
The Application of the Kalman Filter to

Nonstationary Time Series through Time

Deformation

Zhu Wang ∗ Henry L. Gray † Wayne A. Woodward ‡

March 17, 2008

Abstract

An increasingly valuable tool for modeling nonstationary time series

data is time deformation. However, since the time transformation is

applied to the time axis, equally spaced data become unequally spaced

data after time transformation. Interpolation is therefore often used

to obtain regularly sampled data, which can be modeled by classical

ARMA modeling techniques. However interpolation may be undesir-

able since it can introduce spurious frequencies. In this paper, the con-

tinuous time autoregressive model is used in order to eliminate the need
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to interpolate. To estimate the parameters, a reparameterization and

model suggested by Belcher, Hampton, and Tunnicliffe-Wilson (1994)is

employed. The resulting modeling improvements include, more accu-

rate estimation of the spectrum, better forecasts, and the separation

of the data into its smoothed time-varying components. The technique

is applied to simulated and real data for illustration.

1 Introduction

The analysis of time series is often difficult when data are nonstationary.

For instance, while the definition of the spectrum for stationary time series

is well established, there appears to be no analogous way of defining a time-

dependent spectrum uniquely. One approach, which is particularly useful

when the frequencies are changing monotonically is to transform time in such

a way that the process is stationary on the transformed index set. This then

leads, in a natural way, to an appropriate definition of the spectrum at any

time, t, i.e., the “instantaneous spectrum”. Gray and Zhang (1988) intro-

duced continuous multiplicative-stationary (M-stationary) processes for the

case in which the time deformation is logarithmic, i.e. u = ln t. Jiang, Gray,

and Woodward (2006) extended the M-stationary processes by introducing

G(λ)-stationary processes. A general class of the G(λ) processes, referred to

as the G(p, λ) process, is then introduced through a Box-Cox transforma-

tion of time. The estimation approach for the discrete M-stationary (Gray,

Vijverberg, and Woodward, 2005) and discrete G(λ)-stationary (Jiang et

al., 2006) time series models can be summarized as follows:

(1) Beginning with equally spaced nonstationary data, a time deformation
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is applied to obtain unevenly spaced data from a continuous ARMA

process.

(2) Interpolation is then employed to obtain evenly spaced discrete

ARMA(p, p − 1) data so that the conventional AR or ARMA model

can be used.

(3) If forcasting is needed, ‘re-interpolation” is then required in order to

return to the original time scale.

While it may suffice for some purposes, interpolation often introduces dis-

tortion and noise. In fact, properly interpolating time series data itself is a

challenging research topic.

Recognizing both the difficulties and the inherent disadvantage of the

above discrete interpolation approach, the purpose of this paper is to utilize

the continuous time autoregressive modeling as an alternative. Parameter

estimation is based on the maximied likelihood function, which is decom-

posed by the Kalman filter. Taking advantage of this approach, familiar

applications to forecasting, interpolation, smoothing and latent components

estimation can be applied to nonstationary time series data. The idea of

fitting continuous autoregressive models using time deformation is not new.

For instance, Gray and Zhang (1988) advocated taking the approach of

Jones (1981), and Stock (1988) used a similar approach to analyze the post-

war U.S. GNP. However, the estimation approach proposed by Jones (1981)

for unequally-spaced data implicitly limits the applications to lower order

models. In fact, both of the two examples illustrated in Stock (1988) are

first order autoregressive. However, Belcher, et al. (1994) introduced a
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reparametriction of the Jones method which provided a much more sta-

ble likelihood algorithm. In this paper we will make extensive use of the

model and the numerical methodology suggested in Belcher, et al. (1994).

The remainder of this paper is organized as follows. In Section 2, the ba-

sics of M-stationary and G(λ)-stationary processes are reviewed. Section 3

describes continuous time autoregressive models and the Kalman filter. Sec-

tion 4 presents three applications, and Section 5 summarizes the conclusions

and discusses future research directions and possible extensions.

