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A robust estimator is developed for Poisson mixture models with known number of components.

The proposed estimator minimizes the L2 distance between the data and the model. When the

component distributions are completely known, the estimators for the mixing proportions are in

closed form. When the parameters for the component Poisson distributions are unknown, numerical

methods are needed to calculate the estimators. The method offers a robust estimator for mixture

models while retaining acceptable efficiency compared to the maximum likelihood estimator. Com-

pared to the minimum Hellinger distance estimator, the minimum L2 estimator is less robust to

extreme outliers, and more robust to moderate outliers.

SOME KEY WORDS: Divergence; Influence function; L2 distance; Maximum likelihood; Mixing

proportion; Robustness.

1 Introduction

The random variable X has a k-component mixture distribution if its density can be represented

in the form

p(x) = π1f1(x) + π2f2(x) + . . . + πkfk(x), 0 ≤ πj ≤ 1, j = 1, . . . , k,
k∑

j=1

πj = 1. (1)

The parameters π1, . . . , πk are called the mixing proportions or mixing weights, and f1(·), . . . , fk(·)
are the component densities of the mixture model. Theoretically, f1(·), . . . , fk(·) can be from

different parametric families, but in practice they usually are from the same parametric family.

Several different estimation approaches have been applied to mixture problems. The method of

moments was first applied by Pearson (1894) on the crab data, which was fitted by a two-component

normal mixture model. Since the EM algorithm was introduced by Dempster et al. (1977), the

maximum likelihood estimator (MLE) has been widely used in mixture problems. Like most of the

maximum likelihood estimators, under some regularity conditions, the MLE is consistent for the

parameters estimated, asymptotically efficient and normally distributed with the variance as the

inverse of the Fisher information. The drawback of the MLE in mixture problems is that it has

to be computed iteratively. When the mixing proportion is around the boundary of the parameter

space or when the components are poorly separated, the convergence of iterative algorithms can

be very slow. Another concern about the MLE is its sensitivity to the underlying assumptions.
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When the model assumptions are satisfied, the MLE is asymptotically the most efficient estimator.

However, the underlying model assumptions are often violated by real data. The existence of gross

errors and even slight deviations from the parametric density can affect the performance of the

MLE considerably.

If model assumptions are violated, minimum distance estimators can be more robust than the

MLE. Choi and Bulgren (1968) proposed the minimum Wolfowitz distance estimator for mixing

proportions with known component distributions. MacDonald (1971) and Woodward et al. (1984)

examined a similar method of minimizing the Cramér-von Mises distance to estimate the mixing

proportions in mixture of normal distributions. Clarke (1989) and Clarke and Heathcote (1994)

developed explicit estimators for mixing proportions in mixture normal distributions by minimizing

the L2 distance between parametric and empirical distribution functions. Woodward et al. (1995)

developed the minimum Hellinger distance estimator (MHDE) for two-component normal mixture

models and Karlis and Xekalaki (1998) examined the MHDE of finite Poisson mixtures. The latter

two papers showed that the MHDE is asymptotically normally distributed with full efficiency under

model assumptions and more robust to departure from the underlying assumptions than the MLE.

For a detailed history of finite mixture models, readers are referred to McLachlan and Peel (2001)

and Titterington, Smith and Makov(1985).

Apart from the estimators of Clarke (1989) and Clarke and Heathcote (1994), the methods men-

tioned above give estimators for the mixing proportions that are not in explicit form. The present

paper introduces a new estimator for mixture models, based on the minimum squared distance

between parametric and empirical densities. When the component distributions are completely

known, the proposed estimator for the mixing proportion exists in closed form. The estimation

method also offers an estimator which is more robust to departure from the underlying assumptions

while less efficient compared to the MLE. This is particularly appropriate for analyzing massive

data sets where data cleaning is impractical and statistical efficiency is a secondary concern.

The rest of the paper is organized as follows. In section 2 the minimum L2 distance estimator

and the minimum density power divergence estimator are introduced. In section 3, the minimum

L2 distance estimator in k-component mixture models is developed, assuming only the mixing

proportions are unknown. Some of its properties including robustness and asymptotic efficiency are

discussed here and some asymptotic properties of the estimators are also established. Particular
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detail is given for the two-component case. In section 4 the minimum L2 distance estimator is

proposed for k-component Poisson mixtures with all parameters unknown. Some of the asymptotic

properties are also investigated in this section. The results of some simulation studies are presented

in section 5 to compare the performance of the L2E, the MLE and the MHDE. In section 5.1 we

present simulation results and a theoretical argument that suggest the L2E is more robust to

moderate outliers as compared to the MHDE. Concluding remarks and ideas for further research

are presented in section 6.

2 Minimum L2 Distance Estimator and MDPDE

Assume the data X1, · · · , Xn are generated randomly from some distribution G with corresponding

density g. The distribution G is unknown but one is willing to approximate it by an element from

the parametric family Fθ. The L2E for θ is obtained by minimizing the so-called L2 distance
∫ {g(x) − fθ(x)}2 dx, between the unknown density g and the parametric density fθ. Note that

the L2 distance can be represented by
∫

f2
θ (x) dx − 2

∫
fθ(x) dG(x) + C, where the quantity C is

independent of the parameter θ and does not affect the minimization procedure. Given a random

sample X1, . . . , Xn from the true distribution G, to obtain the L2E of the best fitting parameter,

one can actually minimize

∫
f2

θ (x) dx− 2
∫

fθ(x) dGn(x)dx =
∫

f2
θ (x) dx− 2n−1

n∑

i=1

fθ(Xi)

with respect to θ, where Gn is the empirical distribution function. Under differentiability of the

model and appropriate regularity conditions, the L2E can be obtained by solving the estimating

equation

n−1
n∑

i=1

uθ(Xi)fθ(Xi)−
∫

uθ(x)f2
θ (x) dx = 0, (2)

where uθ(x) = ∂log fθ(x)/∂θ is the maximum likelihood score function.

The minimum L2 distance estimator (L2E) in mixture problems was first proposed by Scott

(1999), who investigated its application in normal mixture models. The L2 distance is also an

element of the family of the density power divergence (DPD) proposed by Basu et al. (1998). The

DPD between two densities f and g is defined as

dα(g, f) =
∫

χ

{
f1+α(x)−

(
1 +

1
α

)
g(x)fα(x) +

1
α

g1+α(x)
}

dx.
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When α = 1, the DPD is the L2 distance. For α = 0, the divergence is in the form

d0(g, f) = lim
α→0

dα(g, f) =
∫

χ
g(x) log[g(x)/f(x)] dx,

which is also known as the Kullback-Leibler divergence. The minimum density power divergence

estimator (MDPDE) for the parameter θ in f is obtained by choosing the value of θ in the parameter

space such than the divergence dα is minimized for a fixed value of α. With α = 0, minimizing the

Kullback-Leibler divergence is equivalent to maximizing
n∑

i=1
log f(Xi), which is the log-likelihood.

So the MLE is the sample version of the MDPDE with tuning parameter α = 0.

Basu et al. (1998) proposed that under mild regularity conditions, the MDPDE is consistent

and asymptotically normally distributed with variance J−1KJ−1. The matrix K is defined as

Kα(θ) =
∫

uθ(x)uT
θ (x)f2α

θ (x)g(x) dx− ξθξ
T
θ and ξθ =

∫
uθ(x)fα

θ (x)g(x) dx. (3)

The matrix J is in the form

Jα(θ) =
∫

uθ(x)uT
θ (x)f1+α

θ (x) dx +
∫

(iθ(x)− αuθ(x)uT
θ (x))(g(x)− fθ(x))fα

θ (x) dx, (4)

and iθ(x) = −∂{uθ(x)}/∂θ, the so called information function of the model.

The single parameter α in the DPD controls the trade-off between robustness and asymptotic

efficiency. As α increases, the robustness of the MDPDE increases but its asymptotic efficiency

decreases. The influence function is a tool used to evaluate the local robustness of an estimator.

