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Abstract

A Fisher’s-type test for the significance of the maximum ordinate of
the periodogram of a categorical time series was developed in McGee and
Ensor (1998). The test was based on the Walsh—Fourier periodogram,
which is more suitable for data which exhibit sharp jumps rather than
smooth curves. In this paper, the results to tests of the significance of
peaks in the Walsh—Fourier periodogram are extended to peaks other than

the maximum.

Keywords. categorical time series, spectral envelope, Walsh—Fourier peri-

odogram, extreme—value theory.

1 Introduction

Categorical time series are serially correlated data which are gathered in terms of
states (or categories) at discrete time points. The categories respresent a nomial
measure scale. Such series are found in many fields of application, including
medicine (Stoffer et al.,1988), meteorology (Chang et al.,1984), and geosciences
(Negi, et a., 1993). A recent overview of time domain methods for the analysis
of categorical time series is provided in Fokianos and Kedem (2003).

In many of these applications, it is desirable to detect a pattern in the time
series and analyze its frequency characteristics. Spectral analysis is one tool
by which statisticians determine the existence of a pattern in a time series. In
order to decompose a time series into frequency components, a transform based

on a set of complete orthogonal functions is used.



McGee and Ensor (1998) developed several tests for significance of the max-
imum peak in the spectra of categorical time series. The tests were based on
decomposing the data with Walsh functions, a complete orthogonal set of func-
tions which consist of square waveforms taking on the values of +1 and —1.
Because the Walsh functions are not smooth, they are able to follow discrete
levels in categorical time series (Beauchamp, 1984). Fourier analysis, based
on smooth sine and cosine waves, cannot capture accurately the sharp changes
found in categorical time series.

Typically, the states in a categorical time series are assigned numbers in
order to facilitate graphing and analysis. However, assigning numbers to a series
of states can often mask some periodic behaviours while highlighting others.
Stoffer, et al. (1993) proposed representing a categorical time series X (¢) as a
matrix whose dimension is the number of categories (C') by the sample size (N).
A C dimensional time series is defined by R(t) = ex when category k occurs
at time t, where e;, is a column vector of length C with a 1 in the k" row and
zeros elsewhere. This solves the problem of assigning values to the categories of
the time series for the case of categories representing a nominal measurement
scale.

Using the above matrix—valued time series representation, the Walsh—Fourier

transform at sequency A is defined as
N—1
dy(N) = NN ROW(LA)  0<A <1, (1)
t=0

For the above equation, R(0), R(1), ..., R(N —1) be a sample of length N = 29
from a C' x 1 vector—valued stationary time series {R(¢), t = 0,%+1,+2,...}.
This series has a C x C autocovariance function where I'(h) = cov{R(t +

h),R(t)}, h = 0,£1,%£2,.... W(t ) is the value of the Walsh transform at



the time and sequency of interest, where W (t,-) is a 1 x N vector of +1 and —1
that makes ¢ zero crossings in [0,1). For example, (0, -) would be represented
by a vector of +1 (no zero crossings) of length N. W (5,-) represents a vector
in which there are 5 equally-spaced switches from +1 to —1 within the unit
interval.

The Walsh—Fourier periodogram of the data is given by
In(N) = dn(Ndy (), (2)

Note that this definition gives us a WFP which is a C' x C matrix at each
sequency A; however, the rank of this matrix is one, which means that only one
(nonzero) eigenvalue exists. Since this value is not dependent on the scaling of
the time series, one need not worry about the proper way to scale a series such
that the analysis is not affected. Stoffer, Tyler, and McDougall (1993) call this
value the “spectral envelope”, so named because it “envelopes the standardized
spectrum of any scaled process”.

We define the spectral envelope as
w(A) = dy(Ndn(N), (3)

which has the same eigenvalue as (2). In fact, it is itself this eigenvalue. The
distribution of this value based on the hypothesis that the data are from a white
noise process is X2071, and, by the white noise assumption, the w(}\;) will be
asymptotically independent (McGee and Ensor, 1998). In the sequel, we will
denote w(};) as wj.

While some spectra may have only one peak of interest (the maximum),
some may have two or more peaks, each of which is interpretable in the context

of the data. Neonatal sleep state data are an example of data which have



multiple peaks, only some of which have practical significance for the problem.
Stoffer, et. al. (1988) found that the two largest peaks in the Walsh-Fourier
periodogram could be interpreted in the context of the data. The largest peak
represented the number of zero—crossings for the series, while the second largest
represented the average number of minutes a given infant stayed in a particular
sleep-state. It would be useful to have a test for the significance of all interesting
peaks in categorical time series spectra. In the next section, the distributions
of the k' largest peaks of the WFP are given and a test statistic proposed.
In Section 3, we perform a simulation study of the size and power of the test

statistics. We conclude with an example of neonatal sleep state data.