2 M-stationary and G(λ)-stationary processes

A continuous time series process X(t), t ∈ (0,∞), is M-stationary ifX(t) has

a constant mean, finite, constant variance and E[(X(t)− µ)(X(tτ)− µ)] =

RX(τ). An important M-stationary process is the Euler process. X(t) is a

pth-order Euler process, denoted Euler(p), if X(t) satisfies

tpX(p)(t) + ψ1t
p−1X(p−1)(t) + . . .+ ψp(X(t)− µ) = a(t) (1)

where X(i)(t) is the ith derivative of X(t), E[X(t)] = u and ψ1, ..., ψp are

constants, and a(t) is M-white noise, meaning that a(t) = ε(ln(t)) where

ε(t) is the formal derivative of a Brownian process. See Gray and Zhang

(1988). Without loss of generality it will be assumed that E[X(t)] = 0. If

X(t) is a zero mean Euler(p) process defined by (1), and Y (u) = X(eu), i.e.,

Y (ln(t)) = X(t), then

Y (p)(u) + α1Y
(p−1)(u) + . . .+ αp−1Y

(1)(u) + αpY (u) = ε(u) (2)
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where α1, ..., αp are constants determined by ψ1, ..., ψp and ε(u) = a(eu).

Y (u) is referred to as the dual stationary process of X(t). While the natural

logarithmic transformation is considered above, it may be shown that if a

process is M-stationary it can be viewed as stationary on any log scale. For

δ > 0 and t > 0, the process defined by Z(t) = X(t− δ) is referred to as a

shifted M-stationary process. For more on M-stationary processes, see Gray

and Zhang (1988) and Gray et al. (2005).

A more general process is the so called G(λ)-stationary processes. X(t)

is said to be a G(λ)-stationary process on t ∈ (0,∞) if X(t) has a constant

mean, finite constant variance, and for any tλ + τλ ∈ (0,∞), then it follows

that E[X(t)− µ][X(tλ + τλ)
1
λ − µ] = BX(τ, λ), for λ ∈ (−∞,∞). The class

of G(λ) stationary processes contain the usual stationary processes (when

λ = 1 and t > 0). In the limiting case as λ → 0, the G(λ)-stationary

process becomes the M-stationary process. The time deformation required

to transform this class of nonstationary processes to usual stationarity is the

Box-Cox transformation, u = tλ−1
λ .

The fundamental theory for discrete, evenly or unevenly sampled G(λ)-

stationary processes has been developed in Jiang, et al. (2006). To be

specific, consider the case λ = 0, i.e. the M-stationary case. Then {X(t)} is

formally defined through the model given by (1). If u = logh t and Y (u) =

X(hu) = X(t), h > 1, t > 0, it is shown that Y (u) is a continuous AR(p), so

that for k = 0,±1,. . . , then Yk = Y (k) = X(hk) is a discrete ARMA(p, p−1).

Thus, if the data are sampled at tk = hk , the resulting data can be viewed

as equally-spaced observations from a discrete ARMA(p, p− 1). See Choi,

Woodward and Gray (2006). However, in most cases the data available
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are equally spaced in the original time scale so that X(hk) is not available

(unless the data are heavily over sampled), but instead one obtains Y (u)

at u = ln k
lnh = logh k, k = 1, ..., n, i.e. Y (u) is an unequally spaced sample

from a continuous AR(p). Thus Gray, et al. (2005) interpolated the data

to obtain an evenly spaced dual process Ym, m = 1, ..., n to obtain an

ARMA(p, p − 1) which could then be analyzed by standard methodology.

The same approach was taken by Jiang, et al. (2005) with u = tλ−1
λ . Then

Y (u) = X((λu+ 1)1/λ) = X(t). It is shown there that the limit as λ → 0

results in the M-stationary case while the case λ = 1 is an AR(p). Thus

in the general case the data are required at (λkδ + 1)1/λ, where δ is the

sampling increment and k = 1, 2, ..., n. Consequently if the data are equally

spaced then interpolation is required in this case as well. In the next few

sections we make use of the Kalman filter and the methods of Jones (1981)

and Belcher, et al. (1994) to eliminate the need for interpolating the data

and thus eliminate errors introduced by interpolation. In closing this section

we should mention that λ and the realization origin (see Gray, et al. (2005)

and Jiang, et al. (2006)) must be estimated. However, the software for

estimating these parameters as well as the model in general is available at

http://faculty.smu.edu/hgray/research.htm.

3 Continuous time autoregressive models

Consider now estimating a continuous time autoregressive model (2) from

the observed discrete dual process Yki for i = 1, ..., n Note that the Yki are

unequally spaced observations from a continuous AR(p) process. For such
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data, Jones (1981) applied the Kalman filter to decompose the maximum

likelihood function and Belcher et al. (1994) further developed this approach.