Basu et al. (1998) showed that the influence function for the MDPDE has the form

Iα(G, y) = J−1 {uθ(y)fα
θ (y)− ξθ} , (5)

and ξθ and J are as in (3) and (4). Besides the balance between robustness and efficiency, another

appealing characteristic of the MDPDE is that it does not require a smoothing of the empirical

density gn. Thus, in contrast with other minimum distance estimators based on density, such

as the MHDE, the MDPDE avoids the bandwidth selection involved with nonparametric density

estimation.

3 L2E for Mixing Proportion in k-component Mixture Models

In this section, the L2E for the mixing proportions in k-component mixture models will be devel-

oped, assuming the component distributions are completely known. In section 3.1 to 3.3 we present

the results for two-component mixture models.
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3.1 L2E for the mixing proportion in two-component models

In two-component mixture models, when only the mixing proportion is unknown, the parametric

density is in the form f(x; π) = πf1(x) + (1− π)f2(x), where 0 ≤ π ≤ 1. By replacing the density

fθ with f(x;π) in (2), the L2E for π is obtained by solving the estimating equation

n−1
n∑

i=1

[f1(Xi)− f2(Xi)]−
∫

(f1(x)− f2(x))f(x; π) dx = 0,

assuming f(x;π) is an absolutely continuous density. For a discrete distribution the integral is

replaced by a sum. By solving the estimating equation, the L2E for π has the form

π̂n =
n−1

n∑
i=1

[f1(Xi)− f2(Xi)]−
∫

f2(x){f1(x)− f2(x)} dx
∫
[f1(x)− f2(x)]2 dx

. (6)

When the model is correctly specified, the estimating equation is unbiased, and π̂n is unbiased.

The variance of
√

nπ̂n can be calculated as

Var(
√

nπ̂n) =
Var(f1(X)− f2(X))

{∫ (f1(x)− f2(x))2 dx}2

=
∫
(f1(x)− f2(x))2f(x; π) dx− {∫ (f1(x)− f2(x))f(x; π) dx}2

{∫ [f1(x)− f2(x)]2 dx}2 . (7)

The variance of (
√

nπ̂n) can be consistently estimated in a sandwich fashion as

V̂ar(
√

nπ̂n) =
(n− 1)−1

n∑
i=1

{
f1(Xi)− f2(Xi)−

(
n−1

n∑
i=1

{f1(Xi)− f2(Xi)}
)}2

{∫ (f1(x)− f2(x))2 dx}2
.

It can be proved that when the tuning parameter α = 1 and 0 < π < 1, the regularity conditions A1-

A5 in Basu et al. (1997) are satisfied in two-component mixture models, assuming only the mixing

proportion π is unknown. Thus the L2E is consistent and asymptotically normally distributed.

Proposition 3.1 In a mixture model with two known components, and 0 ≤ π ≤ 1,

1. π̂n is consistent for π, and

2. n1/2(π̂n−π) is asymptotically normally distributed with mean zero and variance as shown in

(8).

Proof: See Appendix.
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3.2 Influence Function and Asymptotic Relative Efficiency

From (5), by setting α = 1, the influence function of the L2E for the mixing proportion in two-

component mixture models can be derived as

IL2E(y) =
f1(y)− f2(y)− ∫

(f1(x)− f2(x)) g(x) dx∫
[f1(x)− f2(x)]2 dx

, (8)

where y is the contaminating value. It is noticed that when f1(x)− f2(x) is bounded, the influence

function is also bounded. When the contaminating value y →∞, it follows that f1(y)− f2(y) goes

to zero for the Poisson and normal families and the influence function converges to

lim
y→∞ IL2E(y) =

− ∫
(f1(x)− f2(x)) g(x) dx∫
(f1(x)− f2(x))2 dx

. (9)

The influence function for the MLE can be obtained by setting α = 0. From (5),

IMLE(y) =
f1(y)− f2(y)

g(y)
×

{∫
(f1(x)− f2(x))2g(x)−1 dx

}−1

. (10)

The second quantity in (10) is a constant with respect to y. When the contaminating value goes to

infinity, both the denominator and the numerator of the first element tend to disappear. Methods

for evaluating the quantity limy→∞ IMLE(y) differ from density to density.

For two-component Poisson mixture models, f1(·) and f2(·) are Poisson distributions with pa-

rameters λ1 and λ2, where λ1 6= λ2. Without loss of generality, let us assume λ1 < λ2. The limit

of the influence function as y →∞ can be derived as

lim
y→∞ IMLE(y) =

1
π − 1

×
{∫

(f1(x)− f2(x))2 f−1(x; π) dx

}−1

,

when the model is correctly specified in the sense g(x) = πf1(x) + (1− π)f2(x). It is noticed that

when π = 1, the influence function of the MLE can be unbounded.

To compare the robustness of the L2E to that of the MLE, the influence functions of the L2E

and the MLE in certain two-component Poisson mixture models are plotted in Figure 1. To obtain

a general view of the robustness of the estimators, the mixing proportion for the first component

π is taken at .2 and .8. Also two different settings of the component distributions are chosen. In

the first setting (λ1 = 1, λ2 = 3), the two components are poorly separated. The second setting

(λ1 = 1, λ2 = 8) is designed to investigate the robustness of the estimators for models with well

separated components. It is observed that the influence functions of the L2E are closer to 0 than

those of the MLE, which is particularly poor when the components are not well separated.
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Figure 1: Influence Functions of the L2E and the MLE for Certain 2-Component Poisson Mixture

Models.

A desired estimator should be robust to the violations of the underlying assumptions and have

acceptable efficiency. The Asymptotic Relative Efficiency (ARE) of the L2E is defined as the ratio

of the asymptotic variance of the MLE to that of the L2E for the same parameter. From Basu et

al. (1998), the asymptotic variance of
√

nθ̂MDPDE is equivalent to J−1
α KαJ−1

α where Jα and Kα are

as shown in (3) and (4). In the two-component mixture model,

K0 = J0 =
∫

(f1(x)− f2(x))2f−1(x; π) dx

and

Var(
√

nπ̂MLE) = J−1
0 =

{∫
(f1(x)− f2(x))2f−1(x; π) dx

}−1

.
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The asymptotic variance of the L2E for π is in the form as shown in (7).

Table 1 lists the asymptotic relative efficiencies of the L2E in certain two-component Poisson

mixture models. The mixing proportion is taken at different values from .1 to .9 to investigate its

effect on the efficiency of the estimator. Several different combinations of the component distribu-

tions are selected.

Table 1: AREs of the L2E for π in Certain 2-component Poisson Mixture Models

π .1 .2 .3 .4 .5 .6 .7 .8 .9
λ1 = 1, λ2 = 2 .88 .88 .87 .84 .81 .77 .71 .64 .53
λ1 = 1, λ2 = 3 .85 .90 .91 .90 .88 .84 .77 .67 .50
λ1 = 1, λ2 = 5 .87 .95 .96 .95 .93 .90 .85 .75 .57
λ1 = 1, λ2 = 8 .93 .95 .95 .94 .92 .89 .85 .78 .62

In general, the L2E performs better for models with well separated components and low mixing

proportion of the first component. Also it is observed that for most of the models, the ARE of the

L2E is higher than .60.

3.3 The Truncated Estimator for the Mixing Proportion

The L2E is obtained by minimizing the L2 distance and the method does not guarantee that the

estimator lies in the parameter space of [0,1]. Under such situations, some adjustment is necessary

to keep the estimator in the appropriate parameter space. The gradient of the objective function

is in the form

∂2

∂π2

∫
{f(x; π)− g(x)}2 dx =

∂2

∂π2

∫
f2(x; π) dx− 2

∂2

∂π2

∫
f(x; π) dG(x).

