
Bootstrap Tests for Multivariate Directional

Alternatives

Abu T. M. Minhajuddin a,∗, William H. Frawley a,
William R. Schucany b, Wayne A. Woodward b.

aDivision of Biostatistics, Department of Clinical Science, UT Southwestern
Medical Center, Dallas, Texas, USA.

bDepartment of Statistical Science, Southern Methodist University, Dallas, Texas,
USA.

Abstract

Tests on multivariate means that are hypothesized to be in a specified direction
have received attention from both theoretical and applied points of view. One of
the most common procedures used to test this cone alternative is the likelihood
ratio test (LRT) assuming a multivariate normal model for the data. However, the
resulting test for an ordered alternative is biased in that the only usable critical
values are bounds on the null distribution. The present paper provides empirical
evidence that bootstrapping the null distribution of the likelihood ratio statistic
results in a bootstrap test (BT) with comparable power properties without the
additional burden of assuming multivariate normality. Additionally, the tests based
on the LRT statistic can reject the null hypothesis in favor of the alternative even
though the true means are far from the alternative region. The bootstrap test also
has similar properties for normal and non-normal data. This anomalous behavior is
due to the formulation of the null hypothesis and a possible remedy is to reformulate
the null to be the complement of the alternative hypothesis. We discuss properties
of a bootstrap test for the modified set of hypotheses (MBT) based on a simulation
study. The resulting test is conservative in general and in some specific cases has
power estimates comparable to those for existing methods. The BT has higher
sensitivity but relatively lower specificity whereas the MBT has higher specificity
but relatively lower sensitivity.
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1 Introduction

In many clinical trials, the treatment is expected to have a positive effect on
multiple endpoints as compared to the control. Thus, practitioners are often
interested in testing a one-sided hypothesis. One of the ways of doing this is
to perform a series of tests comparing each endpoint to its control using uni-
variate one-sided test procedures. However, use of multiple significance tests
increases the chance of false positive findings. Also, by resorting to running
univariate analysis, one is ignoring the information available in the correla-
tion structure. To utilize this information one needs a multivariate technique.
Classical multivariate tests for means, e. g. Hotelling’s T 2, are nondirectional.
However, several authors have considered the topic of directional multivariate
tests (see Perlman 1969, Follmann 1996, Tang 1994, Wang and McDermott
1998, Perlman and Wu 2002a, Larocque and Labarre 2004, etc.). These mul-
tivariate procedures have both advantages and disadvantages.

To formalize the idea, let (X1,X2, . . . ,Xn) be a random sample of p-dimensional
observations from a population with unknown mean vector µ = (µ1, µ2, . . . , µp)

′

and unknown p × p covariance matrix Σ. Consider testing the hypotheses

H0 : µ = 0 vs. H1 : µ ≥ 0, (1)

where at least one of the µi’s is positive in the alternative. We refer to
(y : yi ≥ 0, i = 1, 2, . . . , p) as the positive orthant. Assuming a multivariate
normal distribution for the Xis with an unknown covariance matrix, Perlman
(1969) developed the likelihood ratio test (LRT) statistic

U(x,m,A,O+) = ‖m‖2
A

(
1 + ‖m− x‖2

A

)−1
(2)

for a positive orthant alternative, where x =
√

nx̄, A = (n − 1)S, S is the
sample covariance matrix, and m is the point in the closed positive orthant
O+ that is closest to x in terms of Mahalanobis distance

‖m− x‖2
A = (x−m)

′
A−1(x−m). (3)

However, since the null distribution of the statistic (2) depends on the un-
known covariance matrix Σ, the only usable critical points are upper and
lower bounds on the null distribution. Consequently, the resulting test is bi-
ased. The issue has been discussed widely in the literature. Perlman and Wu
(1999) give a nice review of the various approaches for testing hypotheses
(1), while arguing in favor of the LRT and the likelihood principle of testing
hypotheses in general. However, the issue is far from resolved.

