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Abstract

Pilot studies are experiments which typically involve fewer than 20 subjects in order to
test the feasibility of a new treatment. Aside from the problems in dealing with a small
number of subjects, some of the observations may be missing. In a trial that is already
small, one does not want to discard any data and therefore decrease further the efficiency of
any estimates. Other issues, such as outliers and detection limits, are important to consider,
as well. This paper gives a description of how these issues were resolved in a small clinical
trial of the drug gabapentin for treatment of severe scratching in liver disease. Particular
attention is paid to imputation of missing data, and a simulation study conducted showing
that the chosen imputation method has good statistical properties.
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1 INTRODUCTION

Real-life data are hardly ever as clean as textbook examples. This fact is particularly true
where humans are the subjects of an experiment. Real data are often unbalanced with
missing observations, and they contain a variety of other problems that are not typically
discussed in statistics courses. Missing values in a trial that is already small are of particular
concern, since one does not want to discard any data and therefore decrease further the
efficiency of any estimates.

This work was motivated by a small study on the efficacy of a drug called gabapentin
in reducing scratching, secondary to itching, which is a complication of liver disease [1].
Sometimes, the scratching can be so severe that patients cannot sleep. Some patients tear
their skin, causing wounds that can be secondarily infected. Accordingly, finding a drug
that ameliorates the itching and scratching is an important research effort. Liver disease,
particularly in its advanced stages, is very difficult to cure. However, it is hoped that
drugs such as gabapentin can make patients more comfortable by reducing the effects of its
complications.

Although every effort was made to ensure that subjects kept appointments and complied
with the protocol (described in more detail in the next section), many of the observations in
the trial were missing. Two subjects dropped out of the trial altogether, and others did not
complete all of the required measurements. The observations tend to be missing in chunks
(three or four observations missing in a row). In addition, many of the observations contain
large outliers which makes model fitting difficult. However, the data, with all its faults,
represent three years of work for the physicians, and a significant time investment for the
research subjects. Thus, it is important to glean all information possible from the data, in
a principled and reasonable way.

This paper tells the story of the preparation of the data from a small clinical trial
for analysis with a mixed–effects model. The problems were not in the analysis itself,
but in preparing the data for analysis. The issues of small numbers of subjects, missing
data, outliers, and detection limits which are discussed pertain to a wide variety of medical
studies. The study protocol is described in detail in Section 2. In Section 3, issues in the
replacement of missing data for this clinical trial are outlined. A simple and reasonable
method for imputing missing observations is described in Section 4. Section 5 describes
a secondary issue of detection limits. A mixed–effects model is applied to the imputed
data in Section 6. Simulations for power and size for various scenarios involving missing
observations replaced in the way described in Section 3 are given in Section 7. The final
section presents a discussion of results.

2 THE GABAPENTIN TRIAL

The study was approved by the Investigational Review Board of Columbia University, where
the study was conducted. All subjects signed an informed consent prior to participation in
the trial. The protocol called for sixteen subjects to be randomized to either gabapentin or a
placebo. Before the treatments began, baseline data of scratching activity and perception of
pruritis were obtained. Scratching activity was measured by a scratching activity monitoring
system that consists of a piezo film sensor glued to a cast custom made to fit the middle
finder on the dominant hand of the user [2].

The main component of the system is a signal processor, which consists of a frequency
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counter incorporating a threshold detector and a bandpass filter to prevent extraneous
counts from being registered. The threshold level was adjusted to allow for approximately
90% of the scratching signal to be captured. At the start of the recording sessions, subjects
were asked to scratch a defined distance over a defined surface to yield a counter reading of
2000 to 3000 for a period of 30 seconds.

The counts are added and presented on the print out as hourly scratching activity
(HSA). The result is a numerical value which purports to measure the amount of scratching
for each subject. Large values indicate more scratching. HSA was measured over a 48-hour
period in the hospital. Therefore, the raw HSA data consist of 96 hourly measurements
(pre and post measurements over 48 hours) for each subject. When the activity does not
meet the scratching threshold, the printed numbers are negative and defined as background
movement.