2 The Distribution of the kth Largest Ordinate

Before giving the distribution of the k" largest ordinate, we first review the
distribution of the maximum ordinate. Further details are found in McGee and
Ensor (1998) and McGee (1994).

The distribution of the maximum periodogram ordinate (W) involves the
maximum order statistic from x%_; variates. From extreme-value theory, we
know that the X%*—1 distribution belongs to the domain of attraction of the
exponential type extreme-value distribution (Gumbel, 1962). This means that

we want to choose constants any and by such that
lim P(Zy < an +byz) = exp(—e™ %), —00 < & < 400

N—o0

where Zy = max(X(),..., X)) and X(;) denotes the jth order statistic.

b ()

Galambos (1978) showed that

aNinf{:cle(x)g
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and
P(F)

by = [1— Flax)] ™" / 1 - F(t)]dt (5)

N

where ¢(F) = sup{x : F(z) < 1} and F(-) is the cumulative distribution func-
tion. For the WFP, ay is the 1—(1/N)th quantile of the x%_, distribution, and
by is found by approximating the incomplete Gamma function with its asymp-
totic expansion. However, the larger the value of C, the greater the number of
terms needed in the expansion in order to obtain a good approximation for by .
In addition, by can be given in closed form only when C is odd. Equation (6)

shows the closed forms for C' =3, C =5, and C = 7.

2Ne~an/2 if C=3;
by = Ne=*V/2(4 + ay), if C' = 5; (6)

Ne=®V/2(6 4+ 2ay + %), fC=T.

When C is even, McGee and Ensor used an empirical value for by, using
the fact that ay can be considered as the “y-intercept” of the unstandardized
quantile-quantile plot of the simulated maximum values from the WFP versus
the true extreme value distribution, and that by is the “slope” of this line.
Regressing these intercepts on these slopes for various values of C' gives us
an equation for the relationship between C' and by. This equation is by =
1.762 4+ 0.081C.

With ay and by defined as in equations (4) and (5), the asymptotic distri-

bution of the maximum ordinate of the WFP is given by

Wazan d,
bn

where the cumulative distribution function of X is Fx (z) = exp(—e™%).

The k'" largest periodogram ordinate (out of n such ordinates) will be de-



noted by Wy, _gi1.n, for & > 1. Its distribution can be obtained easily once
the distribution of the maximum is known. David and Nagaraja (2003) gave
a general result for the distribution of the k*" largest order statistic given the
maximum order statistics. Using their formulation, the distribution of the k"

order statistic for the WFP is

k—1 ;
Aw))?
FWn—k+l:n (SL’) = FW(w) Z ]' ) (7)
§=0
where A(w) = —logFw (w). Therefore, for the second largest ordinate, the
limiting distribution is given by
Fuw, ., (w) = exp(—e™*)(e™ +1) (®)

In theory, a similar result to (8) will hold for any order statistic, such as the
median, with the appropriate modification of (7). Conditions for these equations
are met for distributions from the “exponential type” domain of attraction for
extreme value distributions. The ordinates of the Walsh—Fourier periodogram
have a x? distribution, which implies that they naturally meet the conditions
for these formulations to hold.

David and Nagaraja (2003) further show that the standardizing constants ay
and by remain the same as for the maximum order statistic. It is therefore easy
to use (7) to derive the distribution of any order statistic for the Walsh-Fourier
periodogram. However, if we want to solve (7) for w in order to obtain quantiles
of Fy, _,.. (x) (given a vector of probabilities), we must do so numerically. For
the graphs and tables that follow, (8) was solved for x using the function “nlm”
in the R package.

Figure 1 compares the distribution given in (8) with the empirical distribu-
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Figure 1: QQ Plots of the Empirical Distribution (on y—axis) vs. the Extreme Value
Distribution (on x—axis). (a) N =128, C =3, (b) N =512, C =3, (c) N=128, C =

5,(d) N=512, C =5



Number of Theoretical Size

Categories 0.10 0.05 | 0.01

C=2 0.0742 | 0.041 | 0.006

cC=3 0.098 | 0.044 | 0.009

C=4 0.098 | 0.049 | 0.010

C=5 0.098 | 0.049 | 0.010

Table 1: Empirical Size of the Simulated W,,_1.,, N = 512.

tion based on 5000 simulated replicates of W,,_1.,, calculated from a zero-mean
white noise series, where N = 128 and 512 and C' = 3 and 5. Except in the
right tail, the approximation is good for N = 128. It is good, even in the tail,
for N = 512. The empirical size of the test for N =512 and C =2, 3,4, and 5
is given in Table 1. The sizes are based on simulations of 2000 second-largest
periodogram ordinates where N = 512. Each simulation of 2000 was replicated
250 times. The simulation error was between 0.005 and 0.001 in all cases. Sim-
ulation error was calculated by taking the standard deviation of the alpha levels
resulting from the 250 replications.