Wang and McDermott (1998) develop an unbiased and uniformly more pow-
erful test for the positive orthant alternative by conditioning on the complete
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sufficient statistic, XX
′
, the sample sum of squares and cross-products ma-

trix. However, the conditional test requires numerical integration of the condi-
tional likelihood and hence is computationally expensive and not suitable for
large values of p. Perlman and Wu (2002a) propose a different conditional test
by using the conditional distribution of the LRT statistic U(·) given K, the
number of strictly positive components of m. Simulation results reported by
Perlman and Wu (2002a) indicate that the conditional test performs better
than the corresponding unconditional tests when the probability content of
the non-negative orthant O+ is relatively small, and the power advantage is
substantial as p increases.

The common feature of the tests discussed in the literature is that all heavily
depend on the multivariate normal model. Therefore, all of them can suf-
fer loss of power when the normality assumption is not satisfied. In practice,
normality can only be an assumption and sometimes data provide sufficient
evidence against it. The omnibus test based on Hotelling’s T 2 statistic is rea-
sonably robust. However, it has relatively low power when used to test (1),
because it detects any directional departure from the null mean value of zero.
In recent years, various authors have proposed robust and nonparametric test
procedures for the orthant-restricted mean vector as a specific directional al-
ternative.

The null distribution of the rank test proposed in Park, Na, and Desu (2001)
relies on the permutation principle and hence is only suitable for small n and
p. For relatively large values of n and/or p they derive a multivariate normal
approximation, that uses numerical integration to compute the tail probabil-
ities of the multivariate normal. Thus the test is computationally expensive.
The robust test proposed by Mudholkar, Kost, and Subbaiah (2001) is based
on trimmed estimates of the mean and covariance matrix. The test loses power
as the percent trimmed increases. The sign test developed by Larocque and
Labarre (2004) is distribution-free conditional on the number of observations
in the second and fourth quadrants for bivariate data. For multivariate data,
the test is conditionally distribution-free given the number of observations in
the positive and negative orthant given a specific data configuration defined
with perpendicular hyperplanes formed by the data points. The authors report
simulation results indicating that the conditional sign test is competitive for
a range of alternatives for nonnormal skewed data.

The need for a nonparametric test for the orthant-restricted hypothesis arises
for two reasons. First, the main difficulty of Perlman’s LRT is the lack of the
exact null critical values for unknown Σ. Second, the assumption of multivari-
ate normality imposes an undesirable constraint on the scope of inference. A
distribution-free test based on the likelihood-ratio principle, if available, could
solve both of these problems. Schucany, Frawley, Gray, and Wang (1999) ad-
dressed both of these issues satisfactorily by bootstrapping the null distribu-
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tion of the statistic (2), which is the likelihood ratio statistic when the sampling
is from a multivariate normal distribution. In Section 2 we present empirical
evidence that the nonparametric bootstrap provides a superior estimate of
the sampling distribution of the LRT statistic under the null hypothesis and
hence yields a test with competitive power properties. Also, the bootstrap test
does not require any parametric family assumption and thus these inferences
have fewer constraints. We refer to the test as a bootstrap test rather than
the bootstrap LRT to emphasize the fact that the proposed test remains valid
for normal as well as nonnormal models. The test statistic in question is the
LRT statistic for the normal model, even though it is not the likelihood for a
nonnormal model.

Section 2 presents a bootstrap test (BT) first reported in Schucany et. al.
(1999). We present simulation results involving BT for multivariate normal
as well as multivariate gamma data in Section 3. In Section 4 we provide
empirical evidence of an anomaly in tests based on the statistic (2) for test-
ing hypotheses (1). We then propose a new nonparametric bootstrap test for
testing a modified set of hypotheses in Section 5 and summarize some power
results involving this new bootstrap test in Section 6. In Section 7 we report
a power comparison of the bootstrap tests with the Wang and McDermott
(1998) test. An example is discussed in Section 8 along with some concluding
remarks in Section 9.