When the unknown distribution G(x) is estimated by its empirical distribution function Gn(x),

∂2

∂π2

∫
{f(x;π)− gn(x)}2 dx =

∫
(f1(x)− f2(x))2 dx.

It is obvious that the second derivative of the L2 distance is positive assuming {x : f1(x) 6= f2(x)}
is a set of positive Lebesgue measure, and so the L2 distance is concave and there exists a unique

solution of the estimating equation. When the estimate is negative, it is clear that zero is the value

with the minimum L2 distance in the parameter space. Similarly, estimates larger than 1 can be

truncated to 1.
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From now on, we will denote the truncated L2E for π as π̂trunc to distinguish it from the

non-truncated version π̂. The truncated estimator can be expressed as

π̂trunc = 0× I(−∞,0)(π̂) + 1× I(1,∞)(π̂) + π̂ × I[0,1]

= I(1,∞)(π̂) + π̂ × I[0,1](π̂), (11)

where I is an indicator function.

Theorem 3.1 In two-component mixture model with component densities completely known,

when 0 < π < 1,

1. the truncated L2E for π is consistent for π, and

2. n1/2(π̂trunc − π) is asymptotically normal with mean zero and variance as shown in (7).

Proof: see appendix

3.4 L2E in k-component Mixture Models

Since the sum of the mixing proportions is one, there are only k − 1 unknown parameters.

Let X1, X2, . . . , Xn be a random sample from some absolutely continuous distribution G with

density function (1). Assume the number of components k and all component densities f1(·), . . . , fk(·)
are known. Let π = (π1, π2, . . . , πk−1)T be the vector of the k − 1 unknown mixing proportions in

the k-component mixture model. The results that follow also hold for discrete models as well. The

L2E for the mixing proportions π is obtained by minimizing

∫

χ
f2(x; π) dx− 2

n

n∑

i=1

f(Xi; π)

over the parameter space

Θ =



π1, π2, . . . , πk−1 : 0 ≤ πj ≤ 1, j = 1, . . . , k − 1; 0 ≤

k−1∑

j=1

πj ≤ 1



 .

From (2), it can be easily checked that the estimating equations are in the form

∫

χ
(fj(x)− fk(x))f(x;π) dx− n−1

n∑

i=1

{fj(Xi)− fk(Xi)} = 0, j = 1, . . . , k − 1. (12)
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The estimating equations can also be expressed as Jπ = b, where J is a k− 1 by k− 1 matrix with

elements in the form of

Ji,j =
∫

χ
(fi(x)− fk(x))(fj(x)− fk(x)) dx; i, j = 1, . . . , k − 1. (13)

The jth element of vector b is

bj =
1
n

n∑

i=1

{fj(Xi)− fk(Xi)}+
∫

χ
fk(x)(fk(x)− fj(x)) dx.

Assuming J is nonsingular, the L2E can be derived as

π̂ = J−1b. (14)

Theoretically, the matrix J is singular only if some of the components are exactly the same as the

others and hence the L2E exists in closed form. In practice, the inverse of the matrix J cannot be

obtained when some of the components are very poorly separated. When the model is correctly

specified, the estimating equations and the L2E are unbiased.

Because of the existence of the closed form of the estimator, the variance of the L2E can be

easily developed as

Var(π̂) = Var(J−1b)

= J−1Var(b)(J−1)T

= J−1Var(b)J−1,

since the matrix J is symmetric and it does not involve the random sample X1, . . . , Xn. The

variance of b is a multiple of the variance-covariance matrix for fj(x)− fk(x) and

K = nVar(b) = nVar




n−1
n∑

i=1
(f1(Xi)− fk(Xi))

n−1
n∑

i=1
(f2(Xi)− fk(Xi))

·
·
·

n−1
n∑

i=1
(fk−1(Xi)− fk(Xi))




= Var




f1(X)− fk(X)
f2(X)− fk(X)

·
·
·

fk−1(X)− fk(X)




, (15)

and the covariance matrix can be calculated under model conditions by replacing g(x) with f(x; π) =

π1f1(x)+π2f2(x)+ · · ·+
(

1−
k−1∑
j=1

πj

)
fk(x). The variance of (

√
n times) the L2E can be expressed

as

Var(
√

nπ̂L2E) = J−1KJ−1, (16)
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where J and K are as in (13) and (15).

As in mixture models with two components, when 0 < πj < 1 for j = 1, . . . , k, the L2E for the

mixing proportions can be proven to be consistent and asymptotically normally distributed.

Proposition 3.2 Let f(x; π) =
k∑

j=1
πjfj(x), 0 < πj < 1 for j = 1, . . . , k and

k∑
j=1

πj = 1,

1. the L2E for the first k − 1 mixing proportions, π̂L2E,n is consistent for π = (π1, . . . , πk−1),

and

2. n1/2(π̂L2E,n− π) is asymptotically multivariate normally distributed with mean vector of zero

and covariance matrix J−1KJ−1, where J and K have the form as shown in (13) and (15).

Proof: see Appendix.

Since the matrix K involves the unknown parameter vector π, the variance of n1/2(π̂L2E,n− π)

can be estimated by J−1K̂J−1 where K̂ is the matrix of the estimates for variances and covariances

of fj(x)−fk(x), j = 1, · · · , k−1 from the sample. On the diagonal of the matrix, there are estimates

for variances of fj(x)− fk(x) which have the form

V̂ar[fj(x)− fk(x)] = (n− 1)−1
n∑

i=1

{
fj(Xi)− fk(Xi)− n−1

n∑

i=1

[fj(Xi)− fk(Xi)]

}2

.

The (j, j′)th element of K̂ is the estimate for covariance of fj(x) − fk(x) and fj′(x) − fk(x) with

the form
n∑

i=1

{
fj(Xi)− fk(Xi)− (f̄j − f̄k)

} {
fj′(Xi)− fk(Xi)− (f̄j′ − f̄k)

}

n− 1
,

where f̄j = n−1
n∑

i=1
fj(Xi). The covariance matrix of n1/2(π̂L2E,n − π) contains k − 1 variances

for the k − 1 proportion estimators and 1
2(k − 1)(k − 2) potentially different covariances. The

determinant of the covariance matrix can also be used to generalize the variability of the estimator.

It is always useful to report both the variance-covariance matrix and the generalized variance.

Feng and McCulloch (1996) showed that the asymptotic variance for (
√

n times) the MLE for the

mixing proportions in mixture models can be approximated by the inverse of the Fisher information,

which is J−1
0 , where J0 is in the form shown in (4) with α = 0. The variance for the L2E has been

developed in (16). For each of the mixing proportions, the asymptotic relative efficiency can be

obtained through taking the ratio of the corresponding variance on the diagonal of the variance-

covariance matrix of the MLE to that of the L2E. In Table 2, the asymptotic relative efficiency
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of the L2E for each of the mixing proportions in certain three-component Poisson mixture models

are listed. In the last column, the ratio of the generalized asymptotic variance of the MLE to that

of the L2E is displayed, where the generalized asymptotic variance is defined as the determinant

of the asymptotic covariance matrix of the estimator. It is observed that the L2E performs better

for the models with well separated components. The L2E is less efficient when most of the data

represent the first component, which has a smaller variance compared to other components.

Table 2: AREs of the L2E in Certain 3-Component Poisson Mixture Models

λ π π1 π2 ratio of generalized variance
(1,2,3) (1/3, 1/3, 1/3) .83 .68 .59

(.10, .45, .45) .87 .75 .64
(.90, .05, .05) .49 .29 .16

(1,5,10) (1/3, 1/3, 1/3) .98 .92 .88
(.10, .45, .45) .96 .92 .86
(.90, .05, .05) .58 .42 .39

The influence function of the L2E has the form as shown in (5). For the k-component mixture

model, the matrix J involved in the formula is the same as shown in (13). Other quantities involved

are calculated as

u(y; π)f(y; π) = [f1(y)− fk(y), . . . , fk−1(y)− fk(y)]T

and ∫

χ
u(x; θ)f(x; θ)g(x) dx = EG [f1(x)− fk(x), . . . , fk−1(x)− fk(x)]T .