The empirical size tends to approximate well the theoretical significance level
given by (8). The sizes for data with two categories are more conservative than
for the others, which match the theoretical sizes very well. This is because the
distribution from which we are taking the maximum is a x2. This distribution is
highly skewed; therefore, we might expect slightly worse convergence properties
than for the other cases. The simulated sizes for categories 4 and 5, although

they seem exactly the same, are really only the same to three decimal places.



3 Scaling W, 1.,

W, is an example of a test statistic for testing for the significance of the maxi-
mum peak in the Walsh—Fourier periodogram. Although Fisher’s test statistic is
scaled, it is not necessary to scale a similar statistic based on the Walsh—Fourier
periodogram. The values of the Fourier periodogram, on which Fisher’s statis-
tic is based, increase as the variance of the original time series increases. Wy is
based on the spectral envelope, which is unaffected by changes in scale. In the
interest of comparison, McGee and Ensor (1998) investigated three other test
statistics, each one based on Wy, but divided it by another statistic calculated
from the WFP (either the mean, median, or trimmed mean). They found that
the trimmed mean performed best in terms of size and power for the maximum
order statistic. Therefore, we examine the properties of W,,_1., scaled by the
trimmed mean.

Since it is the large order statistics in the spectral envelope that tend to un-
necessarily inflate the mean, we do not use a symmetric trimmed mean. Rather,
we trim the largest r order statistics from the WFP and calculate the mean with
the remaining n — r ordinates. This new statistic for the test of significance of

the second largest periodogram ordinate is given by

r anlzn

n—1— —r— ’ (9)
(N =)t Ny

where wi;) denotes the jth order statistic of the spectral envelope. In the sequel,
the term “trimmed mean” will refer to the asymmetric trimmed mean defined
above. The superscript refers to the number of order statistics trimmed when
calculating the mean.

It is necessary to compute the asymptotic distribution of W _;. We begin

10



by noting that the numerator of (9) has the distribution which was derived
previously. The denominator is quite a different matter. We want to find the
constant, denoted p,., to which the denominator converges in probability.

The value of ., which was originally derived in McGee and Ensor (1998),
is a linear function of the order statistics, called an L-estimate. One form for

L—estimates is given by

N . m
1 1
TN:N;J<N+1>h(XNi)+ZanN’[NpJ]’ (10)

Jj=1

where X; denotes the ith order statistic out of a sample size of N; J(u), 0 <
u < 1, is a generating function for weights; h(-) is a measurable function, 0 <
pr < -+ < pm < 1; and aq,...,a, are nonzero constants. This formulation
is a linear function of the ordered values plus a weight a; given to particular
percentiles if those percentiles are a part of the L-estimate. The trimmed mean
is given by (10) with J(u) = 1/(1 —a), 0 < u < 1 — a and zero otherwise,
h(z) = x forevery x and m = 0. Here and in the sequel, « = r/N. The limits
of the sum in (10) are 1 and N — [Na] for the trimmed mean.

Under certain conditions stated in Chernoff, Gastwirth, and Johns (1967),

and Serfling (1980), T}, 2 y, where

”T:/o J(u)H(u)du—l—jz:;ajH(pj), (11)

and H(-) = ho F~! (Serfling, 1980). The symbol “o” denotes the convolution
of its operands. Since h is the identity function in the case of the trimmed
mean, we need to consider only the inverse cumulative distribution function
when calculating ..

We perform the integration in (11) and obtain

Gop (Gl (1 - )]

pr=(C—=1)- 1—a

; (12)
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where G;(+) is the CDF of a x? random variable with i degrees of freedom.
Shorack and Wellner (1988) derive the value of p, for general distributions.
McGee (1994) gives more details for a x%_; distribution.

Hence, applying the previous calculations and Slutsky’s theorem,

ngl—aN i} X(I—Oé)
(N =) 2 ey (C=DGF(1—a)]

(13)

where Fx(z) = exp(—e 7)(e™* + 1).