2 A Bootstrap Test

It is not possible to analytically calculate the critical points for the test statistic
in equation (2) for the positive orthant O+. Schucany et. al. (1999) proposed
the following bootstrap algorithm for estimating the critical points of the
statistic under the null hypothesis that the mean is zero:

Step 1. Compute u = U(x, m,A,O+) using the original set of observations.
Step 2. Compute the residuals {ei = xi − x̄, i = 1, 2, . . . , n}.
Step 3. Resample with replacement {e∗i ,i = 1, 2, . . . , n} from the residuals.
Step 4. Compute the statistic u∗ = U(e∗,m∗,A∗,O+), where the * denotes
the analogous quantities for bootstrap resamples.
Step 5. Repeat steps 3 and 4 for a total of B times and count J = number
of values for which u∗ > u.
Step 6. Estimate the p-value = (J + 1)/(B + 1).
Step 7. If the p-value is less than α, then reject H0 in favor of the alternative
that µ ∈ O+.

Here the resampling is done under the null hypothesis of zero mean by using
the residuals ei, i = 1, 2, . . . , n. See Davison and Hinkley (1997) for further
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discussion and rationale for using the residuals. Also, m is the point in O+

that is closest to x in terms of Mahalanobis distance in equation (3). Clearly,
if all elements of x are non-negative, then m = x. However, if some or all of
the components of x are negative, then we need to find the point m ∈ O+

that is closest to x in terms of Mahalanobis distance. This can be found by a
standard quadratic programming algorithm.

3 Simulation Comparison of the Tests

To investigate the power properties of the bootstrap test, we ran a Monte
Carlo experiment using a Sun Ultra workstation. The program was codeed
in C with IMSLTM routines for random number generation. The software is
available for download at http://www.smu.edu/statistics/TechReports/tech-
rpts.asp or by email from the corresponding author. Two distinctly different
multivariate families are reported here, namely 1) multivariate normal and 2)
multivariate gamma with shape parameter r = 1 and scale parameter s = 3.
The multivariate gamma (1, 3) is used because it is highly right-skewed. The
exchangeable multivariate gamma random numbers are generated using the
algorithm by Minhajuddin, Harris, and Schucany (2004) and transformed to
have the correct hypothesized marginal expectations and marginal variances of
unity. Following Perlman and Wu (2002a), three types of covariance matrices
Σ are used, denoted by I,Q, and R. Here I is the identity matrix; Q = (qij)
with qii = 1 for i = 1, 2, . . . , p and qij = 0.9 for i 6= j (positive); and R = (rij)
with rii = 1 for each i, r12 = r34 = . . . = −0.9, and rij = 0 for all other i 6= j
(negative). The nominal size of the test α = 0.05, the number of bootstrap
resamples B = 299, and the number of Monte Carlo iterations N = 2000 are
fixed throughout.

3.1 Size

Table 1 shows the observed significance levels for the three tests for mul-
tivariate normal and multivariate gamma (1, 3). The effect of sample size
n and dimension p on the size of the tests for n = 22, 40, 62, and 99 and
p = 2 and 6 are reported. The full simulation experiment independently in-
cluded all combinations of p = 2, 4, and 6 for these and n = 32 and 75, as
well. See Minhajuddin (2003). The tabled values are the percent of times the
observed test statistic resulted in the rejection of the null hypothesis. The
nominal expected value (EV) is 5% with standard error (SE) less than or

equal to
√

(.05)(.95)/2000 = 0.5%. For p = 2, the estimated significance levels
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Table 1
Comparison of estimated size of the three tests for selected values of sample size n
and dimension p for multivariate normal and multivariate gamma (1, 3) data with
covariance matrices R, I, and Q, EV = 5, and SE = 0.5.