So the influence function of the L2E for the mixing proportions has the form

IL2E(G, y) = J−1




f1(y)− fk(y)−EG[f1(x)− fk(x)]
f2(y)− fk(y)−EG[f2(x)− fk(x)]

·
·
·

fk−1(y)− fk(y)−EG[fk−1(x)− fk(x)]




, (17)

where y is the contaminating value and G is the true distribution from which the random sample

is generated. The influence function is bounded assuming the elements in J−1 are finite and

EG[fj(x)− fk(x)] exists for j = 1, 2, . . . , k − 1.
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The L2E for the mixing proportions in k-component mixture models is not always in the

parameter space Θ. If the L2 estimate is outside the parameter space, some adjustment is necessary.

A method of truncation is proposed by Shen (2004).

4 L2E in Poisson Mixture Models with Unknown Parameters

In this section, the minimum L2 distance estimation method is applied to k-component Poisson

mixture models, assuming all the parameters (π1, . . . , πk−1, λ1, . . . , λk) are unknown. As in section

3, we will first consider k = 2 components and the results can be easily generalized to k-component

models. The parametric distribution of a two-component Poisson mixture model is

f(x; π, λ1, λ2) = πe−λ1λx
1/x! + (1− π)e−λ2λx

2/x!, x ≥ 0, (π, λ1, λ2) ∈ Θ.

The parameter space is Θ = {(π, λ1, λ2) ∈ R3 : 0 ≤ π ≤ 1, λ1 > 0, λ2 > 0}. The L2E for the

unknown parameters is the value (π̂, λ̂1, λ̂2) that minimizes

Hn(π, λ1, λ2) =
∞∑

x=0

f2(x;π, λ1, λ2)− 2
n

n∑

i=1

f(Xi; π, λ1, λ2)

over the parameter space Θ.

Since the parameters λ1 and λ2 are not linear in the estimating equations, the L2E for (λ1, λ2)

does not have an explicit form. For computing the L2E, numerical methods such as the Newton-

Raphson algorithm are needed. The function ‘nlm’ (a Newton-Raphson algorithm) in R is used in

this paper to perform the numerical minimization of the objective function. To increase the chance

of finding the global minimum, different starting values are always suggested.

4.1 Asymptotic Properties for the L2E

From (3) and (4), the matrices K1 and J1 of the L2E in two-component Poisson mixture models

are given by

K1 =
∞∑

x=0

{
u(x; π, λ1, λ2)uT (x;π, λ1, λ2)f2(x; π, λ1, λ2)g(x)

}
− ξ(π, λ1, λ2)ξT (π, λ1, λ2) (18)

where

u(x;π, λ1, λ2) =
∂

∂(π, λ1, λ2)
log f(x; π, λ1, λ2)

=
1

f(x; π, λ1, λ2)

[
f1(x; λ1)− f2(x; λ2), π

∂

∂λ1
f1(x;λ1), (1− π)

∂

∂λ2
f2(x; λ2)

]T

14



and

ξ1(π, λ1, λ2) = EG [u(x; π, λ1, λ2)f(x; π, λ1, λ2)] .

The matrix J1 for the L2E is defined as

J1 =
∞∑

x=0

u(x; π, λ1, λ2)uT (x;π, λ1, λ2)g(x)f(x; π, λ1, λ2)

−i(x; π, λ1, λ2)
(
g(x)f(x; π, λ1, λ2)− f2(x; π, λ1, λ2)

)
, (19)

where i(x;π, λ1, λ2) is the information matrix of the two-component Poisson mixture distribution.

Theorem 4.1 Let (π, λ1, λ2) be the target parameter in two-component Poisson mixture models,

where 0 < π < 1, λ1 > 0 and λ2 > 0. There exists a sequence of minimum L2 distance estimators

{(π̂n, λ̂1,n, λ̂2,n)} such that

1. (π̂n, λ̂1,n, λ̂2,n) is consistent for (π, λ1, λ2), and

2. n1/2{(π̂n, λ̂1,n, λ̂2,n)′ − (π, λ1, λ2)′} is asymptotically multivariate normally distributed with

(vector) mean zero and covariance matrix J−1
1 K1J

−1
1 , where J1 and K1 have the forms as

shown in (14) and (15).

Proof: see Appendix.

Since both K1 and J1 involve the unknown density g(x), the asymptotic variance of (
√

n times)

the L2E can be consistently estimated by replacing K1 and J1 with their empirical versions from

the random sample, K̂1 and Ĵ1, where

K̂1(π, λ1, λ2) =
1

n− 1

n∑

i=1

u(Xi; π, λ1, λ2)uT (Xi; π, λ1, λ2)f2(Xi; π, λ1, λ2)

− 1
n2(n− 1)

{
n∑

i=1

u(Xi; π, λ1, λ2)f(Xi; π, λ1, λ2)

} {
n∑

i=1

u(Xi; π, λ1, λ2)f(Xi;π, λ1, λ2)

}T

,

and

Ĵ1(π, λ1, λ2) =
1
n

n∑

i=1

u(Xi; π, λ1, λ2)uT (Xi; π, λ1, λ2)f(Xi;π, λ1, λ2)

− 1
n

n∑

i=1

i(Xi; π, λ1, λ2)f(Xi; π, λ1, λ2) +
∞∑

x=0

i(x; π, λ1, λ2)f2(x; π, λ1, λ2).

Substituting estimates for π, λ1 and λ2 in these expressions yields the sandwich estimate of the

variance-covariance matrix of the L2E for (π, λ1, λ2).

To measure the uncertainty of all the estimators, the generalized variance can be calculated.
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4.2 Influence Function and Asymptotic Relative Efficiency

Using the results for the MDPDE from Basu et al. (1998), in two-component Poisson mixture

models, the influence function of the L2E for (π, λ1, λ2) has the form

IL2E(G, y) = J−1
1 (π, λ1, λ2)




f1(y;λ1)− f2(y;λ2)− EG [f1(x;λ1)− f2(x; λ2)]
π ∂

∂λ1
f1(y; λ1)−EG

[
π ∂

∂λ1
f1(x; λ1)

]

(1− π) ∂
∂λ2

f2(y; λ2)−EG

[
(1− π) ∂

∂λ2
f2(x;λ2)

]


 , (20)

where y is the contaminating value, J1 is as shown in (20) and G is the true distribution from which

the random sample is generated.

The following argument shows the influence function for π is bounded. The first derivative of a

Poisson density with respect to its parameter λ can be expressed in the form of −f(x; λ)+f(x−1;λ).

Since this is the difference of densities of two Poisson distributions, which are always between 0

and 1, the influence function for (λ1, λ2) is also bounded. When the contaminating value y goes

to infinity, then f1(y; λ1) − f2(y; λ2) vanishes for Poisson distributions, as do ∂f1(x; λ1)/∂λ1 and

∂f2(x; λ2)/∂λ2. The limit of the influence function as y →∞ can be expressed

lim
y→∞ IL2E(y) = −J−1(π, λ1, λ2)




∞∑
x=0

{f1(x; λ1)− f2(x;λ2)}g(x)
∞∑

x=0
π{ ∂

∂λ1
f1(x;λ1)}g(x)

∞∑
x=0

(1− π){ ∂
∂λ2

f2(x; λ2)}g(x)




. (21)

The influence function for the MLE can be derived as IMLE(G, y) = J−1
0 {u(y; π, λ1, λ2)− ξ0(π, λ1, λ2)}

where

ξ0(π, λ1, λ2) =
∞∑

x=0

u(x; π, λ1, λ2)g(x)

and

J0 =
∞∑

x=0

u(x;π, λ1, λ2)uT (x; π, λ1, λ2)f(x;π, λ1, λ2)

−
∞∑

x=0

i(x; π, λ1, λ2)(g(x)− f(x; π, λ1, λ2)).