We will use operator notation to express model (2) as α(D)Y (t) = ε(t) where

α(D) = Dp + α1D
p−1 + . . .+ αp−1D + αp, (3)

where D is the derivative operator. The corresponding characteristic equa-

tion is then given by

α(s) = sp + α1s
p−1 + . . .+ αp−1s + αs = 0. (4)

The characteristic polynomial α(s) can be factored as

α(s) =
p∏

i=1

(s− ri). (5)

A necessary and sufficient condition for stationarity of model (2) is that all

the zeros have negative real parts. This can be achieved by letting

s2 + eθ2k−1s + eθ2k = (s− r2k−1)(s− r2k) (6)

where k = 1, . . . , p
2 if p is even and k = 1, . . . , p−1

2 if p is odd, with rp =

−eθp . Without any constraint on θi, the stationarity is then automatically

guaranteed by this reparameterization, and the parameter space is Rp.

The method of Jones, however, is well known to have convergence prob-

lems for higher order models. To solve this problem, Belcher et al. (1994)

proceed as follows. Let

z =
1 + s/δ

1 − s/δ
, (7)

where δ > 0 is referred to as a scaling factor. Now let f denote frequency in

the frequency domain of Y (u) and transform to a new frequency variable,
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w, by letting

f = δ tan(w/2). (8)

It is easily shown that if z = exp(iw) then s = if . That is, the boundary

of the unit circle maps into the imaginary axis, if , when equations (7) and

(8) hold.

Now for real constants φ1, . . . , φp define

φ(z−1) = 1 + φ1z
−1 + . . .+ φpz

−p. (9)

Using (7), then (9) gives

φ(z−1) =
β(s)

(1 + s/δ)p
,

where

β(s) = β0s
p + β1s

p−1 + . . .+ βp−1x+ βp (10)

=
p∑

i=0

φi(1− s/δ)i(1 + s/δ)p−i, (11)

with φ0 = 1. Note that the βi’s are linear combination of the φi’s. If we set

α(s) = β(s) with αi = βi/β0, then since

zpφ(z−1) = zp + φ1z
p−1 + . . .+ φp (12)

it follows from (7) and (8) that zeros of α(s) lie in the left hand plane if and

only if the zeros of φ(r) lie inside the unit circle.

We therefore have the very nice result which we quote from Belcher,

et al. (1994), “Thus the space of parameters φi corresponding to station-

ary model parameters, αi is precisely the same as that associated with the

stationary discrete time autoregressive operator φ(B), where the backward

shift operator B is identified with z−1.”
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Letting S(f) denote the spectrum of a stationary process Y (u), then it

can be seen that this transforms, using (8), to the spectrum F (w) given by

F (w) = S(f)[1 + (f/δ)2]
(
δ

2

)
. (13)

Using (13), it can be seen that the spectral density, Fm(w) associated

with model (14) is

Fm(w) =
δ

2
σ2

∣∣∣∣
(1 + if/δ)p−1

α(if)

∣∣∣∣
2

(1 + f/δ)2,

With this in mind consider the modification of the model in (2) to

α(D)Yt = (1 +D/δ)ε(t). (14)

Since |1 + iX | = 1 +X2, it follows that

Fm(w) =
δ

2
(1 + (f/δ)2)p

|α(if)|2 σ2

=
δ

2

∣∣∣∣
β0

φ{exp(iw)}

∣∣∣∣
2

σ2,

where β0 = φ(−1)δ2. Thus the spectral density of Fm(w) of the process

Y (t) given in (14) has the form of the spectral density of a discrete AR(p).

For further disussion of this and the advantage of replacing the model in (2)

with the model in (14), and there are many, see Belcher et al. (1994).

Thus to improve numerical stability as well as eliminating the need for

interpolation we will henceforth replace model (2) with the model given by

(14). We should mention that this is equivalent to replacing the G(λ, p)

model by the corresponding G(λ; p, p− 1). See Choi, et al. (2006). The

model in (14) will then be fitted via the maximum likelihood function cal-

culated through the Kalman filter. The details of this can be found in
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Jones (1981), Belcher et al. (1994) and Wang (2004). The software for

finding and fitting a G(λ, p) model can be downloaded from the website

http://faculty.smu.edu/hgray/research.htm.

4 Applications

There are several issues needed to be addressed before we apply the ap-

proach of Belcher et al. (1994) to M-stationary and G(λ)-stationary pro-

cesses. First, corresponding to the change from model (2) to (14), X(t) is

modeled using a special case of a continuous Euler(p, q) process (Choi, et

al. 2006) or a G(λ; p, q) processes (Jiang, et al. 2006). Therefore, hence-

forth when we speak of continuous autoregressive, Euler and G(λ) models

they should be understood as these restricted models related to (14). Sec-

ond, to avoid more complication of the maximum likelihood function, time

deformation is separated from the estimation of continuous time autoregres-

sive models. We take the approach of Gray et al. (2005) and Jiang, et al.

