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The decorrelating property of the discrete wavelet transformation (DWT) appears
valuable because one can avoid estimating the correlation structure in the original
data space by bootstrap resampling of the DWT. Several authors have shown that the
wavestrap approximately retains the correlation structure of observations. However,
simply retaining the same correlation structure of original observations does not
guarantee enough variation for regression parameter estimators. Our simulation
studies show that these wavestraps yield undercoverage of parameters for a simple
linear regression for time series data of the type that arise in functional MRI
experiments. It is disappointing that the wavestrap does not even provide valid
resamples for both white noise sequences and fractional Brownian noise sequences.
Thus, the wavestrap method is not completely valid in obtaining resamples related
to linear regression analysis and should be used with caution for hypothesis testing
as well. The reasons for these undercoverages are also discussed. A parametric
bootstrap resampling in the wavelet domain is introduced to offer insight into these
previously undiscovered defects in wavestrapping.
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1. Introduction and Notation

The wavelet transform has emerged as a powerful mathematical tool for
decomposing a function f(#) in terms of its time and frequency components.
The wavelet transform is superior to the classical Fourier transform whenever one
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wants the localization in time as well as frequency for non stationary signals.
Wavelet transforms have attracted some attention from statisticians since Donoho
and his coauthors introduced signal analysis with wavelet denoising and shrinkage
(See, for example, Donoho, 1993, 1995).

The discrete wavelet transform (DWT) is described in the next section. The
DWT is computationally efficient using Mallat’s pyramid algorithm, which can be
easily generalized to higher dimensions (Mallat, 1989a,b). One desirable property
of the DWT is the decorrelating property of the wavelet coefficients (Flandrin,
1992; Frazier et al., 1991; Tewfik and Kim, 1992; Zhang and Walter, 1995). This
decorrelating property in the two-dimensional setting is the foundation for the
“enhanced” false discovery rate, which reduces the number of local hypotheses in
the wavelet domain and can result in better power than the classical false discovery
rate (Shen et al., 2002).

Resampling techniques including bootstrap and permutation tests are discussed
in the next section. Bootstrap methods work well, preserving good coverage
properties when the data are uncorrelated (Efron and Tibshirani, 1993). However,
the classical bootstrap methods fail when the data are correlated (Davison and
Hinkley, 1997). The decorrelating property of wavelet coefficients suggests that
resamples from correlated data can be obtained by transforming the original data to
the wavelet domain and resampling decorrelated wavelet coefficients. Bullmore et al.
(2001) proposed this new resampling method based on independent permutations
of the wavelet coefficients of the observed time series. Their simulations show that
the resampled time series have autocorrelation functions very similar to the original.
Breakspear et al. (2004) extended the wavelet-based resampling method to identify
dynamic interactions between brain regions from fMRI data.

Several authors have shown that the wavestrap approximately retains the
correlation structure of observations. However, estimating regression parameters
from the resampling observations is not only related to the correlation structure, but
more importantly to the magnitudes of the series. The simplest case in regression
analysis would be inference on the mean of a series of observations from wavestrap
resamples. It is well known that the mean will remain the same if only the detail
wavelet coefficients are resampled. Thus, no matter how many wavestrap resamples
are obtained from the data, the sample means from the wavestrap resamples are
the same since resampled versions of the sample mean have virtually no variation.
It is therefore impossible to draw inference on the population mean. In a recent
article, Feng et al. (2005) noted that the sample mean of the wavestrap resamples
displays much less variability than the sample mean of the original process. Since
inference based on a sample mean is a special case of inference based on regression
coefficients, similar results can be expected for linear regression settings. In this
article, we present simulation studies to show that wavelet-based resampling should
also be used with caution in a regression modeling that is typical in functional
Magnetic Resonance Imaging (fMRI). Although the autocorrelation structure of
wavelet resamples may be similar to that for the original data as illustrated in
Bullmore et al. (2001), Breakspear et al. (2004) and other authors, our simulation
studies show that wavestrap-based confidence intervals of the slope coefficient suffer
from severe undercoverage. In addition, we introduce the parametric wavestrap to
offer insight into these wavestrapping defects.
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2. Methods
2.1. Wavelet-Based Resampling

Lety = {yy, y; ---»yy_1} denote a vector or signal, where N = 2’ for some integer J.
Using a mother wavelet , the signal y; can be expressed as:

Jo

Vi = SJ(7+ZDj’ ey

Jj=1
where J; is an integer less than J,

N/2I

Dj = Z djk‘//jk(i/N)7
k=1

and

N/2%

Sy, = Z sJOk¢JOk(i/]V)’
k=1

and ¢ is the associated father wavelet. The detail coefficients, d o and the scaling
coefficients, s, ;, are obtained using the highly efficient pyramid algorithm developed
by Mallat (1989). S, in (1) accounts for the “smooth” features in the data while
the D;’s provide “detail” information with smaller values of j being associated with
finer detail. Given a signal of length N = 27, the discrete wavelet transform (DWT)
consists of the coefficients d;, and s,,. There are N/2/ detail coefficients associated
with D;, j=1,...,J, and N/2% scaling coefficients associated with S, yielding N
coefficients in all. Thus, the DWT is a transformation from the N data values to
these N coefficients. The original data can also be completely reconstructed from
the coefficients, and this transformation is referred to as the inverse discrete wavelet
transform (IDWT).

Several authors (Flandrin, 1992; Frazier et al., 1991; Tewfik and Kim, 1992;
Zhang and Walter, 1995) have discussed the wavelet decorrelating property.
This property is the basis for wavelet-based resampling techniques in recent articles
such as Bullmore et al. (2001) and Breakspear et al. (2004). The key idea of wavelet
decorrelating is that when a correlated time series is transformed into the wavelet
domain via the DWT, the detail coefficients d;’s, where d; = (d;;, ..., d), are
approximately uncorrelated within each level and between levels. The decorrelated
detail coefficients are then resampled within levels and inverse transformed back
to the time domain via the IDWT to obtain a simulated resample of the original
process.

Let y(¢) be a time series of N points. The wavelet-based resampling algorithm
is outlined in the following steps:

1. Choose a suitable orthogonal wavelet basis, such as Daubechies D(4) or D(8).

2. Compute the DWT of y(7), i.e., DWT(y) =w = (d;, d,, ..., d,,s;).

3. Apply the ordinary “naive” bootstrap (resampling with replacement) or
permutation (resampling without replacement) to all the wavelet detail
coefficients dj, j=1,...,J, where J, < J, within each level to obtain the
resampled coefficients d}. Leave the N/2) = 277" scaling coefficients unchanged,

* : * _ (dA* A% * *
S, = Sy That is, w* = (d ,d2,...,djo,sjo).
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Figure 1. The wavestrap algorithm. The left panel shows observed and resampled time
series. The right panel gives the plot of wavelet coefficients of different levels using the
wavelet basis D(8). Here J = 7, and the DWT is shown for J, = 5.

4. Apply the inverse discrete wavelet transform to obtain the resampled time series
y* = IDWT(w*). We also renormalize y* using a scale of +/1.1 as recommended
in Breakspear et al. (2004) to maintain the autocorrelation of resamples.

5. Calculate the statistic of interest 0* using y*. .

6. Repeat Steps 3-5 B times to estimate the sampling distribution of 0*.

The wavestrap algorithm is illustrated in Fig. 1. The time series consists of 128
time points, and the wavelet basis used in the plot is D(4). The figure is similar to
one in Bullmore et al. (2001). When a time series is not very long, typically 128
or 256 time points, Bullmore et al. (2001) recommend using D(4) to reduce the
boundary effect of wavelets. Both D(4) and D(8) are used as wavelet bases in our
simulation study. Approximate confidence intervals use the B values of 0.

The 100(«/2)th percentile, 07, ,, ), and 100(1 — o;/2)th percentile, 07, 1) _,/2))
are calculated from the resampling distribution. The “basic” confidence interval is
obtained using the limits (L, Uy) (Davison and Hinkley, 1997, Sec 5.2.1), where

~ ~

Ly = Cl;, =20 = 0ip1yq o2 and Up = Cl_, =20 = Og,1),0)

2.2. Parametric Wavestrap

A potential problem with the wavestrap approach is that whenever J, is close to J,
there are very few wavelet coefficients in d;, to be resampled. For example, if J = 7,
and J, =5 as in Fig. 2, then there are only 4 wavelet coefficients in ds. This can
result in resampled series with too much of the structure repeated. To demonstrate
the effect of this problem we introduce the parametric wavestrap (PW). Since the
Daubechies wavelet bases are orthonormal, the detail coefficients at all levels and
the scaling coefficients theoretically follow independent normal distributions if the
original data are standard normal white noise. In this special case, therefore, instead
of resampling the observed detail coefficients, the detail coefficients can be generated
from N(0, 1). While this parametric wavestrap approach is not one that could be
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Figure 2. The wave length algorithm. The left panel shows observed and resampled time
series. The right panel gives the plot of wavelet coefficients of different levels using the
wavelet basis D(8). Here J = 7, and the DWT is shown for J; = 5.

used in most practical settings, it is considered here to ascertain the degree to which
the wavestrap undercoverage can be explained by the resampling from a small
number of detail coefficients.