Multivariate Normal
Covariance Matrix

R I Q
p Test \n 22 40 62 99 22 40 62 99 22 40 62 99

BT 4.3 4.6 4.3 4.3 4.2 5.1 3.5 4.8 4.3 5.3 4.4 4.5
2 PW 2.6 3.0 2.8 2.4 3.3 3.6 2.6 4.8 5.0 5.2 4.3 4.8

T 2 4.6 5.4 4.9 5.1 4.8 5.5 4.0 5.2 5.1 5.4 4.9 5.1
BT 1.5 4.9 5.3 5.2 1.8 3.3 3.8 4.8 1.3 3.7 3.9 5.1

6 PW 3.3 4.8 4.8 4.4 4.6 4.3 4.9 5.3 4.1 4.9 4.4 4.8
T 2 4.9 5.1 5.1 5.0 4.0 5.0 4.8 5.9 4.5 5.3 5.8 5.1

Multivariate Gamma (1, 3)
BT 6.4 5.1 5.1 4.0 2.9 3.9 3.8 4.0 4.0 4.4 4.6 3.7

2 PW 5.6 4.3 4.0 2.9 0.8 1.3 1.4 4.0 4.9 4.5 4.3 3.4
T 2 11.1 8.9 7.4 5.9 10.0 7.6 7.7 6.2 9.5 7.9 7.6 6.1
BT 2.4 3.8 4.4 4.0 0.9 2.5 3.1 3.5 1.3 3.0 4.4 4.4

6 PW 7.9 6.6 6.7 5.5 2.8 2.1 1.7 1.8 10.2 8.7 7.1 6.4
T 2 13.9 10.4 8.9 6.7 13.9 11.5 8.5 8.4 15.7 13.5 11.3 8.8

Note: BT: Bootstrap test, PW: Perlman and Wu’s Conditional test, and T 2:
Hotelling’s T 2 test. Estimated sizes that are significantly higher than the nominal
5% are listed in boldface and those that are significantly lower are listed in italic
fonts (controlled for 36 multiple comparisons).

for the bootstrap test are not significantly different from the nominal level
of 5% even for a small sample of size 22. However, for nonnormal data, the
bootstrap test requires a larger sample size to maintain the nominal level. See
Polansky (1999) for a proof of the sample size limitation of bootstrap confi-
dence intervals, which is applicable in the context of bootstrap testing as well.
As p increases, the sample size required to maintain the nominal level also
increases. For example, for p = 6, the estimated levels for the bootstrap test
are significantly lower than the nominal 5% for n = 22, and 40, when the data
are nonnormal (skewed to the right). The omnibus test based on Hotelling’s
T 2 statistic performs poorly for nonnormal data. The estimated levels are sig-
nificantly higher than 5% for the T 2 test. Perlman and Wu’s conditional test
maintains the nominal size for multivariate normal data. However, it suffers
severely from this departure from the multivariate normal model. The esti-
mated levels are significantly higher than 5% when Σ = Q (positive) and R
(negative) at p = 4. These are more pronounced at p = 6.
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3.2 Power

For p = 2 three different alternatives directions are considered: µi = λei, i =
1, 2, 3, where e1 = (1, 0)

′
, e2 = (1, 2)

′
, e3 = (1, 1)

′
with λ ranging from -0.5 to

0.5. The estimated power is the proportion of 2000 iterations in which the test

statistic is in the critical region (SE ≤
√

(0.5)(0.5)/2000 = 0.011). The sample

size for these power curves is n = 32. McNemar’s test (Lehmann, 1998) is
used to assess the difference in powers for the bootstrap test and Perlman and
Wu’s conditional test. These paired comparisons are made for each value of
the alternative means. Figure 1 displays estimated power curves of the three
tests, BT, PW, and T2 for bivariate normals. The first row of graphs are for
covariance matrix Q, the second row for I, and the last row for R. The three
columns are for e1, e2, and e3, respectively. The plus signs indicate significant
differences (p < 0.05) between the power of BT and that of PW for the specific
alternative mean.

For normal data the bootstrap test is significantly more powerful than the
conditional test PW at many of the points in the alternative region (λ > 0),
especially when the data are independent. Moreover, both of the directional
tests are clearly better than the omnibus T 2. Similar graphs for the bivariate
gammas are in Figure 2. For these nonnormal data, significant improvements
in power have been achieved by the BT test over the conditional test PW. The
improvement in power is higher when the data are independent. For positively
correlated data (Q), the BT test performs better if the alternative mean is
along the diagonal. Both of the normal theory tests, PW and T 2, suffer in
terms of power for these skewed nonnormal data.