(2006) to estimate time deformation for M-stationary and G(λ)-stationary

processes, respectively. Thirdly, following Belcher et al. (1994), the choice

of the scaling factor κ will be a trade-off between capturing the data struc-

ture and overfitting. As illustrated in their example, the scale parameter

may be chosen approximately as the reciprocal of the mean time between

observations. For the current applications, it is worth noting that using

the logarithmic or Box-Cox transformation discussed in Section 2 produced

dual data for which the mean time between observations is equal to one.

In our implementation we have found the scaling favor of 1.5 to be a good
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choice. Experience gained in applications suggests this choice can caputre

the spectrum well and not overfit. Lastly, the model selection is based on

AIC and the t-statistic proposed in Belcher et al. (1994). The remainder of

this section illustrates the procedure.

Example 1. One of the advantages of the continuous time model fitting

is that there is no extra distortion and noised introduced, unlike in the

interpolation-based approach. To demonstrate this point, we consider the

example given in Gray et al. (2005). The data are generated from the shifted

discrete Euler(2) process with sample size 400,

X(hj+k) − 1.732X(hj+k−1) + 0.98X(hj+k−2) = a(hj+k) (15)

with the hj = 10, h = 1.005 and σ2 = 1. A realization is displayed in

Figure 1. All 400 data values are used to fit a continuous Euler model.

For purpose of illustration, the original hj = 10, h = 1.005 are used, for

both the discrete Euler model and the continuous Euler model. Continuous

Euler models up to order 18 were fit to the data. The resulting AIC and

the t-statistics are shown in Table 1. Based on Table 1, a continuous Eu-

ler(4) is chosen. The estimated M-spectrum based on this continuous model

is plotted along with the M-spectrum based on the discrete Euler model

(estimated using interpolated values) for comparison. It can be seen from

Figure 2, that the left panel has the second highest peak at a low frequency

while the right panel has only one peak, which is consistent with the model.

While it seems that the spurious low frequency peak may be exaggerated

by the AIC selected high order (19) model, it is found that any fitted model

with order greater than 4 has a spurious low frequency peak for a discrete
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Figure 1: Realization of Euler(2)

Figure 2: Spectral estimates for Euler(2)

Euler model. However, this is not the case for a continuous Euler model

even for a higher order model. This effect is caused not by chance, in fact,

Press et al. (1992, p.576) described this phenomenon

.... However, the experience of practitioners of such interpo-

lation techniques is not reassuring. Generally speaking, such

techniques perform poorly. Long gaps in the data, for example,

often produce a spurious bulge at low frequencies (wavelengths

comparable to gaps)

This is exactly the situation here. Since the time deformation is monotonic,

there exist long gaps at the beginning part of data. The continuous Euler

model, however, does not suffer from this distortion.

One of the objectives of the Kalman filter is to filter out the random

noise from the signal. For a process with contaminating noise, it is possi-

ble to fit a continuous time model with a measurement error term; then a

Kalman smoother may be applied to extract the signal from the noise. To

demonstrate, random normal noise with mean zero and variance equal to

Figure 3: Forecasting comparison for Euler(2)
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Order t-statistic AIC

1 −181.2441582 −32847.44

2 140.4169008 −52562.35

3 −9.8492519 −52657.36

4 5.1125129 −52681.50

5 −1.4639074 −52681.64

6 0.3369399 −52679.75

7 1.2906832 −52679.42

8 −1.4747653 −52679.59

9 0.7339677 −52678.13

10 0.5591542 −52676.45

11 −1.8504884 −52677.87

12 2.0998675 −52680.28

13 −1.5554970 −52680.70

14 1.5266172 −52681.03

15 −1.8150720 −52682.32

16 −0.5244112 −52680.60

17 −1.0917761 −52679.79

18 −0.4196429 −52677.97

Table 1: Order selection statistics for Euler(2)
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lag AR Discrete Euler Continuous Euler

10 2581.231 41.788 39.03

20 1684.479 335.917 92.311

30 2454.773 898.771 283.324

40 1665.196 1512.341 1801.851

50 1390.837 1119.811 1648.748

60 1270.888 658.738 894.293

Table 2: MSE forecast comparison for Euler(2)

Figure 4: Noise contaminated data

the sample variance of the signal was added to the data shown in Figure

1. The composite signal plus noise is shown in Figure 4. For illustration

purposes, the original hj = 10, h = 1.005 are used and the dual process is

obtained on the transformed time. A continuous Euler model is then fitted

with the measurement error term, and the model is selected by AIC. The

AIC valuesContinuous G(λ) do not change dramatically, and a 4th order

model is chosen. After the parameter estimation, the smoothed series is

estimated and shown in Figure 5. It can be seen that the smoothed data

looks similar to the original signal in Figure 1.