After the initial quantification, subjects were given their randomly assigned medication
and asked to resume their normal daily routines. After six weeks on the study medication,
the subjects returned to the hospital for a second 48-hour evaluation which was conducted
in the same way as the first.

3 ISSUES IN PREPARATION OF THE DATA

Statisticians recognize that real data are usually not well-behaved, and that properly prepar-
ing the data is essential in obtaining a valid and reliable statistical analysis. A first step in
such preparation is exploring the data with various graphical tools and descriptive statis-
tics. It may also be helpful to examine the data file itself (in whatever software format,
i.e. Excel) for potential problems. For example, in the gabapentin study, one value was
recorded as 4,85 rather than 4.85, something which would not have been discovered without
examination of the Excel file containing the data.

For data taken at regular intervals over a fixed length of time, time plots are a good
tool examining the profile for each subject. Figure 1 shows the hourly HSA sequences for
each subject in the gabapentin and placebo groups at baseline. Plots of the other two
groups post-treatment have similar characteristics. Three things are immediately apparent.
First, although it makes sense that there should be correlation structure within patients,
any such structure is difficult to visualize due to the presence of very large outliers. Second,
some subjects have very low values of HSA (some values are identically zero), and third,
not all of the subjects completed the study. In comparing the two treatment groups, one
can also see that the HSA levels for the placebo group are typically lower than those of
the gabapentin group. Such a discrepancy can be expected, even when randomization is
performed correctly, due to the small number of subjects.

For almost any parametric statistical analysis chosen for these data, stable model pa-
rameter estimates would be very difficult to obtain due to the extreme outliers. Given the
nature of these data, there should be statistical evidence of correlation within subjects for
the HSA measurements. In fact, plots of autocovariance and partial autocovariance esti-
mates (not shown) for the HSA measurements for each subject indicate that only two of
the subjects exhibit any correlation structure in their HSA measurements. Plots for the
other subjects are typical of white noise. Since outliers are the likely cause of this problem
one obvious solution is to delete them. Before deletion of outliers, percentages of missing
observations vary from 100% (missing entire pre or post measurements) to 2% (missing
only one value) for the other fifteen subjects in the study. There are four subjects for whom
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Figure 1: Time plot of pre treatment hourly HSA for the gabapentin (top) and the placebo
(bottom) groups.
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entire pre- or post-treatment quantifications are missing. For such a small study, deletion
of four subjects, in addition to the outliers, would seriously compromise the power of any
analysis. A more promising alternative would be to replace all missing observations (as well
as outliers) in a principled way.

Although many articles on dealing with missing data pretend that data are missing
completely at random (MCAR), most of the time, the true mechanism is really MNAR
[3]. The missing observations from the gabapentin trial are generated by a mixture of
mechanisms. For some values, we know that the mechanism generating missing values is
independent of the observations themselves. For two of the subjects who are missing entire
pre or post quantifications, the reason for the failure to collect data was that the machine
recording HSA failed. The data missing for these two subjects would be considered MCAR.
However, the same mechanism is not operating for all missing values. For example, if we
delete outliers, we will be doing so because they are too large. The mechanism generating
those missing values will be missing not at random (MNAR, or nonignorably missing) by
construction.

Another feature of the missingness in the gabapentin trial is that observations tend to
be missing in chunks. In other words, if an observation at a particular time point is missing,
it is more likely that the observation immediately following or preceeding it is missing than
it is for an observation that is further removed in time. This pattern of missingness is called
“wave nonresponse” in the survey sampling literature [4]. Most of the missing values in
the gabapentin data are missing in “waves” rather than in well-separated points scattered
throughout the subjects and time points. Furthermore, application of previous results in
missing observation imputation for variance of estimators, consistency, bias, efficiency, etc,
in the literature are asymptotic results.

Since the study is small, and we cannot afford to throw out missing values, we need a
sensible way to replace those values. There are many ways to replace missing data. Some
methods that have limited statistical validity include mean-imputation and last observation
carried forward (LOCF). These have been shown to result in asymptotically biased esti-
mates and decreased standard errors, which affect the inferences made from such data [3].
Regression mean imputation is a slightly more principled method of replacement [3], but it
still results in deflated standard estimates of parameters.