In four dimensions the alternatives in simulations are µi = λei, i = 1, 2, 3,
where e1 = (1, 0, 0, 0), e2 = (1, 1, 0, 0), and e3 = (1, 1, 1, 0) using the same
three covariance structures Q, I, and R. The results for the multivariate nor-
mal are given in Figure 3. For the independent multivariate normal, the boot-
strap test has significantly higher power compared to the conditional test as
depicted by the plus signs. For positive correlations (Q), the bootstrap test
and the conditional test have comparable power. However, the conditional test
performs better than the bootstrap test if the components are negatively cor-
related (R). Similar power curves for the nonnormal, skewed data are given in
Figure 4 with the same covariance structures organized as before. Significant
improvement of power is achieved for BT over PW when the data are inde-
pendent (I). The conditional test has better power than the bootstrap test
for positively correlated (Q) data and comparable power for covariance matrix
(R). However, in these cases PW has inflated Type I error rates for p = 4 (see
Table 1).
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Fig. 1. Estimated power curves of three tests with bivariate normal data: The first
row is for covariance matrix Q, the middle row for covariance matrix I, and the last
row for covariance matrix R. The + signs indicate significant differences at the 5%
level between the powers of the BT test and PW test.

8



−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,0)tλ

−0.4 −0.2 0.0 0.2 0.4
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

λ

P
o

w
e

r

BT
PW
T2

(1,2)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,1)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,0)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,2)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,1)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,0)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,2)tλ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
o

w
e

r

BT
PW
T2

(1,1)tλ

Fig. 2. Estimated power curves of three tests with bivariate gamma (1, 3) data: The
first row is for covariance matrix Q, the middle row for covariance matrix I, and
the last row for covariance matrix R. The + signs indicate significant differences at
the 5% level between the powers of the BT test and PW test.
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Fig. 3. Estimated power curves of three tests with 4-variate normal data: The first
row is for covariance matrix Q, the middle row for covariance matrix I, and the last
row for covariance matrix R. The + signs indicate significant differences at the 5%
level between the powers of the BT test and PW test.
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Fig. 4. Estimated power curves of three tests with 4-variate gamma (1, 3) data: The
first row is for covariance matrix Q, the middle row for covariance matrix I, and
the last row for covariance matrix R. The + signs indicate significant differences at
the 5% level between the powers of the BT test and PW test.
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4 An Anomaly of the Test Based on the Statistic U(.)

In Figures 1 to 4, an anomalous behavior of the directional test based on the
statistic U(·) is evident for (λ < 0). For positively correlated (Q) bivariate
data, BT and PW tend to reject the null hypothesis of zero mean in favor
of a positive orthant alternative even if the true mean lies “deep” inside the
null region where both components of the mean are negative. This is true
regardless of whether or not the data are multivariate normal. Silvapulle (1997)
discussed this apparent “anomalous” behavior using a simple example in two
dimensions. Figure 1 of Silvapulle (1997) clearly illustrates that the rejection
region of the LRT contains areas of the sample space where the LRT rejects the
null hypothesis in favor of the positive quadrant, even though one’s intuition
does not agree with the conclusion of the test.

At this point, we want to be clear that we are not concluding that the likeli-
hood criterion is an invalid significance test procedure. Rather, we agree with
Perlman and Wu (1999) that “the LR criterion, . . . is a readily understood
and generally useful tool for statistical inference”. However, there are instances
when a test criterion violates common sense. In such a situation one should
not blindly reject the criterion. Rather, a careful review of the test compo-
nents is required. We argue that this is one such case. Here the simple null
hypothesis of zero mean vector and the positive orthant alternative do not
comprise the entire parameter space. This is shown in the left panel of Figure
5 for p = 2 with positively correlated data. The point x = (−0.4, 0)

′
is closer

to the alternative region than it is to the null mean value of (0, 0)
′
in terms of