Number of | Amount of Theoretical Size
Categories | Trimming 0.10 0.05 0.01
5 0.0736 | 0.0410 | 0.0107
2 26 0.0737 | 0.0410 | 0.0101
51 0.0744 | 0.0410 | 0.0098
5 0.0908 | 0.0447 | 0.0097
3 26 0.0911 | 0.0452 | 0.0098
51 0.0912 | 0.0454 | 0.0098
5 0.0977 | 0.0489 | 0.0101
4 26 0.0980 | 0.0490 | 0.0102
51 0.0980 | 0.0489 | 0.0102
5 0.0978 | 0.0483 | 0.0097
5 26 0.0981 | 0.0484 | 0.0098
51 0.0981 | 0.0485 | 0.0098

Table 2: Empirical Size of the Simulated W _, for Various Values of r, N = 512.

Table 2 presents information on the empirical probability of Type I error for

(9). The amount of trimming given in the table (i.e. 5, 26, and 51) corresponds

12



to 1%, 5%, and 10% trimming, respectively. Again, we simulate the size for
various values of the trimmed mean using 200 replications for each combination
of category and amount of trimming. Two thousand maxima from a WEP were
computed for each replication. Simulation errors were again between 0.001 and
0.005. Except for the size of the test for an alpha level of 0.10 and two categories,

which is a bit conservative, the sizes are very close to the theoretical values.

4 Performance of Test Statistics

In this section, we explore through simulation the power of the test for the sig-
inificance of the second largest periodogram ordinate. As an alternative model,

we use the clipped AR(1) model, given by

1, if Z, > u;
X, = { (14)

0, if Z, <u

where Z,, is an unobservable strictly stationary, continuous valued time process
and u is some fixed threshold level. A clipped AR(1) series can be used as a
model for which the outcome changes if a mean level crosses a certain threshold;
for example, a person might sell a stock if its price goes below a certain level.
The Walsh-Fourier periodogram of the clipped AR(1) model is analyzed in
Stoffer and Panchalingham (1987).

For the purposes of this paper, Z, = v1Z,_1 + €,, where y; = {0.1,0.3,0.5,
0.7,0.9} for different trials. In all trials, the threshold is 0. Only positive values
for the AR(1) coefficient are examined because previous simulation revealed
that the power curve is symmetric about zero. Various values of v, are tried in

order to ascertain if the amount of correlation in the AR(1) process affects the
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Figure 2: Coefficients of 71 versus Rejection Rate at the 0.05 Level of Significance for

Modified Statistics.

performance of the test. We find the spectral envelope of the clipped processes
and store the second largest ordinate and trimmed mean values for each run of
the simulation. In all of the following simulations, NV = 512. Before calculating
the rejection rate for a given clipped AR(1) model, the results are standardized
using the constants axn given in (4) and by given by the empirical equation
where C' = 2.

Figure 2 is a plot of the value of 1, the AR(1) coefficient, versus the percent
of values rejected from the clipped AR(1) model for W,,_1., and W, _,. For this
figure, the size of the test is 0.05. Results are similar for sizes 0.01 and 0.10,

in that, the larger the correlation in the clipped AR(1) model, the higher the

power. The values of r correspond to 1%, 5% and 10% trimming, in order to
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ascertain the effect of various amounts of trimming on the power of the test.
The legend in the upper left corner of the graph shows the symbol on the graph

corresponding to the plotting character for each of the modifications.

Coefficient of AR(1) Model

Statistic 0.1 0.3 0.5 0.7 0.9

Wi 1. || 0.047 | 0.119 | 0.419 | 0.911 | 0.999
W5, | 0.047 | 0.119 | 0.419 | 0.911 | 0.999

n

W26, 11 0.023 | 0.074 | 0.322 | 0.861 | 0.999

W5, | 0.014 | 0.046 | 0.241 | 0.799 | 0.999

Table 3: Coeflicient of v; with Corresponding Rejection Rates for W,,_1.,,, and

W’I‘

n—1»

N =512 and o« = 0.05.

Although it seems that the power for the unscaled test statistic and the
statistic divided by the trimmed mean for r = 5 is the same, they are actually
only the same to three decimal places. The similarity could also be caused by the
fact that the peaks in the clipped AR(1) spectrum, other than the maximum,
are small in magnitude. As the trimming increases, however, the gains in power
decrease slightly. This would indicate that it is best to have minimal trimming,
if at all. The judgment to trim should be based on the magnitude of the spurious

peaks.