4 TREATING THE MISSING DATA

Missing observations for the gabapentin data were treated in two stages. First, the last
24 hours of the HSA measurements were deleted. Only two subjects had complete 48-hour
records for both pre- and post-treatment quantifications in this study. The original purpose
in collecting 48 hours of observations was to test for a 24-hour rhythm to scratching activity.
Even if those values had been replaced using a principled method, the resulting observations
would probably not yield usable estimates of any such rhythm. Any estimates would have
more nonresponse error than estimation error. Since most of the missing data occurred
during these hours, deleting them decreased the percentage of missing data to 10% overall
(not accounting for missing data caused by outlier deletion). Without the last 24 hours
of measurements, the most important part of the study can still be salvaged: to make a
decision about the effectiveness of gabapentin.

In the second stage, missing observations were replaced by an observation from a match-
ing subject. This type of hot-deck imputation is sometimes called “Nearest Neighbor”
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(NNHDI in the sequel) [5]. More precisely, let yi = (yi1, . . . , yik) be a K × 1 complete–data
vector of outcomes. Further, let yi = (yobs,i, yobs,m) where yobs,i is the observed part and
yobs,m is the missing part of yi. Then

ŷit = y`t + (yobs,i − yobs,`) (1)

where yobs,i is the mean of the observed values for subject i. Subject ` is the donor.
It is important to choose a donor that is “close” to the subject whose observations are

missing. “Close” is defined by a metric, (e. g. d(i, j) = maxk |xik − xjk|) where xi =
(xi1, . . . , xiK)T are the values of K appropriately scaled covariates for a unit i at which yi

is missing [5]. For time series data, the distance metric is somewhat different, particularly
since the donor choice will be made using a longitudinal variable.

Suppose subject i is missing a value at time t. For our purposes, the donor is defined as

dj(t) = min
j

T∑

t=1

|xit − xjt|, (2)

for all j = 1, . . . , n − 1. Note that there are relatively few donors for the recipients in the
gabapentin method. In our case, we do not use the same donor more than once. If one
donor is chosen for two or more recipients, we use the next-nearest donor.

Donor subjects should be selected using another variable besides the variable which is
being imputed. For the gabapentin study, visual analog scores (VAS), a measure of each
subject’s perception of scratching severity, were also measured every hour for 48 hours during
the quantification period of the study. The VAS has been is used extensively in medical
experiments as a way to measure outcomes such as pain and fatigue ([6, 7, 8]). Nearest
neighbors were determined by computing the distance (2) between the recipient and all
other subjects (candidate donors) on the basis of the VAS. Then, the values from HSA
from the candidate donor with the minimum calculated distance was used to substitute for
missing HSA observations in the recipient.

In typical hot-deck imputation, the missing observations are replaced with donated ob-
servations only once, and the new data are used as the “real” data set. This provides no
estimate of imputation error, nor does it reflect the variability between subjects. For ex-
ample, even if two subjects have exactly the same VAS trajectory, it is quite likely that
their HSA values will be different due to random variation. It is necessary to estimate the
uncertainty associated with replacement of missing values.

Two modifications were made to NNHDI. First, a random perturbation is added to
mimic the inherent variability in the data. The random perturbation is generated from
a N (0,29) distribution. The variance of the additive noise is the variance of the middle
80% of the extant HSA observations calculated over all subjects. In addition, three sets of
imputed values are obtained, with three different sets of donors. Three sets provide enough
information to estimate the imputation uncertainty, while keeping the analysis simple. The
results of this analysis are given in Section 6. Before analysis can be attempted, it is
important to deal with the issues of detection limits in the data.

5 UNDERSTANDING DETECTION LIMITS

In the previous section, the time-course plots of HSA revealed many hourly values which
are identically zero. Recall that background levels were recorded for all subjects, then sub-
tracted from the hourly scratching activity values. Some of those differences were negative.
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The negative differences were recorded as zeroes. In some studies, replacing undesirable
observations with zeroes would be inappropriate. However, it is important to consider what
such a determination means for the data, and if it makes sense in context of the study.
This type of thought is unique to the practice of statistics, and is typically learned through
repeated exposure to the analysis of real data, rather than taught in any course.