Under model conditions, the unknown density g(x) can be replaced by the parametric density

f(x;π, λ1, λ2). Figure 2 plots the influence functions of the L2E and the MLE for the mixing pro-

portion π in certain two-component Poisson mixture models, assuming all parameters are unknown.

We observe that the influence functions of the L2E stays closer to zero than those of the MLE.
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And the change of the MLE can be dramatic when the contaminating value is very far away from

the bulk of the data. Both the L2E and the MLE are more robust for models with well separated

components and low mixing proportion on the first component π.
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Figure 2: Plot of Influence Functions of the L2E and MLE in 2-Component Poisson Mixture Models

with (λ1 = 1, λ2 = 3) and (λ1 = 1, λ2 = 8).

The asymptotic relative efficiency of the L2E is studied here to evaluate its asymptotic efficiency

compared to the MLE. Under model conditions, the ARE of the L2E can be calculated from the

asymptotic variance-covariance matrix of the MLE

J−1
0 =

{ ∞∑

x=0

u(x; π, λ1, λ2)uT (x; π, λ1, λ2)f(x;π, λ1, λ2)

}−1

and the asymptotic variance-covariance matrix of the L2E, J−1
1 K1J

−1
1 , where K1 and J1 are as

shown in (18) and (19). Table 3 displays the asymptotic relative efficiencies of the L2E in some

two-component Poisson mixture models. For each model, the ratio of the generalized variance of
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the MLE to that of the L2E is displayed in the last column.

Table 3: AREs of the L2E in Certain 2-Component Poisson Mixture Models with All Parameters

Unknown

π π̂ λ̂1 λ̂2 ratio of generalized variance
λ1 = 1, λ2 = 2 .2 .43 .49 .37 .33

.5 .35 .42 .29 .25

.8 .23 .31 .17 .13
λ1 = 1, λ2 = 3 .2 .68 .75 .55 .52

.5 .56 .65 .43 .41

.8 .35 .48 .24 .22
λ1 = 1, λ2 = 5 .2 .94 .93 .70 .67

.5 .87 .87 .61 .59

.8 .61 .70 .38 .37
λ1 = 1, λ2 = 8 .2 .95 .95 .73 .66

.5 .92 .84 .73 .59

.8 .77 .75 .64 .45

It is observed that the L2E is more efficient for the model with well separated components and

low mixing proportions on the first component. This pattern is consistent with the case with only

the mixing proportion unknown. Also it is noticed that when the mixing proportion for the first

component is high and the two components are poorly separated, the asymptotic relative efficiency

of the L2E can be even lower than 20%. The efficiency of the L2E for λ2 is the lowest compared

to the other two parameters, possibly because the second component is more variable and the L2

method tends to ignore some large values from the second component.

5 Simulation Study

The performances of the L2E, the MLE and the MHDE in Poisson mixtures with finite sample size

are compared in this section through some simulation studies. The relative mean squared error is

utilized to measure the efficiencies of the estimators, assuming the model is correctly specified. To

examine the robustness of the estimators in small samples, their sensitivity curves and relative mean

squared errors in some contaminated models are compared. For brevity, we examine two-component

cases only, but similar results can be obtained with k-component cases (Shen, 2004). In Section 5.1
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the performance of the estimators will be evaluated in two-component Poisson mixtures with only

the mixing proportion unknown. In Section 5.2 the two-component Poisson mixture model with all

three parameters (π, λ1, λ2) unknown is investigated. All computations were performed using R.

5.1 Two-component Poisson Mixture Model with π Unknown

In this section, it is assumed the data are from a two-component Poisson mixture model with

density as (1) while k = 2 and only the mixing proportion π is unknown. To obtain the L2E, the

closed form estimator in (6) is used and the estimator is truncated when it is out of the parameter

space. To calculate the MLE for π, the method of bisection is utilized. The HELMIX algorithm

proposed by Karlis and Xekalaki (1998) is applied to get the MHDE for π. For both the ML method

and the MHD method, two different initial values are used for π, π = .5 and the proportion in the

model from which the data are generated.

5.1.1 Correctly Specified Models

In the case of a correctly specified model, the simulated samples are from a two-component Poisson

mixture model with parameter (π, λ1, λ2), where λ1 and λ2 are assumed known. To compare the

efficiencies of estimators, for large samples, we compare their asymptotic relative efficiencies with

respect to the MLE. For small samples, we compare their relative mean squared errors (RMSE)

with respect to the MLE, that is,

RMSE(L2E) =
MSE(MLE)
MSE(L2E)

, RMSE(MHDE) =
MSE(MLE)

MSE(MHDE)
. (22)

The mean squared error (MSE) of an estimator θ̂ for a parameter θ is defined as

MSE(θ̂) = E[(θ̂ − θ)2].

Via some simulation studies, the mean squared error can be estimated by its empirical mean squared

error defined as

ˆMSE(θ̂) =
1
ns

ns∑

i=1

(θ̂i − θ)2, (23)

where ns is the number of replicates performed in the simulation study and θ̂i is the estimate

obtained in ith replicate.
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Figure 3: RMSE of L2E and MHDE for π in Certain two-component Poisson Mixtures

Figure 3 plots the simulation results for certain two-component Poisson mixtures. The mixing

proportion π is taken on different values from .1 to .9 to evaluate its effect on the efficiencies of

the estimators. For each parameter vector 3000 samples with sample size n = 100 were generated

independently from the corresponding mixture distribution and the empirical relative mean squared

errors of the L2E and the MHDE are calculated by taking the ratio of the empirical MSEs of the

L2E and the MHDE to that of the MLE. The estimator for the variance of the ratio of two empirical

MSEs proposed by Juarez (2003) is calculated here to measure the accuracy of the estimates of

RMSE. The magnitude of the estimates of these standard errors is much smaller than that of the

empirical RMSEs.

With sample size 100, the MLE is more efficient than the L2E and the MHDE if the model

is correctly specified. The L2E performs better for the models with well separated components

and low mixing proportions of the first component. This observation is consistent with what we

have seen for the asymptotic efficiencies of the L2E. When the two components are well separated,

the L2E is more efficient than the MHDE. In models with poorly separated components, the

performance of the L2E is about the same as that of the MHDE except for the mixing proportion

of the first component being very high. When π = .9, the MHDE is superior to the L2E with

respect to the RMSE. When the two components are poorly separated and most of the data are
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from the first component, the MHD method is more likely to ignore some relatively large values

from the second component and treat all the observation as from the first component. Hence, most

of the estimates are close to 1 and the MHDE has a smaller variance compared to the MLE and

the L2E. This can be confirmed with the positive bias of the MHDE. When the true value of π

is .90, the bias of the MHDE does not increase the RMSE much compared to the decrease of the

RMSE by its small variance.

5.1.2 Contaminated Models

This section evaluates the performance of the estimators when there are gross errors existing in the

two-component Poisson mixture model. The data are generated from the contaminated distribution

(1− ε)F (x; π, λ1, λ2) + εF (x;λ3), 0 ≤ ε ≤ .5. (24)

In this model, the data are generated from two sources. The bulk of the data come from the

specified two-component Poisson mixture distribution with the probability 1 − ε. The rest of the

data come from the contaminating Poisson distribution F (x; λ3) with probability ε. The ε is also

known as the contaminating rate.

The relative mean squared error is also used here to measure the performance of the estimators.

Table 4 lists the result of some simulation studies with data simulated from certain contaminated

distributions. It is assumed that the data are from the contaminated distribution as shown in (24)

with λ1 = 1 and λ2 = 3. The parameter of the contaminating component λ3 is set at different

values from 7 to 20 and two contaminating rates ε = .05 and ε = .10 are chosen. The mixing

proportion for the first component π is taken from .2 to .8. The empirical mean squared errors are

calculated based on 1000 replicates with sample size 100. The numbers in the parentheses are the

estimates of the standard errors of the empirical RMSEs.