5 An Example

Stoffer et. al. (1988) investigated Walsh—Fourier analysis as applied to neonatal
sleep data. The data involved 24 infants whose EEG patterns were recorded

during sleep for 119 to 122 minutes each. Twelve of the infants had mothers who
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Figure 3: (a) Realization of sleep state data for one infant. (b)Average Walsh—Fourier

periodogram for all 12 unexposed infant records.

had abstained from alcohol during pregnancy. The other twelve had mothers
who had drank moderate amounts of alcohol during pregnancy (defined as a
rate of 0.5 drinks per day). The researchers were interested in comparing the
differences in sleep cycles between the two groups of neonates. We will examine
the sleep cycle of the unexposed infants in order to compare the performance of
Wa, Whn_1., and W _; on a real data set.

The sleep states of each infant were classified into six categories: quiet sleep

- trace alternate, quiet sleep - high voltage, indeterminate sleep, active sleep -

16



low voltage, active sleep - mixed, and awake. The states were coded using the
numbers 1 to 6, respectively.

Figure 3(a) is a plot of the sleep state of one infant for 122 minutes. An
average of the WFPs for all twelve infants is given in Figure 3(b). Sleep states for
the twelve infants were recorded anywhere from 113 to 122 minutes; therefore,
in order to take the Walsh—Fourier transforms, the data were padded with zeros
until there were 128 values for each infant. The Walsh—Fourier periodogram
has been log-transformed in order to accentuate the peaks. The maximum
periodogram ordinate occurs at the third sequency. This peak indicates that the
data cross zero every 128/3 = 42.67 minutes, which translates into a “period”
for the data of roughly 42 minutes. Recall that this average refers to all of the
infant records. For plots of all twelve infant sleep records, see Stoffer, et. al.
(1988).

The second largest peak, occurring at the eleventh sequency, represents the
average length that an infant stays in one sleep state before moving to the next.
This value is 128/11 =11.64 minutes. Again, this is an average over all twelve
infants. We wish to examine the significance of this peak, as well as that of the
maximum peak.

Although the value at the eleventh sequency is the second largest peak, it
is the sixth largest order statistic of the Walsh—Fourier periodogram. The test
is based on the order statistics for each of the peaks of the WFP and not the
peaks themselves. In other words, the second largest peak may not necessarily
be the second largest order statistic for any given periodogram. For the sixth

largest ordinate of the WFP, (7), for k = 6, becomes

Fw, 5. (1) = —exp(—e™™)
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1 1 1 1
1 +e—x + 56—23: + 66—330 4 ﬁe—@: + Foe—&: (15)

Recall that A(w) is defined as —log [exp(—e™*)] = e~ *.

Table 4 gives the test statistic used, the p—value for the test, and the true
size of the test statistic. The p-values are based on the theoretical asymptotic
distribution of each test statistic. They are all essentially zero. The empirical
sizes are simulated by calculating the percentage of time that a white noise pro-
cess with N = 128 and C = 6 exceeds the ninety—fifth percentile of the extreme
value distribution for both the maximum and the sixth largest order statistic
(which is the second peak). Simulation results are based on 200 replications
of 2000 maxima from a WFP for each of the four scenarios. Results using the
trimmed test statistic are more accurate than the untrimmed statistic for the
sixth ordinate; however, the accuracy does not seem to depend on the amount
of trimming. The sizes are all very close to 5%, indicating that the probability
of a Type I error is exactly what we would expect for this sample size and num-
ber of categories. The standard deviation of the 200 replicated size values was

approximately 0.005 for all scenarios.

Maximum Peak Second Peak
Test Statistic | P-value | Size || Test Statistic | P-value | Size
| 49.60 < 0.001 | 0.056 27.12 < 0.001 | 0.027
W, 10.06 < 0.001 | 0.049 5.50 < 0.001 | 0.042
wh_, 14.26 < 0.001 | 0.050 7.80 < 0.001 | 0.043
wis, 19.44 < 0.001 | 0.050 10.63 < 0.001 | 0.046

Table 4: Test Statistics, P-values, and Empirical Sizes for W,,_1., and W] _;

for the Sleep State Data.
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The test statistics W,,_1., and W/_; have good size and power properties,
and can be easily employed to examine the significance of any peak in a Walsh—
Fourier periodogram. Their usage was demonstrated using neonatal sleep data.
It was found that there are two significant patterns in the data - the dominate
one corresponding to the sequency of the data, and the subordinate one corre-
sponding to the amount of time an infant stays in a sleep state before moving

to the next.
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