic the gabapentin data.

Fifty percent of the on-treatment values only were deleted to

simulate the missing data.

The effect of the presence of outliers on the within subject

correlation structure was evaluated by simulating AR(1) pro-

cesses with two possible values of the coefficients: φ = 0.25 or

0.5. These coefficients are reasonable based on an examination

of the autocorrelation structure of the extant gabapentin data.

Values that were k times greater than the mean of the process
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(where k = 3 or 6) were substituted into the series to represent

outliers. Series with both one and two outliers were simulated.

The results are given in Table 2.

Table 2 about here.

Even one outlier that is approximately three times larger

than the mean of the series affects the researcher’s ability to

estimate correctly the order of the process and its coefficient.

The fourth column in the table, labeled “% Correct Order” gives

the percentage of times that the AIC criterion judged the AR(1)

series to have order 1. Most of the time, the AIC picked 0 as

the order of these series; sometimes the AIC selected orders as

large as 5. In the fifth and sixth columns, it is evident that the

presence of outliers results in poor estimates of the correlation

coefficient. This simulation gives evidence that it is reasonable

to delete outliers and replace them with imputed values.

We further examined the effect of the degree of correlation

between the donor and recipient variables when replacing out-

liers and missing values. The pre- and on-treatment values were

simulated as Gaussian white noise in order to examine the effect

of between variable correlation without the confounding effect

of within variable correlation. Donor variables were simulated

such that the correlation coefficient between them and the re-

cipient was either φ = 0, φ = 0.25, or φ = 0.75. The results

are evaluated in terms of the mean of the difference of the pre
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HSA values and the post HSA values and the associated mean-

squared error (Table 3).

Table 3 about here.

Even with 50% of values missing, replacement of those values

with MNNHDI results in effect sizes that are quite close to the

true effect sizes. When the donor variable is correlated with the

recipient, the MSE improves, as would be expected. However,

MNNHDI seems to be a reasonable replacement strategy even

when the donor and recipient variables are uncorrelated.

6. MIXED–EFFECTS MODEL ANALYSIS

Now that we have evidence that the replacement strategy

produces reasonable estimates of effect sizes, we turn to an anal-

ysis of the data using a mixed effects model. Using this model

with the imputed data, we can determine whether gabapentin

has an effect on HSA.

The gabapentin experiment, with hourly scratching activity

measurements aggregated into average pre- and on-treatment

measurements, can be seen as a split-plot design, where treat-

ment (gabapentin or placebo) is the whole-plot factor, subjects

are the whole plots, and the quantification time (baseline or

post-treatment) are split-plot measurements. An equivalent

analysis would be to consider this a repeated measures design,

with baseline and post-treatment HSA scores being the repeated
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measures.

The model is given by

yijk = αi + bj(i) + γk + (αγ)ik + εijk, (3)

where yijk is the response for the jth subject in the ith group at

the kth quantification. The fixed effect, αi, i = 1, 2, represents

the effect of treatment group; bj, j = 1, 2 is a random effect

for the jth subject nested within the ith group, with bj(i) ∼

NID(0, σ2
b ); γk is a fixed effect of the kth quantification, k =

1, 2; (αγ)ik represents the fixed interaction effect between the ith

treatment and the kth quantification, and εijk ∼ NID(0, σ2I).

The results in Table 4 are those of model 3 applied to the

average of the three data sets modified via MNNHDI. The re-

sponse variable is the logarithm of HSA. These results account

for missing values and outliers in the data.

Table 4 about here.

A complete case analysis using model 3 resulted in highly

significant effects for the group effect, the quantification effect,

and their interaction. In addition to the bias incurred from

use of complete cases only, outliers are also present in these

data, and may account for differences in the effects. In Table 4,

the group effect and the interaction of group and quantification

are still significant, but the quantification effect is no longer

significant. These results indicate that there are differences in
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the scratching activity between gabapentin and placebo groups,

but those differences cannot be attributed to the time at which

the HSA measurements were taken.