Table 4 shows that when the underlying distribution is contaminated, the L2E and the MHDE

are more robust than the MLE, particularly for a high contaminating rate and large proportion of

the first component. In the simulation studies, the contaminating components are at the right tail

of the underlying distribution, and the contaminants are more likely to affect the second component

compared to the first component. When π is high, only a small portion of the data are from the

second component and the estimators are more likely to be affected by the contaminants in this
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Table 4: Empirical RMSEs of the L2E and MHDE for π in Certain Contaminated 2-component

Poisson Mixture Models with λ1 = 1 and λ2 = 3

L2E MHDE L2E MHDE
π ε λ3 = 7 λ3 = 12

0.20 0.05 0.98 (0.03) 1.02 (0.01) 1.06 (0.01) 1.02 (0.03)
0.10 1.38 (0.01) 1.21 (0.04) 1.52 (0.06) 1.35 (0.05)

0.50 0.05 1.13 (0.03) 1.17 (0.02) 1.39 (0.04) 1.34 (0.06)
0.10 1.89 (0.05) 1.58 (0.03) 2.56 (0.08) 2.60 (0.11)

0.80 0.05 1.49 (0.04) 1.80 (0.04) 1.90 (0.06) 2.33 (0.11)
0.10 2.39 (0.06) 2.10 (0.04) 3.50 (0.11) 5.53 (0.23)

λ3 = 15 λ3 = 20

0.20 0.05 1.05 (0.03) 0.97 (0.04) 1.05 (0.03) 0.91 (0.03)
0.10 1.51 (0.06) 1.29 (0.06) 1.53 (0.07) 1.19 (0.06)

0.50 0.05 1.35 (0.04) 1.28 (0.06) 1.42 (0.05) 1.25 (0.07)
0.10 2.58 (0.08) 2.49 (0.12) 2.74 (0.08) 2.64 (0.13)

0.80 0.05 1.94 (0.06) 2.26 (0.12) 1.90 (0.06) 2.29 (0.13)
0.10 3.46 (0.10) 6.14 (0.28) 3.61 (0.10) 5.38 (0.27)

case.

The influence functions of the L2E and the MLE for the mixing proportion in certain two-

component Poisson mixture models have been shown in Chapter 3. One of the finite sample

versions of the influence function is Tukey’s (1970/1971) Sensitivity Curve. With a random sample

X1, X2, . . . , Xn, the sensitivity curve of an estimator T at the value x is defined as

SCn(x) = n[T (X1, . . . , Xn−1, x)− T (X1, . . . , Xn)],

where T represents the dependence of the estimator on the underlying distribution. The average

of sensitivity curves over the simulations is calculated to evaluate the local robustness of the esti-

mators. Figure 4 plots the sensitivity curves of the MLE, the L2E and the MHDE with different

contaminating values, assuming the underlying distribution is a two-component Poisson mixture

distribution with π = .3, λ1 = 1 and λ2 = 3.

It is observed that when the contaminating value is very extreme for the underlying parametric

distribution, the L2E and the MHDE are more robust than the MLE, and the MHDE performs the
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Figure 4: Sensitivity Curves of the L2E, the MLE and the MHDE in 2-component Poisson Mixture

Model with π = .3, λ1 = 1 and λ2 = 3.

best. When the contaminating value is moderately far away from the bulk of the data, the L2E is

less sensitive to the contaminants than the MLE and the MHDE.

Hjort (1994) shows that the log-likelihood is close to a weighted L2 distance with weight given

by the inverse of the empirical density of an observation. This procedure gives more weight to

the contaminant, which has a lower frequency compared to the observations from the underlying

distribution. The L2 method gives equal weight to each observation. This explains why the MLE

is more sensitive to the contaminants than the L2E. The Hellinger distance can also be treated as

a weighted L2 distance with weight in the form

w =
√

fθ(x)g(x)
(g(x)− fθ(x))2

.

If x is an outlier to the parametric density fθ(·), the weight for x is close to

w '
√

fθ(x)g(x)
g2(x)

=
√

fθ(x)
g(x)

√
g(x)

.

Since the weight is proportional to the parametric density of the underlying distribution, if the

observation is very extreme in the parametric distribution, it receives no weight in the procedure

and the MHDE is the most robust estimator. In our sample shown in Figure 4, the MHDE is more
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robust than the L2E only if the contaminant is more than 5 standard deviations away from the

mean of the underlying distribution.

5.2 Two-component Poisson Mixture Models with (π, λ1, λ2) Unknown

When all the parameters (π, λ1, λ2) are unknown, the L2E is calculated using the R function “nlm”.

The conventional EM algorithm is applied to calculate the MLE and the HELMIX algorithm given

by Karlis and Xekalaki (1998) is the method for evaluating the MHDE.

5.2.1 Correctly Specified Models

This section compares the efficiencies of the estimators in correctly specified two-component Poisson

mixture models for small samples. Table 5 summarizes the ratios of the estimated generalized

variances of the MLE to those of the L2E and the MHDE for several two-component Poisson

mixture models from a simulation study with 1,000 replicates and sample size 100.

Table 5: The Ratios of the Estimated Generalized Variances of the MLE to Those of the L2E and

the MHDE for (π, λ1, λ2) in Certain 2-component Poisson Mixture Models

π = 0.2 π = 0.5 π = 0.8
Estimator λ1 = 1, λ2 = 2

L2E 0.84 0.82 0.91
MHDE 10.28 5.29 2.98

λ1 = 1, λ2 = 5
L2E 0.68 0.61 0.15

MHDE 1.43 0.93 0.61

It is observed that when the two components are well separated, the MLE performs the best.

When the two components are poorly separated, the MHDE is more efficient than the L2E and

the MLE. For all the models studied, the MHDE is more efficient than the L2E. The efficiencies

of the L2E and the MHDE depend on the mixing proportion π of the first component. Both

estimators perform better when the majority of the data are representing the second component,

which has a larger variance compared to the first component. A possible explanation for the

superior performance of the MHDE can be that the MHD method tends to ignore large values and

the estimator has much lower variability especially for λ2. This is supported by the negative biases
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of the MHDE for π1 and π2.

5.2.2 Contaminated Models

In this section, the performance of the estimators is studied for certain contaminated two-component

Poisson mixture models assuming all three parameters unknown. In addition, it is assumed that

the additional contaminating component is located at the right tail of the specified two-component

Poisson mixture model with the contaminating rate ε.

Figure 5 displays the plot of sensitivity curves of the estimators for the mixing proportion π

with different contaminating values, assuming all three parameters are unknown. This figure is

based on a simulation study with 500 replicates and sample size 100.
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Figure 5: Sensitivity Curves of the Estimators for π in 2-component Poisson Mixture Model with

π = .3, λ1 = 1 and λ2 = 3 (assuming all the parameters are unknown)

It is observed that when the contaminating value y is far away from the underlying distribution,

the MLE can be changed dramatically. Both the L2E and the MHDE are more robust to the con-

taminant than the MLE. If the contaminating value is very extreme to the underlying distribution,

the sensitivity curves for both the L2E and the MHDE are close to zero. When the contaminating

value is moderately far away from the bulk of the data, the MHDE can be affected considerably

while the L2E does not change much. Based on the simulation study, the MHDE is less robust
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than the L2E if the contaminant is within 6 standard deviation of the mean for the underlying

distribution.

6 Conclusions

This paper introduces a minimum L2 distance estimator (L2E) for the mixing proportion in k-

component mixture models with both known and unknown component distributions. One of the

main advantages of this method over other estimation methods used currently in mixture estimation

is that it offers a closed form estimator for the mixing proportion. The proposed estimator is more

robust to the existence of gross errors than the MLE while still retaining acceptable efficiency.