The hourly HSA measurements do not measure scratching activity in the same way that
a meter stick measures length. Indeed, the concept of “scratching activity” is not as well
defined as the concept of length. HSA is the number of times that the frequency generated
by the finger in the act of scratching crosses a certain threshold. It is proportional to the
intensity of the scratch. However, there is no real zero; zero simply means that the amount
of scratching during that hour was below the background level of body movement. One
can even go so far as to say that HSA is really an interval-level variable. For any subject,
the important thing about the measurement is the relative size of the pre-treatment value
versus the post-treatment value. For this reason, the zeroes were not treated as detection
limits, instead, they were left in the data as real values.

6 MIXED–EFFECTS MODEL ANALYSIS

The gabapentin experiment, with hourly scratching activity measurements collapsed into
average pre and post measurements, can be seen as a split-plot design, where treatment
(gabapentin or placebo) is the whole-plot factor, subjects are the whole plots, and the
quantification time (baseline or post-treatment) are split-plot measurements. An equivalent
analysis would be to consider this a repeated measures design, with baseline and post-
treatment HSA scores being the repeated measures.

The model is given by

yijk = αi + bj(i) + γk + (αγ)ik + εijk, (3)

where yijk is the response for the jth subject in the ith group at the kth quantification.
The fixed effect, αi, i = 1, 2, represents the effect of treatment group; bj , j = 1, 2 is a
random effect for the jth subject nested within the ith group, with bj(i) ∼ NID(0, σ2

b ); γk is
a fixed effect of the kth quantification, k = 1, 2; (αγ)ik represents the fixed interaction effect
between the ith treatment and the kth quantification, and εijk ∼ NID(0, σ2I).

Effect DF Mean Square F-value Pr > F
Group 1 8.38 16.57 0.0028
Subject (Group) 13 1.07 2.13 0.1290
Quant 1 6.07 12.00 0.0071
Group × Quant 1 6.42 12.70 0.0061

Table 1: ANOVA table with type III sums of squares for original (unmodified) data

For comparison purposes, the results for the analysis of the original, unmodified data
are given in Table 1. In the table, the row labeled “Group” corresponds to the effect of the
drug taken, and “Quant” corresponds to the time of quantification (pre-treatment or post-
treatment). One can compute these results using SAS, Splus, R, or any other appropriate
statistical software package.
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Effect DF Mean Square F Value Pr > F
Group 1 1.74 8.29 0.0129
Subject (Group) 13 0.309 1.47 0.2480
Quant 1 0.469 2.23 0.1588
Group × Quant 1 1.32 6.31 0.0260

Table 2: Results for Average of 3 Imputations of NNHDI with additive N (0, 29) noise.

From this analysis, both the group effect, the quantification effect, and their interaction
are highly significant. However, the analysis is what is called an analysis of the “completers”
in this study. In other words, the data consist of those subjects for which complete mea-
surements at both time points are available. Outliers are also present in these data, and
may account for differences in the effects.

The results in Table 2 are those of model 3 applied to the average of the three data
sets modified via NNHDI. These results account for missing values and outliers in the data.
The outlying observations (those with large studentized error) were deleted from the data
and replaced as if they were also missing observations, using the same donor as was used to
replace the original missing values.

These results give different inferences than shown in Table 1. Here, the group effect and
the interaction of group and quantification are still significant, but the quantification effect
is no longer significant. This indicates that the outliers probably did have an effect on the
inferences from the previous model.

The group and interaction effects in Table 2 are not as highly significant as those dis-
played in Table 1. This is likely due to nonresponse uncertainty. Little and Rubin (2002,
pages 86-87) give a method for fraction of information about a parameter θ due to nonre-
sponse (denoted γ). The larger the fraction, the more influence imputation has over the
parameter estimates. It is applied here in order to obtain an idea of how much of the
variability in the model can be attributed to the replacement of the missing values.