Figure 5: Signal extraction
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Figure 6: Realization of Euler(4)

Example 2. Cohlmia et al. (2004) considered a realization generated from

an Euler(4) model

(1− 1.97B + 0.98B2)(1− 1.7B + 0.99B2)X(hk) = a(hk), (16)

where B is the autoregressive operator, and the offset hj = 15, h = 1.005

and σ2 = 1. The data are shown in Figure 6. The fitted discrete model is

an Euler(11) with ĥ = 1.0082, ĥj = 15. The two dual system frequencies

are f = 0.026 and f = 0.142. Here We use the same realization to fit a

continuous Euler model. For model selection using this time deformation,

first a continuous Euler(16) is fit, and the model order selection statistics

are shown in Table ??. Both of these statistics choose an order 15, thus

an order 15 continuous Euler model is finally fit, and the roots ri of the

characteristic equation based on the fitted coefficients are shown in Table 3.

The smaller the value of |Re(ri)|, the higher the power associated with

the corresponding frequency. As can be seen in Table 3, the power is con-

tained mostly in the M-frequencies 17.31 and 2.89 which are associated

with complex roots −0.011±0.888i and −0.030±0.148i, respectively. From

(16), the M-frequencies associated with the factor 1 − 1.97B + 0.98B2 and

1−1.7B+0.99B2 are 17.44 and 3.19, respectively. Using a discrete Euler(11)

model, as described in Cohlmia et al. (2004), the fitted M-frequencies are

17.42 and 3.22 respectively. The estimated continuous M-spectrum is shown

in Figure 7, along with the M-spectrum from the discrete Euler(11) model.
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Roots M-frequency Dual frequency

1 −0.011±0.888i 17.31 0.141

2 −0.030±0.148i 2.89 0.024

3 −0.095±0.224i 4.36 0.036

4 −0.121±1.057i 20.62 0.168

5 −0.135±0.522i 10.18 0.083

6 −0.217±1.783i 34.77 0.284

7 −0.461±9.750i 190.18 1.552

8 −6.082 0.00 0.000

Table 3: Factors of fitted model for Example 4.4

Figure 7: Spectral estimates for Example 4.4

The highest two peaks are approximately located at the dual frequencies

0.141 and 0.024, from Table 3.

To compare forecasting performance, an AR(18) model chosen by AIC

was also fitted as described in Cohlmia et al. (2004), and the forecasts for

the last 30 steps were found for the three different models. As can be seen

in Figure 8, the continuous model forecasts are more accurate.

It can be seen from Table 4, that the continuous Euler(15) model over-

whelming outperforms the discrete Euler(11) model. While the discrete

Euler(11) does consider the time-varying frequency of the time series, the

modeling procedure first interpolates the original data to obtain the evenly

spaced dual data, then models the dual data and obtain forecasts using AR
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lag AR Discrete Euler Continuous Euler Continuous Euler (Wrong)

10 15975.83 84.74 77.17 0.19

20 21960.41 338.30 1928.38 0.18

30 13835.11 2658.27 1500.88 0.24

40 17827.06 62110.1 18847.41 0.65

50 18642.87 26735.55 27028.65 0.87

60 13786.61 25600.46 26802.83 0.91

Table 4: MSE forecasting comparison for Example 4.4

Figure 8: Forecasting comparison for Example 4.4

model techniques, and then finally involves reinterpolation on the original

time scale. It is seen that these two steps of interpolation cause the forecasts

to be less accurate, even though the discrete Euler(11) clearly does a better

job than a direct application of an AR model. To check the assumptions of

the fitted continuous model, the standard residual diagnostics are plotted in

Figure 9. As can be seen, the diagnostics do not find anything suspicious.

In addition, the standardized residuals passed the Box-Ljung white noise

test for both 24 and 48 lags.