When the model is correctly specified, the ARE for the L2E of the mixing proportion is over .60.

If the weight for the component with larger variance is not too low, usually the ARE for the L2E

is higher than 80%. Compared to another minimum distance estimator, the minimum Hellinger

distance estimator (MHDE), the L2E is more robust when the contaminant is moderately far away

from the underlying distribution. Arguably these more moderate outliers are of greater importance

than extreme outliers, as they are harder to detect. The price to be paid for this improved robustness

to moderate outliers is a reduced efficiency of the L2E compared to the MHDE.

We have empirically demonstrated the improved robustness of the L2E to moderate outliers in

Poisson mixtures. However, the arguments in Section 5.1 imply the improved robustness should

hold in general.

Developing the L2E for Poisson mixture models when both the parameters for the Poisson

distributions and also the number of components k are unknown are under investigation by the

authors. For the Poisson mixture models, the fitted model can be obtained by starting with an

initial model with all the possible component parameters and including only those components with

positive weights. The model obtained by using this algorithm tends to have too many components

than it is needed. Some model choice criteria can be applied to balance the complexity of the model

and the goodness-of-fit with the data. The robustness of the L2 method to outliers in such cases

can be examined by comparing the number of components in the fitted model from the L2 method

with those from the ML and the MHD methods.
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Appendix

ASYMPTOTIC BEHAVIOR OF THE L2E FOR MIXING PROPORTION IN

TWO-COMPONENT MIXTURE DISTRIBUTIONS

Theorem 2.2 in Basu et al. (1997) gives a set of regularity conditions that ensure consistence

and asymptotic normality of the MDPDE. In this section, it is shown that this theorem can be

applied to the L2E for π in the mixture density by showing that the regularity conditions are

satisfied in mixture density with 2 known components.

1. It is easily to see that the support of the mixture density doesn’t depend on the interested

parameter π. So the first condition is satisfied.

2. The density fθ(x) = πf1(x)+ (1−π)f2(x). The first derivative of the density with respect to

π is f1(x) − f2(x), which does not involve the parameter π. So the 2nd and 3rd derivatives

are zero and hence the 3rd derivative is continuous with respect to the parameter π.

3. Assuming the mixture distribution is absolutely continuous, when the tuning parameter α =

1,

∫
f1+α

θ (x) dx =
∫

[πf1(x) + (1− π)f2(x)]2 dx

=
∫ {

π2f2
1 (x) + 2π(1− π)f1(x)f2(x) + (1− π)2f2

2 (x)
}

dx

= π2
∫

f2
1 (x) dx + 2π(1− π)

∫
f1(x)f2(x) dx + (1− π)2

∫
f2
2 (x) dx.

Since both f1(·) and f2(·) do not involve π, the derivative of
∫

f2
θ (x) dx can be taken under

the integral sign, i.e.

∂

∂π

∫
f2

θ (x) dx =
∫ {

2πf2
1 (x) + 2(1− 2π)f1(x)f2(x)− 2(1− π)f2

2 (x)
}

dx

and
∂2

∂π2

∫ {
f2

θ (x) dx =
∫

2f2
1 (x)− 4f1(x)f2(x) + 2f2

2 (x)
}

dx.

It is noticed that the 2nd derivative does not involve π so the 3rd derivative is zero, i.e. the

integral
∫

f2
θ (x) dx is three times differentiable and the differentiation can be taken under the

integral sign. Similar result can be obtained for discrete mixture distribution.
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4. It has been shown in Section 3.2 that the quantity J(θ) =
∫
[f1(x) − f2(x)]2 dx is positive

definite.

5. When the tuning parameter α = 1, then Vn,θ(x) =
∫

f2
θ (x) dx−2fθ(x). We just showed above

that the 3rd derivative of
∫

f2
θ (x) dx is zero and the 3rd derivative of fθ(x) is also zero. So

the 3rd derivative of Vn,θ(x) is zero, and Mjkl(x) can be set to any positive constant function

and the expected value of Mjkl(x) exists. Thus condition (5) is also satisfied.

ASYMPTOTIC BEHAVIOR OF THE TRUNCATED L2E FOR MIXING PROPORTION

IN TWO-COMPONENT MIXTURE DISTRIBUTIONS

From (11) and (12), when the mixing proportion π is not on the boundary of the parameter

space, the indicator function I(1,∞)(π̂) in (13) converges in probability to 0, as does the function

I[0,1](π̂). It is noticed that the L2E , π̂L2E , for the mixing proportion is a function of some sample

average and is unbiased for π. Thus π̂L2E converges in probability to π by the weak law of large

numbers. Theorem 2.1.3 in Lehmann (1998) indicates that if two sequences of random variables

An and Bn converge in probability to constants a and b respectively, then the sum, difference and

multiplication of An and Bn also converge in probability to the sum, difference and multiplication

of a and b. With a simple application of this theorem, it can be proved that π̂trunc converges in

probability to π, i.e. it is also consistent for π. Also it is shown in Theorem 3.1 that the L2E for π

converges in distribution to a random variable with normal distribution. Lemma 2.3.2 in Lehmann

(1998) states that if a sequence of random variables Yn converge in law to some random variable

Y , and a and b are constants with b 6= 0, then bYn + a converges in law to bY + a. By this lemma,

the truncated L2E for π converges in law to the same normal distribution.

ASYMPTOTIC BEHAVIOR OF L2E FOR (π1, . . . , πk−1)

In this section, it is shown the regularity conditions in Theorem 2.2 in Basu et al. (1997) are

satisfied in mixture models with k-component mixture models with only the mixing proportions

unknown.

1. The support for the mixture density is the same as the union of supports for the density

components and it does not involve the mixing proportions. So the first condition is satisfied.
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2. The density f(x; θ) = π1f1(x) + π2f2(x) + · · · + (1 − π1 − π2 − · · · − πk−1)fk(x). The first

derivative of the density with respect to πi is fi(x) − fk(x), which does not involve any

parameter πj . So the second and the third derivatives are equivalent to zero and hence the

third derivative is continuous with respect to the parameter vector π.

3. The integral
∫

f1+α(x; θ) dx =
∫

f2(x; θ) dx when the tuning parameter α = 1.

∫
f2(x; θ) dx =

∫ 



k∑

j=1

πjfj(x)





2

dx

Since all the component densities f1(·), f2(·), . . . , fk(·) do not involve the mixing proportions

π1, . . . , πk−1, the derivative of
∫

f2(x; θ) dx with respect to π can be taken under the integral

sign.
∂

∂πi

∫
f2(x; θ) dx =

∫
2f(x; π)(fi(x)− fk(x)) dx

∂2

∂πiπj

∫
f2(x; θ) dx =

∫
2(fj(x)− fk(x))(fi(x)− fk(x)) dx

∂3

∂πiπjπm

∫
f2(x; θ) dx = 0

So the integral
∫

f2(x; π) dx is three times differentiable and the differentiation can be taken

under the integral sign.

4. In section 3 it was shown that the matrix J1(π) is a k − 1 by k − 1 symmetric matrix with

elements

Ji,j =
∫

(fi(x)− fk(x))(fj(x)− fk(x)) dx i, j = 1, . . . , k − 1.

Let y = (y1, . . . , yk−1)′ be any vector with real numbers, then y′Jy can be expressed as

y′Jy =
k−1∑

i=1

k−1∑

j=1

yiyj

∫
(fi(x)− fk(x))(fj(x)− fk(x)) dx

=
∫ k−1∑

i=1

k−1∑

j=1

yiyj(fi(x)− fk(x))(fj(x)− fk(x)) dx

=
∫ (

k−1∑

i=1

yi(fi(x)− fk(x))

)2

dx.