3. Inference on a Linear Regression Coefficient

We consider a regression example under a simplified setting of fMRI experiments.
We focus our interest on two null models. The first null model is based on a
Gaussian white noise sequence, y, of length N = 128. For simplicity, the design
matrix X is considered to be a 128 x 1 matrix composed of 8 segments each
consisting of eight —1’s and eight 1’s. While a subject’s response to a series of
visual stimulation blocks actually involves a hemodynamic response function, we
use the following simplified model to illustrate our main point concerning wavestrap
undercoverage. For our purposes, we use the simple linear regression model without
an intercept term

yj.:x]ﬂ—l—ej, j=1,...,N, (2)

where f is the slope coefficient and the €;’s are uncorrelated errors with zero means
and equal variances, ¢?. In the simplest null model, $ is zero and the €;’s are
independent normals with unknown constant variance.

Testing the null § =0 is of primary interest in this setting. Following the
classic bootstrap algorithm for linear regression in Davison and Hinkley (1997),
the estimate of the slope coefficient f is obtained from fitting the linear model
(2) by minimizing the sum of squares ||y — Xf|*>. The raw residuals, r;, are then
obtained from r; =y, — x jff. The residuals are centered by subtracting the average
of the raw residuals to obtain the zero-mean residuals €’s and are then rescaled
as recommended in Thombs and Schucany (1990). The €’s are then bootstrapped
to produce the random resample €*. After setting y* = X [3 + €*, the model (2) is



1312 Tang et al.

fit to (X, y*) and bootstrap replicates of the slope coefficients fi; are obtained for
b=1,...,B.

The wavestrap approach presumed to be suitable even in the case of correlated
errors involves first transforming these zero-mean residuals, €’s, to the wavelet
domain. Then the wavestrapped residuals, €, are used to produce the resample
vi=X B—i—%;. The slope coefficients, ¥, are obtained by fitting the regression
model (2) to (X, y?).

The second model of interest involves fractional Brownian motion sequences.
Such sequences have an inherent long memory property that several authors have
detected in fMRI data (Aguirre et al., 1997; Bullmore et al., 2001). That is, we
assume a regression model as in (2), but now the €;’s are fractional Brownian noise.
For this type of correlated data, the classical bootstrap method is no longer valid,
and the wavestrap method is recommended by Bullmore et al. (2001) to obtain
resamples. In the simulations that follow, we investigate the performance of the
wavestrap method and use the classical bootstrap and PW methods for comparison.

4. Simulation Studies

4.1. White Noise Sequences

We first investigate the wavestrap approach in the special case in which the €’s
are independent. For each sample we also used PW to generate the ideal detail
coefficients and eventually obtain f},,.

For each simulated white noise sequence, both the wavestrap and parametric
wavestrap resampling methods as well as the classical bootstrap were repeated
B =199 times (as recommended in Davison and Hinkley, 1997) to obtain
approximate 95% confidence intervals on the slope f5. The sequences were replicated
1,000 times and the coverages of 1,000 confidence intervals were obtained for each
bootstrap method. Bullmore et al. (2001) recommend resampling the first five levels
of detail coefficients. In our simulation studies, we evaluated the wavestrap intervals
in the case of resampling from the first 5-7 levels of detail coefficients (i.e., letting
Jy =5, 6,7, respectively). Since Breakspear et al. (2004) recommended reinflating the
wavestrap resamples by multiplying +/1.1 to maintain the autocorrelation level, we
show wavestrap results both with and without reinflation. In Table 1, we present
the results of several resampling strategies in this setting. Because the independence
assumption actually holds, the classical bootstrap approach is applicable and has a
coverage of 94.7%, very close to the nominal level. The wavestrap with or without
inflation significantly undercovers when five or more levels of detail coefficients are
used. It is interesting to note that PW provides coverage close to the nominal 95%
in these cases tabled here. In simulation runs not tabled here, the undercoverage of
the two methods (wavestrap and parametric wavestrap) is significantly worse due to
greater shrinkage for even lower levels of detail coefficients, e.g., J, = 2 and 3.