Mahalanobis distance. Since the LRT statistic considers plausibility of the null
hypothesis in terms of Mahalanobis distance, the null hypothesis would always
be rejected for this observed x, even though it is “far” from the alternative
region. In fact, this type of outcome is possible for “virtually any test that
uses the general ideas of likelihood ratio tests” (Silvapulle, 1997). Perlman
and Wu (2002b) recognize this anomalous behavior of the LRT and suggest
a remedy by reformulating the null hypothesis to include the complement of
the alternative region as the null region. Hypothesis (1) then becomes

H0 : µ /∈ O+ vs. H1 : µ ∈ O+. (4)

For the multivariate normal distribution the likelihood ratio statistic for test-
ing hypothesis (4) is then

D(x,πx,A,O+) = ‖πx − x‖2
A, (5)

where πx = (π1, π2, . . . , πp)
′

is the point in the complement of O+, denoted
by O◦, that is closest to x. This is illustrated in the right panel of Figure 5 for
the positive orthant alternative. Clearly, if x /∈ O+ then πx = x and D(·) = 0,
while D(·) > 0 for x > 0. For x ∈ O+, the statistic D(x,πx,A,O+) is the

12



−0.4 −0.2 0.0 0.2 0.4

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Alternative Region

Null Mean

MD = 0.16

MD = 0.84

x

m

−0.4 −0.2 0.0 0.2 0.4

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Alternative Region

Null Region

x

πx
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Mahalanobis distance between x and πx.

5 A New Bootstrap Test

For the multivariate normal model, the critical values for the statistic D(·)
can be found using χ2

1 critical values (Perlman and Wu, 2002b). However,
our interest is in a nonparametric bootstrap test that does not require the
assumption of multivariate normality. Additionally, we want to develop a test
procedure that is free of the anomaly discussed in the previous section. We
claim that a test that uses the distance D(x, π) as the test statistic would pro-
vide such a test. Since the distribution of the test statistic D(·) is not readily
known and also since we want to avoid making distributional assumptions, we
propose the following modified bootstrap (MBT) algorithm for a size-α test
for (4).Step 1. Compute d = D(x, πx,A,O+) using the original set of observations.

Step 2. If x̄ ∈ O+, shift the location of the sample by setting yi = xi−x̄+πx̄,
i = 1, 2, . . . , n. Otherwise, set yi = xi for all i.
Step 3. Resample with replacement {y∗i , i = 1, 2, . . . , n} from {y1,y2, . . . ,yn}.
Step 4. Compute the statistic d∗ = D(y∗,π∗,A∗,O+), where the * denotes
the analogous quantities for bootstrap resamples.
Step 5. Repeat steps 3 and 4 a total of B times and count J = number of
values for which d∗ > d.
Step 6. Estimate the MBT p-value = (J + 1)/(B + 1).
Step 7. If the p-value is less than α, then reject H0 in favor of the alternative
that µ ∈ O+.Notice that in the above algorithm, resampling is done under the null hypoth-

esis. This is achieved by shifting the location of the sample whenever x > 0
so that the sample mean is on the boundary of the null space. This results in
a zero value of the statistic D(·). Also, since the alternative region consists of
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µ > 0, the axes of the parameter space where at least one of the components
is zero is a part of the null region. The test is expected to maintain its size
when the mean vector lies on or inside the boundary of the null space.

6 Some Additional Simulation Results: Effect of Changing Hy-
potheses

A Monte Carlo experiment using the same design parameters as in Section 3
was conducted to estimate and compare the size and power of the modified
bootstrap test (MBT) with those of BT. This assesses the effect of modifying
the set of hypotheses. The worst case scenario of the mean vector on the
boundary between the parameter spaces was used to examine the size. The
estimated sizes of MBT for the multivariate normal data (p = 2 and 4) are
graphed in Figure 6. Clearly, the estimated sizes of MBT are much lower than
the nominal value of 0.05 in these small samples. Specifically, for covariance
matrices I and R, the estimated size of MBT is substantially lower than 5%.
Therefore, even though the test is unbiased, some loss of power will occur
because of the conservative nature of the test. The conservatism arises from
the dramatic increase in the size of the null parameter space. To investigate
the power of the MBT with D(·) as the test statistic, multivariate normal and
multivariate gamma (1, 3) data with covariance matrices R, I and Q were
generated as in Section 3. For p = 2, alternatives of the form λei, i = 1, 2,
where e1 = (1, 2)

′
and e2 = (1, 1)

′
are considered. The Monte Carlo power

estimates are obtained for n = 32. As before, B = 299 and N = 2000 Monte
Carlo replications, which implies that SE ≤ 0.011.