This data set is considered again in a filter setting. The components

associated with the two dominant M-frequencies 17.31 and 2.89, or the dual

Figure 9: Model diagnostics for Example 4.4
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Figure 10: Filtered data for Example 4.4

frequencies 0.141 and 0.024, can be estimated from the dual process. Using

the Kalman smoothing algorithm, the estimated two dominant frequency

components after mean corrected are shown in Figure 10. In Figure 10 we

also show the data after M-filtering out the M-frequency 17.31, by subtract-

ing the estimated component corresponding to M-frequency 17.31, from the

original data. The M-filtered data look similar to that given in Cohlmia

et al. (2004), who described a Butterworth filter approach to filter the inter-

polated dual data, and then reinterpolated back to the original time scale.

Again, the method discussed in this example avoided any interpolation for

the purpose of filtering.

Example 3. Figure 11 shows brown bat echolocation data. The data set

has been analyzed in the framework of time frequency analysis, e.g., Forbes

and Schaik (2000). In the context of time deformation, it was discussed in

Gray et al. (2005) and Cohlmia et al. (2004). The realization analyzed here

is of length 381. The fitted discrete Euler(11) model has ĥ = 1.00278, ĥj =

202 with strong dual system frequencies at .048, 0.294, and 0.435 or M-

frequencies (a scaled frequency defined as f∗ = f/ lnh, where f is the dual

frequency) at 0, 53.2, 105.8, and 156.7, respectively. Using time deformation,

a CAR(18) model is fitted. The model order selection statistics are shown

in Table 5. Both t-statistic and AIC statistics choose an order 18.

Thus, a continuous model of order 18 was fitted to the data, and the roots

ri of characteristic equation from fitted coefficients are shown in Table 7.
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Figure 11: Brown bat echolocation data

Order t-statistic AIC

1 20.60 −422.35

2 234.06 −55205.13

3 −10.73 −55318.25

4 146.06 −76648.91

5 64.37 −80790.60

6 56.00 −83924.57

7 −45.30 −85974.37

8 −98.09 −95594.57

9 −27.84 −96367.40

10 −8.35 −96435.15

11 −17.01 −96722.43

12 −21.54 −97184.53

13 −17.06 −97473.66

14 20.64 −97897.57

15 −2.11 −97900.03

16 13.49 −98080.08

Continuous G(λ) 17 −5.12 −98104.34

18 3.16 −98112.34

Table 5: Order selection statistics for brown bat data
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Figure 12: Spectral estimates of brown bat data

lag AR Discrete Euler Continuous Euler

10 2.77e-05 1.12e-06 4.77e-06

20 3.24e-05 8.51e-06 2.33e-05

30 6.71e-05 4.24e-05 6.13e-05

40 2.18e-04 6.21e-05 4.22e-05

50 2.38e-04 1.09e-04 1.68e-04

60 1.94e-04 1.29e-04 2.91e-04

Table 6: MSE forecast comparison for the brown bat data

Figure 13: Forecasting comparison for the brown bat data
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As can be seen, the power is concentrated mostly in the dual frequencies 0,

0.294, 0.146, and 0.435, or M-frequencies 0, 105.8, 52.5 and 156.7, respec-

tively, which are associated with roots 0, −0.006±1.846i and −0.01±0.916i,

respectively. In this case, the spectra associated with the discrete and con-

tinuous Euler models are similar, as can be seen in Figure 12.

Roots M-frequency Dual Frequency

1 -0.003 0.00 0.000

2 -0.006±1.846i 105.81 0.294

3 -0.01±0.916i 52.53 0.146

4 -0.016±0.95i 54.48 0.151

5 -0.018±2.733i 156.69 0.435

6 -0.055±3.623i 207.71 0.577

7 -0.11 0.00 0.000

8 -0.26±1.789i 102.54 0.285

9 -0.271±12.949i 742.37 2.061

10 -0.399±0.456i 26.15 0.073

Table 7: Factors of fitted model for brown bat data

It is of interest to decompose the signal into its “basic components”

which are a by product of the Kalman filter. Note that after the model

parameters are estimated, the components associated with the dominant

M-frequencies can be estimated. From Table 7, it can be seen that there
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Figure 14: Components of brown bat data

Figure 15: Hunting bat echolocation data

are four dominant frequencies. The first dominant dual low frequency is 0.

The dual frequency of 0.294 and 0.285 are close, 0.146 and 0.151 are close

together, thus those close frequency components will be combined together.

The remaining dominant dual frequency is 0.435. The results obtained here

are similar to those given in Cohlmia et al. (2004). Using the Kalman

smoother, the four dominant frequency components may be estimated and

are shown, after mean correction, in Figure 14.