This quantity is positive assuming the density components are identifiable. So the matrix J

is positive definite and A4 is satisfied.
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5. When the tuning parameter α = 1,

Vn,θ(x) =
∫

f2(x; π) dx− 2f(x; π).

The third derivative of
∫

f2(x; π) dx is zero as shown in 3, and the third derivative of f(x; π)

is also zero as shown in 2. So the third derivative of Vn,θ(x) is zero. Thus Mjkl(x) can be set

to any positive constant function and the expected value of Mjkl(x) exists.

The consistency and asymptotic normality are proven for the L2E of π.

ASYMPTOTIC BEHAVIOR OF THE L2E FOR (π, λ1, λ2) IN TWO-COMPONENT

POISSON MIXTURE MODEL

In this section, it is proved that Theorem 2.2 in Basu et al. (1997) can be applied to the L2E

for (π, λ1, λ2) in two-component Poisson mixtures. It is shown that the regularity conditions are

satisfied in such models.

1. The support for the Poisson mixture model is χ = {x : x = 0, 1, 2, . . .}, which does not depend

on a parameter. Thus the first condition is satisfied.

2. The density fθ(x) = π1f1(x) + (1− π)f2(x), where f1(·) and f2(·) are Poisson densities with

parameters λ1 and λ2. The third derivatives of the density are

∂3

∂λ3
1

fθ(x) = π
∂3

∂λ3
1

f1(x; λ1)

∂3

∂λ3
2

fθ(x) = (1− π)
∂3

∂λ3
2

f2(x; λ2)

∂3

∂π∂λ2
1

fθ(x) =
∂2

∂λ2
1

f1(x; λ1)

∂3

∂π∂λ2
2

fθ(x) = − ∂2

∂λ2
2

f2(x; λ2)

and all the other third derivatives are zero. It is known the Poisson density is three times dif-

ferentiable with respect to the parameter λ and the third derivative is continuous with respect

to λ. Thus it is obvious that the mixture Poisson density fθ(x) is three times differentiable

and the third partial derivatives are continuous with respect to the parameter (π, λ1, λ2).

Hence, the second condition is satisfied.

30



3. Now we prove that
∞∑

x=0
f2

θ (x) is three times differentiable with respect to (π, λ1, λ2).

∂

∂θ1

∞∑

x=0

f2
θ (x) =

∞∑

x=0

2fθ(x)
∂

∂θ1
fθ(x)

∂2

∂θ1∂θ2

∞∑

x=0

f2
θ (x) = 2

∞∑

x=0

{
∂

∂θ1
fθ(x)

∂

∂θ2
fθ(x) + fθ(x)

∂2

∂θ1∂θ2
fθ(x)

}

∂3

∂θ1∂θ2∂θ3

∞∑

x=0

f2
θ (x) = 2

∞∑

x=0

∂2

∂θ1∂θ3
fθ(x)

∂

∂θ2
fθ(x) +

∂

∂θ1
fθ(x)

∂2

∂θ2∂θ3
fθ(x)

+
∂

∂θ3
fθ(x)

∂2

∂θ1∂θ2
fθ(x) + fθ(x)

∂3

∂θ1∂θ2∂θ3
fθ(x)

Since the mixture density fθ(x) is three times differentiable with respect to θ = (π, λ1, λ2),

the quantity
∞∑

x=0
f2

θ (x) is also three times differentiable and the derivative can be taken under

the summation sign.

4. The symmetric matrix J(π, λ1, λ2) has the form

∞∑

x=0




(f1 − f2)2 πf ′1(f1 − f2)− f ′1(g − fθ) (1− π)f ′2(f1 − f2) + f ′2(g − fθ)
· · · π2(f ′1)2 − πf ′′1 (g − fθ) π(1− π)f ′1f ′2
· · · · · · (1− π)2(f ′2)2 − (1− π)f ′′2 (g − fθ)




where f1 and f2 are the Poisson component densities with parameters λ1 and λ2, and f ′i and

f ′′i are the first and second derivatives of the Poisson density with respect to the parameter

λ. Now let θ = (π, λ1, λ2) represents the best fitting value of the parameter such that

∞∑

x=0

uθ(x)fθ(x)(gn(x)− fθ(x)) =

∞∑

x=0

(
f1(x)− f2(x), πf ′1(x), (1− π)f ′2(x)

)′ (g(x)− fθ(x)) = 0.

And let ω be an open subset of the parameter space Ω containing the best fitting parameter

θ and

ω =

{
(λ1, λ2) :

∣∣∣∣∣
∞∑

x=0

f ′1(g − fθ)

∣∣∣∣∣ < ε,

∣∣∣∣∣
∞∑

x=0

f ′′1 (g − fθ)

∣∣∣∣∣ < ε,

∣∣∣∣∣
∞∑

x=0

f ′2(g − fθ)

∣∣∣∣∣ < ε,

∣∣∣∣∣
∞∑

x=0

f ′′2 (g − fθ)

∣∣∣∣∣ < ε

}
,

where ε is some infinitesimal number. The continuity of the first derivative of a Poisson

density in the parameter guarantees the existence of such a subset ω. For any parameter

value θ ∈ ω, the matrix J is in the form J =
∞∑

x=0
uθ(x)uT

θ (x)f2
θ (x), which is positive definite,

assuming λ1 6= λ2.
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5. When the tuning parameter α = 1, then Vn,θ(x) =
∞∑

x=0
f2

θ (x) − 2fθ(x). The third derivative

of Vn,θ is in the form of

∂3

∂π∂λ1∂λ2
Vn,π,λ1,λ2 = 2(1− 2π)

∞∑

x=0

{
∂

∂λ1
f1(x;λ1)

∂

∂λ2
f2(x; λ2)

}
,

and
∣∣∣∣∣

∂3

∂π∂λ1∂λ2
Vn,π,λ1,λ2

∣∣∣∣∣ = 2

∣∣∣∣∣
∞∑

x=0

{
(1− 2π)

∂

∂λ1
f1(x;λ1)

∂

∂λ2
f2(x; λ2)

}∣∣∣∣∣

≤ 2
∞∑

x=0

|1− 2π|
∣∣∣∣

∂

∂λ1
f1(x; λ1)

∣∣∣∣
∣∣∣∣

∂

∂λ2
f2(x;λ2)

∣∣∣∣ = Mjkl(x) = EG[Mjkl(x)].

Since 0 ≤ π ≤ 1, |1 − 2π| ≤ 1 and Mjkl(x) ≤ 2
∞∑

x=0

∣∣∣ ∂
∂λ1

f1(x; λ1)
∣∣∣
∣∣∣ ∂
∂λ2

f2(x; λ2)
∣∣∣. Also it has

been shown in Section 4.1 that

∂

∂λ
f(x; λ) = f(x− 1;λ)− f(x; λ) x = 1, 2, 3, . . .

and
∂

∂λ
f(x;λ) = −f(x;λ) x = 0.

Both
∣∣∣ ∂
∂λ1

f1(x; λ1)
∣∣∣ and

∣∣∣ ∂
∂λ2

f2(x; λ2)
∣∣∣ are less than or equal to 1. We obtain

Mjkl(x) ≤ 2
∞∑

x=0

∣∣∣∣
∂

∂λ1
f1(x; λ1)

∣∣∣∣ = 2

(
f1(0;λ1) +

∞∑

x=1

|f1(x− 1;λ1)− f1(x; λ1)|
)

.

Also

|f1(x− 1;λ1)− f1(x; λ1)| ≤ |f1(x− 1;λ1) + f1(x; λ1)| = f1(x− 1;λ1) + f1(x; λ1),

and

Mjkl(x) ≤ 2(f1(0;λ1) + 1 + 1− f1(0;λ1)) = 4.

So EG[Mjkl(x)] is bounded for any (π, λ1, λ2) in the parameter space and condition (5) in

Theorem 2.2 in Basu et al. (1997) is satisfied.

The consistency and asymptotic normality are proven for π̂L2E .
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