Figure 7 plots these curves for the multivariate gamma (1, 3). It is evident
from Figure 7 that the MBT is somewhat more powerful than BT, for posi-
tively correlated (Q) data when the alternative mean falls along the principal
diagonal of the positive orthant. This is true for the bivariate normal data as
well. However, if the alternative mean is not along the diagonal of the positive
orthant, MBT often has substantially lower power. As expected, MBT is free
of the anomalous behavior exhibited by the likelihood ratio based tests. It
should be noted that the null hypothesis being tested by the MBT is differ-
ent from that in case of BT test. For MBT H0 : µ ≤ 0, while for the BT
test, H0 : µ = 0. Thus, these simulation results show the effect of modifying
the set of null hypotheses being tested. Changing the hypotheses yielded a
rather conservative test. Similar results are observed for p = 4. The behavior
of the bootstrap tests at p = 6 and for other sample sizes are reported in
Minhajuddin (2003).
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Fig. 6. Estimated size of MBT on two boundaries: Those in the top row are for
covariance matrix Q, middle row for I, and the bottom row for R with n = 22 for
p = 2 on the left and n = 40 for p = 4 on the right. In all cases, B = 299, N = 2000
so that SE ≤ 0.005.
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Fig. 7. Estimated power curves of BT and MBT tests with bivariate gamma (1, 3)
data: The first row is for covariance matrix Q, the middle row for I, and the last
row for R.
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7 Power Comparison with Wang and McDermott’s Test

Wang and McDermott (1998) developed a conditional test (WM) for the pos-
itive orthant alternative with good properties. Thus we compare the power
of the bootstrap test (BT) and the modified bootstrap test (MBT) with that
of the WM test. One of the difficulties of the WM test is its computationally
expensive nature, requiring numerical integration of the conditional distribu-
tion. For comparison purposes, we repeat the power estimates for the WM
test reported in Wang and McDermott (1998). They consider n = 17 for bi-
variate normal data with different values of the correlation coefficient. These
estimates are obtained from N = 10000 Monte Carlo samples with the alterna-
tive means (0.5, 0.0) and (0.5, 0.5). An identical design is used here to obtain
the power estimates for the four other tests. The results are summarized in
Table 2. For these bivariate normal models the WM test is the most powerful
among the tests under study for the alternative means considered. Recall that
for the MBT, the point (0.5, 0.0) is on the boundary of the null region and
MBT should maintain the nominal size of 5%. Indeed MBT maintains its size
for the independent, as well as the positively correlated data. The bootstrap
test BT has power estimates comparable to that of the WM test for all of the
different correlation structures considered. The modified bootstrap test MBT
has comparable power only when the alternative mean is on the main diagonal
and there is positive correlation.

Table 2
Estimated powers (%) of the tests for bivariate normal data with different covariance
matrices, n = 17, B = 299, N = 10000, SE ≤ 0.5%.

Mean µ (0.5, 0.0) (0.5, 0.5)
Correlation -0.75 0 0.75 -0.75 0 0.75
BT 82 44 72 100 74 47
PW 76 42 76 100 65 42
T 2 71 37 71 100 65 41
MBT 17 6 5 64 46 49
WM* 86 49 78 100 79 53

* from Wang and McDermott (1998)

8 An Example

Reaven and Miller (1979) present data on chemical and overt nonketotic dia-
betes in 145 non-obese adult subjects. Each subject is classified using existing
medical criteria into one of the three groups namely, overt diabetic, chemical
diabetic, and normal. There are 76 normal subjects in the sample along with
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33 and 36 subjects from the overt and chemical diabetic groups, respectively.
The chemical and overt diabetic subjects are expected to have higher levels
of glucose intolerance and steady state plasma glucose (SSPG). On the other
hand, the normal subjects are expected to have a higher level of insulin area
representing better response to oral glucose. It is of interest to test these ex-
pectations using the data for the n = 33 overt diabetic subjects. In the absence
of any gold standard mean levels for these p = 3 variables for the population
of normal subjects, the respective sample means of “normal” subjects are used
as the standard.