Example 4. This data set contains 280 observations from a Nyctalus noc-

tula hunting bat echolocation at 4 × 10−5 second intervals, which was ana-

lyzed in Gray et al. (2005) using a discrete Euler model. The data are shown

in Figure 15. The fitted discrete Euler(12) model has ĥ = 1.00326, ĥj = 188.

Using this time deformation, a continuous Euler(15) model is fitted. The

model order selection statistics are shown in Table ??. Both t-statistic and

AIC statistics choose an order 14.

Thus, a continuous Euler(14) model is fit to the data and the roots ri of

characteristic equation from the estimated coefficients are shown in Table 8.

Figure 16: Spectral estimates of hunting bat data
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Figure 17: Forecasting comparison for hunting bat data

As can be seen in Figure 16, the power is contained mostly in the dual

frequencies 0.121, 0.242, 0 and 0.366.

Roots M-frequency Dual Frequency

1 -0.003±0.761i 37.21 0.121

2 -0.017±1.523i 74.46 0.242

3 -0.056 0.00 0.000

4 -0.089±2.302i 112.59 0.366

5 -0.107±0.277i 13.53 0.044

6 -0.164±0.89i 43.51 0.142

7 -0.177±5.888i 287.93 0.937

8 -32.16 0.00 0.000

Table 8: Factors of fitted model for hunting bat data

To compare forecasting performance, the forecasts for the last 60 data

values are obtained for the three different models and the results are shown

in Figure 17. To compare forecast performance, different forecast origins are

examined and the results are listed in Table 9As can be seen, the continuous

Euler model forcasts marginally outperform the discrete Euler model. To

check the assumptions of the fitted continuous model, the standard residual

diagnostics are plotted in Figure 18.
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lag AR Discrete Euler Continuous Euler Continuous Euler (Wrong)

10 0.0765 0.0209 0.0183 0.0092

20 0.1478 0.0100 0.0102 0.0006

30 0.1939 0.0080 0.0100 0.0057

40 0.2741 0.0236 0.0205 0.0065

50 0.2021 0.0305 0.0233 0.0073

60 0.2027 0.0252 0.0189 0.0067

Table 9: MSE forecast comparison for hunting bat data

Figure 18: Model diagnostics for hunting bat data

Figure 19: Components of hunting bat data
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To estimate unobserved dominant components, the components associ-

ated with the dominant M-frequencies can be estimated. Corresponding to

the frequencies in Table 8, the four dominant components are estimated us-

ing the Kalman filter smoothing algorithm, the results after mean correction

are shown in Figure 19.

Example 5. Cohlmia et al. (2004) investigated a simulated quadratic chirp

in the class of G(λ)-stationary process given by

X(t) = cos[2π(
t

250
+ .25)3] + 2 cos[7π(

t

250
+ .25)3] + .1ε(t) (17)

where ε(t) are standard normal variates.

A realization from (17) of length 400 is shown in Figure 20 and the two

deterministic components in (17) are plotted in Figure 21. These compo-

nents have time varying frequencies. A discrete G(λ) model of order 20

is fitted to the data with λ̂ = 3, ĥ = 81127, Λ̂ = 60. In order to conduct

continuous G(3) modeling, time deformation using the above parameters is

performed to obtain unevenly spaced stationary dual data. These dual data

are to be fitted using continuous AR models. An 11th order model is fitted

to the data and is chosen to be the final model according to the AIC, see

Table ??. After model fitting, the G(3) spectrum is shown, along with the

spectrum generated from the fitted discrete G(3) model with order 20. As

shown in Figure 22, the two estimates are similar to each other, and both

have the two close peaks. The two dominant dual frequencies as shown in

Table 11, are 0.056 and 0.016, and these are the same as those given in

the discrete model. To compare forecast performance, the last 60 points are

forecast and shown in Figure 23. For a variety of forecast origins, the results

25



Figure 20: Realization of quadratic chirp

Figure 21: Deterministic Components of quadratic chirp

are listed in Table 10. The model diagnostics are shown in Figure 24.

For the two components associated with the dominant G(3) frequencies,

or dual frequencies at 0.056 and 0.016, which are the corresponding original

components after reverting the time deformation, we apply the Kalman

smoother. The estimated two dominant frequency components after mean

correction are shown in Figure 25. Comparing Figure 21 and 25, it can be

seen that the original components seem to be reproduced accurately. Similar

results were achieved in Cohlmia et al. (2004) by applying a Butterworth

filter to the dual process, which involves twice interpolations. However, the

method discussed here, by a structural time domain approach, essentially

avoids interpolations.