Let θ̂d and Wd, d = 1, . . . , D, be D complete-data estimates and their associated vari-
ances for θ. γ̂D = (1+1/D)BD/TD is an estimate of the fraction of information about θ due
to nonresponse, where WD is the within-imputation variance, BD is the between-imputation
variance, and TD is the total variability across imputations. In the case of the gabapentin
analysis, D = 3, and γ̂D was less than one percent for the estimates of LME coefficients
for group, quantification, and the interaction term. For the random effect of subject within
group, approximately 52% of the information is due to nonresponse. This implies that the
inferences we make from the imputed data for the fixed effects can be trusted. As for the
random effect, more data and further analyses are needed before its importance can be
ascertained.

7 SIMULATIONS FOR POWER AND SIZE

With a small data set, even with a small fraction of information due to missing observations,
we still need to concern ourselves with power and size. The following simulations show how
badly missing values can affect the power and size of a test. Thus, it is important to use
some type of imputation. The simulations also show that there is a limit to the amount of
data that can be imputed before inferences cannot be trusted.

8



We give simulations for two cases.

• Case 1: A Pretest/Posttest study with one normally distributed random variable
(σ2 = 1) and wave nonresponse in the data.

• Case 2: Wave nonresponse for longitudinal data with no correlation, analyzed with
model 3.

For both cases, the size and power for 10%, 30%, and 50% missing values were compared,
where the number of subjects was either 10 or 30. The power of each test (where the
significance level was 0.05) was estimated under two effect sizes: a difference of two standard
deviations between pre and post means, and a difference of five standard deviations. For
all scenarios, the simulated examined a difference only in pre and post means, not between
groups. Missing values were only in the post-treatment data, and they were replaced using
the pre-treatment value plus standard Gaussian noise. Five-hundred replications of length
1000 were computed for each case.

N = 10 N = 30
% Missing 30% 50% 10% 30% 50%
µd = 0 0.052 0.053 0.050 0.050 0.051
µd = 2 0.662 0.341 0.999 0.995 0.904
µd = 5 0.996 0.766 1 1 1

Table 3: Case 1: Paired t-test with Wave Nonresponse.

Table 3 displays these results. We see that power is quite poor when there are only 10
subjects. Having three or five observations missing in chunks is quite different from having
three or five missing observations scattered throughout the data. Even when the difference
in means is very large, there is a large decrease in power between 30% and 50% missing
data for n = 10. It is not surprising that the t-test would have poor power when half
of the data are missing. However, recall that the missing values have been replaced with
randomly perturbed values. This scenario indicates that there is a limit to the prudent use
of imputation techniques. It is interesting that the paired-test would do so well when 30%
of the values are missing.

The power and size of a mixed–effects model (Model 3) from simulated data where we
have longitudinal data (at 24 time points), but no correlation within subjects over time
are given in Table 4. Note that a true two-standard deviation difference in pre and post
means can be detected close to 100% of the time, even with 10 subjects and 50% missing
observations replaced by imputed values. The size of the test for detecting pre and post
differences is close to 0.05 for all combinations of missing observation percentages and sample
sizes, as well.

N = 10 N = 30
Scenario 30% 50% 30% 50%
µd = 0 0.053 0.049 0.051 0.035
µd = 2 1 1 1 1

Table 4: Case 2: Size and Power for Longitudinal Data analyzed via Model 3.
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8 DISCUSSION

Statistical practice is never as neat as textbooks sometimes imply. The challenge for a
statistician is not only to analyze the data in a reasonable manner, but to obtain reasonable
data to analyze.

This paper described how to prepare data from a small clinical trial where the data suffer
from intermittent nonresponse, complete subject non response, and large outliers. For this
trial, observations were missing through a mixture of mechanisms, which made modeling
the nonresponse very difficult. As a simple and reasonable alternative, missing observations
were replaced using a modified nearest-neighbor hot deck imputation (NNHDI). Outliers
were also deleted, and subsequently replaced in the same manner. The resulting mixed–
effects analysis produced reliable parameter estimates.

Simulations showed that the size and power are not unreasonable for sample sizes as
small as 10 and percentage of missing observations less than 30%. In some cases, the power
and size are very good, even when 50% of the data are missing and replaced by NNHDI.
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