The hypothesized normal mean levels of glucose intolerance, SSPG, and insulin
area are 350, 114, and 173, respectively. The corresponding sample means for
the 33 overt diabetic subjects are 694, 205, and 67, respectively. The estimated
p-value of the bootstrap test (B = 299) for testing the directional trivariate
hypotheses is 0.003 and that of the modified bootstrap test is also p = 0.003.
The p-values for the conditional test by Perlman and Wu (2002a) and the
Hotelling’s T 2 tests are both < 0.001. Therefore, these data provide enough
evidence to conclude that indeed the mean levels for the glucose intolerance
and SSPG for the diabetic subjects are higher than those for the nondiabetic
subjects whereas the mean level for the insulin area for the diabetic subjects
is lower than that for the nondiabetic subjects.

9 Concluding Remarks

In the present article two nonparametric bootstrap procedures for testing
against a one-sided alternative in the multivariate setting have been exam-
ined. This issue of testing means in certain specified directions has received
attention from both theoretical and applied points of views. However, most
of the research is based on the multivariate normal distribution. The beauty
of the bootstrap tests is that they are free of this additional assumption of
multivariate normality and require a more relaxed assumption of existence
of the first two moments. However, more robust measures of the location and
scale could be incorporated in the bootstrap test procedures along with a more
general distance metric instead of sample mean and sample covariance matrix
and the traditional Mahalanobis Distance. Our simulation results show that
for most cases considered, BT has competitive power compared to the nor-
mal theory tests. MBT also has competitive power for some alternative means
considered. In some cases the bootstrap tests have significantly more power
then their normal theory counterpart, especially for nonnormal data.

For positively correlated data (Q), the test based on the statistic U(·) has a
tendency to reject the null hypothesis in favor of a positive orthant alternative
even when the alternative mean is far from the rejection region. The problem
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is caused by the hypotheses tested, not the likelihood principle. The MBT
is free of this anomalous behavior which may lead to spurious rejection of
the null hypothesis. However, the MBT is found to be quite conservative. It
lacks power if the alternative mean is much removed from the diagonal of the
alternative region and also for certain covariance structures. It should be noted
here that, to our knowledge, MBT is the first workable test for the modified set
of hypotheses that has been implemented in simulations. The choice between
MBT and BT depends on the sensitivity and specificity required in a particular
testing situation. If for a particular problem, it is important to protect against
false rejections of the null hypothesis in favor of positive orthant alternative,
then MBT should be used. However, as it was shown via simulation results,
this may cost the investigator in terms of power. If the investigator is willing
to accept a certain proportion of false rejections of the null hypothesis, then
he/she should use the BT test, which is more powerful. In short, the BT has
higher sensitivity but relatively lower specificity whereas the MBT has higher
specificity but relatively lower sensitivity.

Based on these comparisons, it can be concluded that none of the tests con-
sidered is a uniformly most powerful test for the positive orthant hypothesis.
Rather, the test criterion depends on the unknown covariance matrix and the
hypotheses tested. It is interesting to note that the most powerful normal
theory tests are conditional tests, even though the given condition is differ-
ent. The WM test proposed by Wang and McDermott (1998) conditions on
the sample matrix of sums and crossproducts, while the conditional test by
Perlman and Wu (2002a) conditions on the number of strictly positive compo-
nents of the MLE of the mean vector under the null hypothesis. The bootstrap
tests perform reasonably well compared to their normal theory competitors.
The normal theory tests break down by not having the proper size and can
have lower power in some cases if the data are from a skewed distribution. On
the other hand, the bootstrap test has the desired level for both normal and
nonnormal joint distributions.
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