Nonresponse uncertainty may also account for some of the

differences in the CC and imputed analyses. Little and Rubin

(2002, pages 86-87) give a method for fraction of information

about a parameter θ due to nonresponse (denoted γ). The larger

the fraction, the more influence imputation has over the param-

eter estimates. It is applied here in order to obtain an idea of

how much of the variability in the model can be attributed to

the replacement of the missing values.

Let θ̂d and Wd, d = 1, . . . , D, be D complete-data estimates

and their associated variances for θ. γ̂D = (1 + 1/D)BD/TD

is an estimate of the fraction of information about θ due to

nonresponse, where WD is the within-imputation variance, BD is

the between-imputation variance, and TD is the total variability

across imputations. In the case of the gabapentin analysis, D =

3, and γ̂D was less than one percent for the estimates of LME

coefficients for group, quantification, and the interaction term.

For the random effect of subject within group, approximately

52% of the information is due to nonresponse. This implies that

the inferences made from the imputed data for the fixed effects

can be trusted. As for the random effect, more data and further

analyses are needed before its importance can be ascertained.
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7. DISCUSSION

Statistical practice is never as neat as textbooks sometimes

imply. The challenge for a statistician is not only to analyze

the data in a reasonable manner, but to obtain reasonable data

to analyze. A statistician rarely has the luxury of declaring a

trial a failure once the treatments have been administered and

the measurements have been collected. It is a statistician’s job

(and joy?) to extract as much information as possible from

weak data, while remaining true to statistical theory and prac-

tice. For these data, missing observations were replaced using

a modified nearest-neighbor hot deck imputation (MNNHDI).

Outliers were also deleted, and subsequently replaced in the

same manner. Simulation studies suggest that a mixed–effects

analysis produces reliable parameter estimates.

Simulation studies also showed that the presence of outliers,

and, by extension, the replacement of those outliers with im-

puted data, affects the correlation structure of measurements

gathered over time. For this study, this effect was irrelevant,

as the purpose of imputation was to obtain more reasonable

estimates of pre- and on-treatment means in order to analyze

the data with a mixed effects model. The use of MNNHDI in

situations in which it is important to maintain the correlation

structure in the presence of missing data remains to be explored.

Pfeffermann and Nathan (2002) discuss some imputation meth-
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ods for time series, and develop a new method that applies in

the case where data are missing in waves, meaning that several

values are missing in a row. Different patterns of missingness

were not considered for this study; however, this is an important

direction for future research, particularly in the case where the

number of subjects is small.

Another future direction for research would be to consider

the impact of using CC measurements of a donor variable (e.g.

VAS) for determining recipients. It is conceivable to use an

iterative process, where the primary variable of interest (e.g.

HSA) is first used to impute values for a secondary variable;

then the imputed values of the secondary variable are used to

obtain donors for the primary variable. The process could be

repeated until a measure of imputation variance was below a

certain threshold. Such “double imputation” (using imputed

values to obtain more imputed values) has been used with some

success in microarray analysis (Kim, et. al., 2004).

Some would say that the gabapentin trial was a failed trial,

because the evidence for the drug’s effectiveness was inconclu-

sive. There are several reasons that this might be true. First,

any efficacy of gabapentin may have been lost due to measure-

ment error in the device used. This could certainly be the case

given the large variability in the scratching measurements. How-

ever, it is not likely, as the deletion and imputation of outliers
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reduced the variability in the outcome measurements so that

reasonable parameter estimates could be obtained. In addition,

the instrument used to measure scratching activity has been

used successfully in a wide variety of trials (Bergasa, et. al.,

1992, 1995, 1999). The failure of the instrument twice during

this trial was an anomaly, and could be remedied by an exami-

nation of the equipment between subjects in future trials.

Second, the statistical imputation method may be too bi-

ased toward the null so as to damp out effectiveness. However,

it should be noted that MNNHDI attempts to use donor vari-

ables from the same treatment group as the recipient, in order

to minimize such bias. Furthermore, the simulation studies de-

scribed in the previous section give evidence to the contrary.