4.2. Fractional Brownian Noise Sequences

We simulated fractional Brownian noise sequences with Hurst exponent H = 0.7
using an algorithm from Percival and Walden (2000). We used the same estimation
procedures as in the previous section including the “inappropriate” classical
bootstrap on these correlated noises. The subsequent coverage results are shown in
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Table 1
Simulation empirical coverage percentages for wavestrapping methods using D(4)
and D(8) wavelet bases and for several values of J, in white noise sequences.
The first column lists the wavelet bases and the second column lists the levels of
detail coefficients used in the wavestrap methods. “w/Inflation” means reinflating
the wavestrap resamples by +/1.1 as recommended by Breakspear et al. (2004).
The nominal confidence level is 95%. For each entry the nominal standard error
from the 1,000 replications is about 0.7%

Wavestrap

Levels of detail coef. Classical

(1-Jp) w/Inflation  w/o Inflation PW bootstrap
D®4) 1-5 91.0% 89.1% 95.9%
1-6 91.9% 89.4% 94.8%

1-7 91.5% 89.8% 95.5% 94.7%

D(8) 1-5 90.8% 90.2% 94.5%
1-6 91.5% 89.5% 94.6%
1-7 91.0% 89.1% 94.9%

Table 2. Again, the coverage percentages of the regular wavestrap are well below
the nominal 95% for all the settings with and without the inflation. Also, in this case
the PW method does not show marked improvement over the regular wavestrap
since the assumption of N(0, 1) detail coefficients in each level is not valid. Not
surprisingly, the classical bootstrap did not perform well, but actually performed
about as well as the wavestrap in this setting.

Table 2

Simulation empirical coverage percentages for wavestrapping methods using D(4)
and D(8) wavelet bases and for several values of J, in fractional Brownian noise
sequences. The first column lists the wavelet bases and the second column lists the

levels of detail coefficients used in the wavestrap methods. “w/Inflation” means
reinflating the wavestrap resamples by +/1.1 as recommended by Breakspear et al.
(2004). The nominal confidence level is 95%. For each entry the nominal standard

error from the 1,000 replications is about 0.7%

Wavestrap
Levels of detail coef. Classical
(1-Jy) w/Inflation ~ w/o Inflation PW bootstrap

1-5 90.0% 88.3% 90.6%

1-6 90.5% 88.4% 90.9%

1-7 90.9% 88.3% 90.6% 89.9%
D(8) 1-5 88.2% 87.4% 92.0%

1-6

1-7

D(4)

89.3% 87.5% 92.1%
89.8% 88.0% 92.4%
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5. Concluding Remarks

In the DWT, there are fewer detail coefficients for higher levels. For example, for
a series of length N = 128 = 27, the number N; of the detail coefficients in the jth
level of the DWT is given by N, = 128 /2/, for j=1,...,6. At the 5th and 6th levels,
there are only 4 and 2 detail coefficients, respectively. Those few conditionally fixed
coefficients cannot adequately represent random samples from the corresponding
distribution. Therefore, the wavestrap fails to yield correct coverage when the
nonparametric resample is obtained from the coefficients within each level. We
have demonstrated this effect using a parametric wavestrap which uses generated
coefficients from the appropriate normal distribution. In the special case of N(0, 1)
white noise errors, the PW gave appropriate coverage. However, it is not applicable
in general and the coverage for PW based intervals did not provide improvement
in the case of fractional Brownian noise. We also applied permutation within each
level of wavelet coefficients and found similar results as bootstrapping wavelet
coefficients.

The decorrelating property of the DWT seems attractive. Hence, bootstrapping
wavelet coefficients of one-dimensional time series or higher-dimensional images
have been proposed by several researchers in neuroimaging and other application
areas. This article has demonstrated that for a simple linear regression model
with normally distributed white noise errors, the wavestrap produces undercoverage
of the confidence intervals of the slope coefficient, which is of primary scientific
interest. This result comes from underestimation of the sampling variation of the
slope coefficient in the fitted model. Thus, coverage on regression coefficients from
wavestrap resamples may not be accurate. This defect extends to more complicated
data such as fractional Brownian noise as well.

A technique analogous to the wild bootstrap (Mammen, 1993) for regression
residuals may correct for the shrinkage inherent in the wavestrap. We also applied
the one-dimensional wavelet packet resampling method using DWPT from the R
package known as Waveslim, developed by Brandon R. Whitcher, to obtain the
coverage of the regression parameter  with white noise and fractional Brownian
noise errors. We used the wavelet basis of D(8) and got 94.5% coverage for white
noise and 91.5% coverage for the fractional Brownian motion process. It seems
that wavelet packet resampling methods (which sometimes are also referred to
as wavestrapping methods) might be able to improve the coverage, but more
development is needed for correlated observations.

In summary, the wavestrap procedures based on nonparametric resampling
methods are not reliable for obtaining confidence intervals or hypothesis tests for
regression coefficients with either uncorrelated or correlated errors and should be
used with caution. This is the case even when the inflation factor recommended by
Breakspear et al. (2004) is applied.
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