Example 6. A Doppler-type signal was considered in Cohlmia et al. (2004),

in which the data are simulated from

X(t) = sin(
840π
t+ 50

) + .5 sin(
2415π
t+ 50

) + .05ε(t) (18)

where ε(t) are standard normal variates.

Figure 22: Spectral estimates of quadratic chirp
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Figure 23: Forecasting comparison for quadratic chirp

Figure 24: Model diagnostics for quadratic chirp

lag AR Discrete G(λ) Continuous G(λ) Continuous G(λ) (wrong)

10 0.613 0.105 0.178 0.054

20 0.948 0.052 0.177 0.040

30 0.931 0.081 0.304 0.040

40 2.070 0.062 0.294 0.038

50 2.150 0.110 0.325 0.041

60 2.625 0.153 0.409 0.040

Table 10: MSE forecast comparison for quadratic chirp

Roots G-frequency Dual Frequency

1 -0.001±0.349i 7.0e− 07 0.056

2 -0.037±0.101i 2.0e− 07 0.016

3 -0.161±1.238i 2.4e− 06 0.197

4 -0.343±2.372i 4.7e− 06 0.377

5 -1.987±4.606i 9.0e− 06 0.733

6 -440.295 0.000 0.000

Table 11: Factors of fitted model for quadratic signal
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Figure 25: Filtered data of quadratic chirp

Figure 26: Realization of Doppler signal

A realization with sample size 200 is shown in Figure 26 and the two

deterministic components in (18) are plotted in Figure 27. These compo-

nents have time varying frequencies, thus are nonstationary. To separate

them, Cohlmia et al. (2004) described a discrete G(λ) analysis by fitting a

discrete G(λ) model. The estimated model is order 12 with λ̂ = −1.7, ĥ =

1.1888× 10−6, Λ̂ = 90. To apply a continuous G(λ) analysis, the time defor-

mation estimated from the discrete model is used to obtain unevenly spaced

stationary dual data. These dual data are thus to be fitted using contin-

uous AR models. The model selection statistics are shown in Table ??,

from which, an order 14 model is chosen. After model fitting, the G(−1.7)

spectrum is shown, along with the spectrum generated from the fitted dis-

crete G(−1.7) model with order 20. There seem to be three dominant dual

frequencies as shown in Table 13, as 0.033, 0.100 and 0.091, but the last

two are close together and jointly contribute to the second component. The

last 20 points are forecast and shown in Figure 29. It can be seen that the

continuous G(λ) model outperforms the discrete G(λ) model. The continu-

ous model captures the cyclical structure of the data more accurately. The

model diagnostics are shown in Figure 30, and the standardized residuals

pass the Box-Ljung white noise tests for lags 24 and 48.
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Figure 27: Deterministic components of Doppler signal

Figure 28: Spectral estimates of Doppler signal

To estimate unobserved components associated with the dominantG(−1.7)

frequencies, the Kalman smoothing algorithm was applied and the estimated

components after mean correction were shown in Figure 31. Comparing

Figure 27 and 31, it can be seen that the two components are almost per-

fectly recovered. Similar results were achieved in Cohlmia et al. (2004).

lag Discrete G(λ) Continuous G(λ) Continuous G(λ) (wrong)

10 0.7901 0.0032 0.0021 0.0028

20 0.4737 0.0581 0.0033 0.003

30 0.3741 0.0828 0.0052 0.003

40 0.3909 0.0721 0.0035 0.003

50 0.388 0.0506 0.0415 0.003

60 0.5276 0.0386 0.0988 0.004

Table 12: Forecast comparison for Doppler signal

Figure 29: Forecasting comparison for Doppler signal
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Figure 30: Model diagnostics for Doppler signal

Roots G-frequency Dual Frequency

1 -0.001±0.205i 27429 0.033

2 -0.008±0.626i 83858 0.100

3 -0.011±0.572i 76585 0.091

4 -0.255±1.478i 197836 0.235

5 -0.418±2.292i 306792 0.365

6 -0.838±4.838i 647657 0.770

7 -1.652±11.201i 1499557 1.783

Table 13: Factors of fitted model for Doppler signal

Figure 31: Filtered data of Doppler signal

30



5 Discussions

We believe the approach taken in this paper may be applicable to other

time series applications subject to time deformation transforms. Recently,

time deformation has received broad interest. For instance, Flandrin et al.

(2003) considered the Lamperti transformation and self-similar processes.

The work of Gray and Zhang (1988) was treated there to be a weakened

form of Lamperti’s theorem and M-stationary processes were specific classes

of self-similar processes.
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