Finally, it may be that gabapentin is indeed ineffective in

ameliorating itch. This is likely the truth, but for more compli-

cated reasons than the absence of a satiating effect of the drug.

The itch from liver disease is believed to result, at least in part,

from increased neurotransmission by the endogenous opioid sys-

tem in the brain. Dopamine is a chemical released in the brain

that reduces the brain’s ability to register unpleasant stimuli.

It is possible that the placebo group may have had high endoge-

nous dopamine release in anticipation of receiving gabapentin.

The subjects in the gabapentin group may have had the same

expectation, but the effect of the dopamine release was muted by
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the drug. As a result, the patients on active treatment tended

to respond as placebo patients.

This study is a case in point of how a “negative” outcome of

a trial can open new possibilities for cross-displinary research. A

statistician is not likely to know about the effects of gabapentin

on endogenous dopamine release, but consultation with an ex-

pert scientist resulted in a new line of inquiry, into the mecha-

nisms responsible for the placebo effect within the human brain.

In this sense, the failure of gabapentin to reduce the sensation

of itching in these subjects was not a failure of the trial at all.
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HSA VAS

Group Subject Baseline Final Baseline Final

1 52 46 60 52

2 52 44 60 67

6 40 0 48 23

8 44 100 50 100

Gabapentin 10 0 0 25 33

12 100 46 17 54

14 2 2 21 25

16 21 79 100 88

Mean for Gabapentin Group 39 40 48 55

3 0 0 31 40

4 4 8 38 42

7 0 44 25 58

Placebo 9 46 100 63 100

11 50 19 19 52

13 94 100 27 67

15 10 52 29 63

Mean for Placebo Group 29 46 33 60

Overall Mean 34 43 41 58

Table 1: Percent of observations missing for each subject at

each treatment period for both HSA and VAS variables, prior

to deletion of the last 24-hours of the quantification period. Ap-

proximately 30 percent of the VAS measurements are missing

by design, and are included in the percents given.
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True φ k No. of outliers % Correct Order Estimated φ MSE

0.25 3 1 28 0.171 0.044

0.25 6 1 10 0.037 0.136

0.5 3 1 50 0.045 0.316

0.5 6 1 18 0.046 0.296

0.25 3 2 20 0.047 0.143

0.25 6 2 16 0.055 0.146

0.5 3 2 51 0.054 0.305

0.5 6 2 46 0.071 0.267

Table 2: Effect of deletion of outliers from AR(1) series on the

estimated order and the estimated coefficient. Outliers were

defined as values that were k times the mean of the series. The

table gives the percentage of times the AIC criterion gave the

correct order, the estimated value of φ, and the MSE for the

estimate.

n = 15 with eight missing values

True Effect Correlation Imputed Effect MSE

0 None 0.004 0.0989

0.25 0.0008 0.0911

0.75 0.0005 0.0756

3 None 2.996 0.0991

0.25 3.001 0.0911

0.75 3.003 0.0755

Table 3: Effect sizes where white noise data is replaced by

MNNHDI. True Effect is the intended difference between the

means of the pre- and on-treatment data, Correlation is the

correlation between the donor and recipient variables, Imputed

Effect is the effect size once on-treatment values were replaced

by MNNHDI, and the MSE gives the mean squared error of the

imputed effect.

Effect DF Mean Square F Value Pr > F

Group 1 1.74 8.29 0.0129

Subject (Group) 13 0.309 1.47 0.2480

Quant 1 0.469 2.23 0.1588

Group × Quant 1 1.32 6.31 0.0260

Table 4: Results for Average of 3 Imputations of NNHDI with

additive N (0, 29) noise.
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Figure Caption

Strip chart of HSA values for patients in Gabapentin (dark

gray diamonds) and Placebo (black circles) groups at hours 1,

8, 16, 24, 32, 40, and 48 of baseline quantification.
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